Prevalence of Co-Infections in Primary Care Patients with Medically Attended Acute Respiratory Infection in the 2022/2023 Season
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample Collection and Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Wang, X.; Blau, D.M.; Caballero, M.T.; Feikin, D.R.; Gill, C.J.; Madhi, S.A.; Omer, S.B.; Simões, E.A.F.; Campbell, H.; et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: A systematic analysis. Lancet 2022, 399, 2047–2064. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Denouel, A.; Tietjen, A.K.; Campbell, I.; Moran, E.; Li, X.; Campbell, H.; Demont, C.; Nyawanda, B.O.; Chu, H.Y.; et al. Global Disease Burden Estimates of Respiratory Syncytial Virus-Associated Acute Respiratory Infection in Older Adults in 2015: A Systematic Review and Meta-Analysis. J. Infect. Dis. 2020, 222, S577–S583. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, R.K.; Balasubramani, G.K.; D'Agostino, H.E.A.; Clarke, L.; Yassin, M.; Middleton, D.B.; Silveira, F.P.; Wheeler, N.D.; Landis, J.; Peterson, A.; et al. Population-based hospitalization burden estimates for respiratory viruses, 2015–2019. Influenza Other Respir. Viruses 2022, 16, 1133–1140. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Reeves, R.M.; Wang, X.; Bassat, Q.; Brooks, W.A.; Cohen, C.; Moore, D.P.; Nunes, M.; Rath, B.; Campbell, H.; et al. Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: A systematic analysis. Lancet Glob. Health 2019, 7, e1031–e1045. [Google Scholar] [CrossRef] [PubMed]
- Berginc, N.; Sočan, M.; Prosenc Trilar, K.; Petrovec, M. Seasonality and Genotype Diversity of Human Rhinoviruses during an Eight-Year Period in Slovenia. Microorganisms 2024, 12, 341. [Google Scholar] [CrossRef] [PubMed]
- Melidou, A.; Pereyaslov, D.; Hungnes, O.; Prosenc, K.; Alm, E.; Adlhoch, C.; Fielding, J.; Sneiderman, M.; Martinuka, O.; Celentano, L.P.; et al. Virological surveillance of influenza viruses in the WHO European Region in 2019/20—impact of the COVID-19 pandemic. Eurosurveillance 2020, 25, 2001822. [Google Scholar] [CrossRef] [PubMed]
- Adlhoch, C.; Mook, P.; Lamb, F.; Ferland, L.; Melidou, A.; Amato-Gauci, A.J.; Pebody, R.; European Influenza Surveillance Network. Very little influenza in the WHO European Region during the 2020/21 season, weeks 40 2020 to 8 2021. Eurosurveillance 2021, 26, 2100221. [Google Scholar] [CrossRef] [PubMed]
- van Summeren, J.; Meijer, A.; Aspelund, G.; Casalegno, J.S.; Erna, G.; Hoang, U.; Lina, B.; de Lusignan, S.; Teirlinck, A.C.; Thors, V.; et al. Low levels of respiratory syncytial virus activity in Europe during the 2020/21 season: What can we expect in the coming summer and autumn/winter? Eurosurveillance 2021, 26, 2100639. [Google Scholar] [CrossRef] [PubMed]
- Perez, A.; Lively, J.Y.; Curns, A.; Weinberg, G.A.; Halasa, N.B.; Staat, M.A.; Szilagyi, P.G.; Stewart, L.S.; McNeal, M.M.; Clopper, B.; et al. Respiratory Virus Surveillance Among Children with Acute Respiratory Illnesses—New Vaccine Surveillance Network, United States, 2016–2021. MMWR 2022, 71, 1253–1259. [Google Scholar] [CrossRef]
- Schüz, M.L.; Dallmeyer, L.; Fragkou, P.C.; Omony, J.; Krumbein, H.; Hünerbein, B.L.; Skevaki, C. Global prevalence of respiratory virus infections in adults and adolescents during the COVID-19 pandemic: A systematic review and meta-analysis. Int. J. Infect. Dis. 2023, 137, 16–24. [Google Scholar] [CrossRef]
- Gilbert-Girard, S.; Piret, J.; Carbonneau, J.; Hénaut, M.; Goyette, N.; Boivin, G. Viral interference between severe acute respiratory syndrome coronavirus 2 and influenza A viruses. PLoS Pathog. 2024, 20, e1012017. [Google Scholar] [CrossRef]
- Matera, L.; Manti, S.; Petrarca, L.; Pierangeli, A.; Conti, M.G.; Mancino, E.; Leonardi, S.; Midulla, F.; Nenna, R. An overview on viral interference during SARS-CoV-2 pandemic. Front. Pediatr. 2023, 11, 1308105. [Google Scholar] [CrossRef] [PubMed]
- Piret, J.; Boivin, G. Viral Interference between Respiratory Viruses. Emerg. Infect. Dis. 2022, 28, 273–281. [Google Scholar] [CrossRef]
- Meslé, M.M.I.; Sinnathamby, M.; Mook, P.; WHO European Region Respiratory Network Group. Seasonal and inter-seasonal RSV activity in the European Region during the COVID-19 pandemic from autumn 2020 to summer 2022. Influenza Other Respir. Viruses 2023, 17, e13219. [Google Scholar] [CrossRef] [PubMed]
- Bardsley, M.; Morbey, R.A.; Hughes, H.E.; Beck, C.R.; Watson, C.H.; Zhao, H.; Ellis, J.; Smith, G.E.; Elliot, A.J. Epidemiology of respiratory syncytial virus in children younger than 5 years in England during the COVID-19 pandemic, measured by laboratory, clinical, and syndromic surveillance: A retrospective observational study. Lancet Infect. Dis. 2023, 23, 56–66. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Seasonal Influenza—Annual Epidemiological Report for 2021–2022; ECDC: Stockholm, Sweden, 2022. [Google Scholar]
- Nitsch-Osuch, A.; Kuchar, E.; Topczewska-Cabanek, A.; Wardyn, K.; Życińska, K.; Brydak, L. Incidence and Clinical Course of Respiratory Viral Co-Infections in Children Aged 0–59 Months. Adv. Exp. Med. Biol. 2016, 905, 17–23. [Google Scholar] [CrossRef]
- Sanz, I.; Perez, D.; Rojo, S.; Domínguez-Gil, M.; de Lejarazu, R.O.; Eiros, J.M. Co-infections of influenza and other respiratory viruses are associated to children. An. Pediatr. (Engl. Ed.) 2022, 96, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Dao, T.L.; Hoang, V.T.; Colson, P.; Million, M.; Gautret, P. Co-infection of SARS-CoV-2 and influenza viruses: A systematic review and meta-analysis. J. Clin. Virol. Plus 2021, 1, 100036. [Google Scholar] [CrossRef]
- World Health Organization. Maintaining Surveillance of Influenza and Monitoring SARS-CoV-2—Adapting Global Influenza Surveillance and Response System (GISRS) and Sentinel Systems during the COVID-19 Pandemic; World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.who.int/publications/i/item/maintaining-surveillance-of-influenza-and-monitoring-sars-cov-2-adapting-global-influenza-surveillance-and-response-system-(gisrs)-and-sentinel-systems-during-the-covid-19-pandemic (accessed on 15 May 2024).
- Lionello, L.; Stranges, D.; Karki, T.; Wiltshire, E.; Proietti, C.; Annunziato, A.; Jansa, J.; Severi, E.; ECDC–JRC Response Measures Database working group. Non-pharmaceutical interventions in response to the COVID-19 pandemic in 30 European countries: The ECDC-JRC Response Measures Database. Eurosurveillance 2022, 27, 2101190. [Google Scholar] [CrossRef] [PubMed]
- Maison, N.; Omony, J.; Rinderknecht, S.; Kolberg, L.; Meyer-Bühn, M.; von Mutius, E.; Hübner, J.; von Both, U. Old foes following news ways?—Pandemic-related changes in the epidemiology of viral respiratory tract infections. Infection 2024, 52, 209–218. [Google Scholar] [CrossRef]
- Boussarsar, M.; Ennouri, E.; Habbachi, N.; Bouguezzi, N.; Meddeb, K.; Gallas, S.; Hafdhi, M.; Zghidi, M.; Toumi, R.; Saida, B.I.; et al. Epidemiology and burden of Severe Acute Respiratory Infections (SARI) in the aftermath of COVID-19 pandemic: A prospective sentinel surveillance study in a Tunisian Medical ICU, 2022/2023. PLoS ONE 2023, 18, e0294960. [Google Scholar] [CrossRef]
- Gao, L.; Arango-Franco, C.; Feng, G.; Shen, K.; Xu, B. Upsurge of acute respiratory infections among children post-COVID-19 pandemic. Innov. Med. 2024, 2, 100070. [Google Scholar] [CrossRef]
- Loosen, S.H.; Plendl, W.; Konrad, M.; Tanislav, C.; Luedde, T.; Roderburg, C.; Kostev, K. Prevalence of Upper Respiratory Tract Infections before, during, and after the COVID-19 Pandemic in Germany: A Cross-Sectional Study of 2 167 453 Outpatients. J. Prim. Care Community Health 2023, 14, 21501319231204436. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Li, K.; Lei, Z.; Luo, J.; Wang, Q.; Wei, S. Prevalence and associated outcomes of coinfection between SARS-CoV-2 and influenza: A systematic review and meta-analysis. Int. J. Infect. Dis. 2023, 136, 29–36. [Google Scholar] [CrossRef]
- Sadeh Tehrani, R.; Mohammadjafari, H.; Alizadeh, S.; Naseroleslami, M.; Karbalaie Niya, M.H. The prevalence of 17 common respiratory viruses in patients with respiratory disease but negative for COVID-19: A cross-sectional study. Health Sci. Rep. 2024, 7, e1986. [Google Scholar] [CrossRef]
- Trifonova, I.; Korsun, N.; Madzharova, I.; Velikov, P.; Alexsiev, I.; Grigorova, L.; Voleva, S.; Yordanova, R.; Ivanov, I.; Tcherveniakova, T.; et al. Prevalence and clinical impact of mono- and co-infections with endemic coronaviruses 229E, OC43, NL63, and HKU-1 during the COVID-19 pandemic. Heliyon 2024, 10, e29258. [Google Scholar] [CrossRef] [PubMed]
- Swets, M.C.; Russell, C.D.; Harrison, E.M.; Docherty, A.B.; Lone, N.; Girvan, M.; Hardwick, H.E.; Visser, L.G.; Openshaw, P.J.M.; Groeneveld, G.H.; et al. SARS-CoV-2 co-infection with influenza viruses.; respiratory syncytial virus.; or adenoviruses. Lancet 2022, 399, 1463–1464. [Google Scholar] [CrossRef]
- Trapani, S.; Caporizzi, A.; Ricci, S.; Indolfi, G. Human Bocavirus in Childhood: A True Respiratory Pathogen or a "Passenger" Virus? A Comprehensive Review. Microorganisms 2023, 11, 1243. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wang, W.; Yan, H.; Ren, P.; Zhang, J.; Shen, J.; Deubel, V. Correlation between bocavirus infection and humoral response, and co-infection with other respiratory viruses in children with acute respiratory infection. J. Clin. Virol. 2010, 47, 148–155. [Google Scholar] [CrossRef]
- Kabuga, A.I.; Nejati, A.; Soheili, P.; Shahmahmoodi, S. Human parechovirus are emerging pathogens with broad spectrum of clinical syndromes in adults. J. Med. Virol. 2020, 92, 2911–2916. [Google Scholar] [CrossRef]
- de Crom, S.C.; Rossen, J.W.; van Furth, A.M.; Obihara, C.C. Enterovirus and parechovirus infection in children: A brief overview. Eur. J. Pediatr. 2016, 175, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
Respiratory Viruses | No. of Positive Samples (%) | No. of Negative Samples (%) |
---|---|---|
Influenza A virus | 397 (18.9%) | 1702 (81.1%) |
Influenza B virus | 174 (8.3%) | 1925 (91.7%) |
RSV | 208 (9.9%) | 1891 (90.1%) |
Adenovirus | 204 (9.7%) | 1895 (90.3%) |
Enterovirus | 103 (4.9%) | 1996 (95.1%) |
Rhinovirus | 384 (18.3%) | 1715 (81.7%) |
Human metapneumovirus | 136 (6.5%) | 1963 (93.5%) |
Human bocavirus | 94 (4.5%) | 2005 (95.5%) |
Parainfluenza viruses (1–4) | 111 (5.3%) | 1988 (94.7%) |
Human coronaviruses | 51 (2.4%) | 2048 (97.6%) |
Human parechovirus | 28 (1.3%) | 2071 (98.7%) |
SARS-CoV-2 | 117 (5.6%) | 1982 (94.4%) |
Respiratory Virus | Influenza A | Influenza B | RSV | Adenovirus | Enterovirus | Rhinovirus | hMPV | hBoV | Parainfluenza | hCoV | hPeV | SARS-CoV-2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Influenza A | ||||||||||||
Influenza B | 3 | |||||||||||
RSV | 14 | 1 | ||||||||||
Adenovirus | 11 | 7 | 10 | |||||||||
Enterovirus | 8 | 0 | 14 | 20 | ||||||||
Rhinovirus | 29 | 10 | 24 | 48 | 0 | |||||||
hMPV | 6 | 3 | 3 | 9 | 4 | 11 | ||||||
hBoV | 24 | 6 | 6 | 22 | 7 | 19 | 6 | |||||
Parainfluenza | 2 | 1 | 2 | 12 | 10 | 17 | 2 | 6 | ||||
hCoV | 4 | 0 | 3 | 7 | 3 | 7 | 2 | 5 | 1 | |||
hPeV | 3 | 0 | 1 | 7 | 4 | 6 | 3 | 8 | 1 | 1 | ||
SARS-CoV-2 | 11 | 0 | 8 | 0 | 0 | 9 | 1 | 3 | 3 | 3 | 1 |
Mono-Infected (%) | Co-Infected (%) | All (%) | Sig. | |
---|---|---|---|---|
Gender | 0.672 | |||
Male | 573 (78.3.5%) | 159 (21.7%) | 732 (100%) | |
Female | 687 (79.1%) | 181 (20.9%) | 868 (100%) | |
Age groups (years) | 0.000 | |||
0–3 | 172 (53.9%) | 147 (46.1%) | 319 (100%) | |
4–7 | 158 (73.1%) | 58 (26.9%) | 216 (100%) | |
8–14 | 186 (77.2%) | 55 (22.8%) | 241 (100%) | |
15–19 | 84 (87.5%) | 12 (12.5%) | 96 (100%) | |
20–64 | 543 (89.8%) | 62 (10.2%) | 605 (100%) | |
≥65 | 117 (95.1%) | 6 (4.9%) | 123 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sočan, M.; Prosenc, K.; Mrzel, M. Prevalence of Co-Infections in Primary Care Patients with Medically Attended Acute Respiratory Infection in the 2022/2023 Season. Viruses 2024, 16, 1289. https://doi.org/10.3390/v16081289
Sočan M, Prosenc K, Mrzel M. Prevalence of Co-Infections in Primary Care Patients with Medically Attended Acute Respiratory Infection in the 2022/2023 Season. Viruses. 2024; 16(8):1289. https://doi.org/10.3390/v16081289
Chicago/Turabian StyleSočan, Maja, Katarina Prosenc, and Maja Mrzel. 2024. "Prevalence of Co-Infections in Primary Care Patients with Medically Attended Acute Respiratory Infection in the 2022/2023 Season" Viruses 16, no. 8: 1289. https://doi.org/10.3390/v16081289
APA StyleSočan, M., Prosenc, K., & Mrzel, M. (2024). Prevalence of Co-Infections in Primary Care Patients with Medically Attended Acute Respiratory Infection in the 2022/2023 Season. Viruses, 16(8), 1289. https://doi.org/10.3390/v16081289