Looking Back, Moving Forward: Challenges and Opportunities for Global Cervical Cancer Prevention and Control
Abstract
:- A.
- Part 1: Looking Back
1. Introduction
2. A Brief History
3. HPV and Cervical Cancer
4. Precision Prevention: Targeting HPV for Prophylaxis and Interception
5. Cervical Cancer: The Low-Hanging Fruit
- Natural history informs interventions. The elucidation of the natural history of cervical cancer has guided the development and use of prevention strategies. It is now clear that younger women—and men—should be vaccinated against HPV before exposure to it but not screened because they have very little true pre-cancerous lesions and almost no cancer. However, mid-adult women need screening for long-persisting HPV infections that have developed into cervical pre-cancer and cancer but will benefit very little from HPV vaccination as they will acquire relatively few incident HPV infections that will go on to become cancer [166,167].
- Surrogates accelerate progress. Having a good surrogate of cancer allows for rapid cycling through novel interventions to identify those that are most promising without requiring an incidence or mortality endpoint. CIN3 and AIS have HPV genotype distributions that closely resemble that of invasive cervical cancer [144,168,169,170,171]; the positivity for biomarkers associated with cervical cancer increases with increasing certainty of pre-cancer [172,173]. Conversely, CIN2, which has been included in combined endpoint (CIN2 or more severe abnormality (“CIN2+”)) to help power prevention and screening trials, is highly regressive and is often caused by low-risk HPV, as a result of likely being an admixture of manifestations of HPV infection (e.g., CIN1) and CIN3 rather than a true biological entity [66,174,175,176]. Thus, its inclusion in a composite endpoint must be interpreted with caution. As a result of including CIN2 in endpoints, the clinical importance of certain HPV types can be overestimated. For example, HPV66, which commonly causes CIN2 and low-grade abnormalities [32], is included in all current HPV tests because of one influential study [33], despite the fact that it rarely causes cancer [28,29,32] and is not considered a high-risk HPV type [30,177]. Conversely, HPV18 is often under-represented in CIN3 compared with its prevalence in cervical cancer [32,168,170,178]. Thus, a weighted average based on histology and HPV genotype fraction based on cancer may better predict the impact of an intervention on cervical cancer risk than simple HPV type prevalence when a surrogate endpoint of CIN2+ is used [174].
- Screening works best as a two-step process. First rule out, then rule in. Typically, diagnostic tests are used to confirm a disease in a selected population enriched for the disease of interest, e.g., someone has a symptom, such as fever, and then a diagnostic test is run to determine the underlying cause. In the case of cancer screening, the intervention is performed in a population in which cancer and even precursors are relatively rare. In this scenario, a single-test screening algorithm will have poor positive predictive value (PPV) unless the test is extremely specific [179], which usually then sacrifices sensitivity. In the two-step, rule-out/rule-in algorithm, the first, more sensitive test (HPV) rules out disease in the healthy population. An important but underappreciated benefit of the rule-out algorithm is providing reassurance against disease, i.e., telling healthy people that they are healthy and at low risk of cancer. In the case of HPV testing, testing negative for the cause of cervical cancer allows screening intervals to be safely extended, reducing screening harms.When the triage test is applied to the sub-population of screen positives to risk stratify and determine who needs further evaluation (rule-in), the PPV is much better because the endpoint of interest is enriched [179]. Using a two-step, rule-out/rule-in algorithm, populations are stratified into three distinct risk groups, i.e., higher risk (rule-out+/rule-in+), intermediate risk (rule-out+/rule-in−), and lower risk (rule-out−), that can be managed according to clinical action thresholds. For example, HPV+/Pap+ women are sent to colposcopy, HPV+/Pap− are placed under active, annual surveillance (until there is evidence of increased risk in follow-up), and HPV− return to routine, 5-year screening. The results of the screening test can be combined with the triage test results for further risk stratification. For example, if HPV genotyping for HPV16 and HPV18 is available as part of HPV testing, the three tiers of risk are (1) HPV16+, HPV18+, or Pap+ go to colposcopy (rule-out+/rule-in+), (2) HPV+ but HPV16-, HPV18-, and Pap- undergo active annual surveillance (rule-out+/rule-in−), and (3) HPV- return to routine screening. As a consequence, more high-risk women are sent for immediate colposcopy, likely increasing programmatic sensitivity.Clinical action thresholds (CATs) can be established to guide the optimal management of women by maximizing the population benefits-to-harms ratio as well as promoting the principle of equal care for equal risk. CATs, based on risk, are used to guide clinical decision-making and are informed by sociocultural acceptance of tradeoffs in benefits and harms. Operationally, both biological (e.g., HPV16 detection) and non-biological risk factors (e.g., social determinants of health) are integrated into an individual risk estimate, and the CAT determines whether more (above the CAT) or less (below the CAT) aggressive intervention is warranted, e.g., colposcopy vs. surveillance, respectively.
- Implementing best practices is very difficult and slow. Even when the science and evidence are robust, adoption is slow, especially in “disorganized” healthcare systems, like cervical cancer screening in the U.S. It has been known that HPV testing is a better screening test than cytology for 20+ years, but, even now, very few women living in the U.S. get screened at the recommended screening intervals [180], screening tests are overused [181], and most U.S. cancer centers do not recommend HPV testing as the front-line cervical cancer screening test [182]. Vested interests almost certainly played a role in the slow change from cytology to HPV testing. Without HPV testing, self-collection will not be an option, which is key to reaching many women who cannot or will not undergo a pelvic exam or obtain care in the clinic. Implementation research on how to bring HPV testing into practice and de-implementing cytology-based screening and over-screening is greatly needed. By comparison, national, publicly funded healthcare programs, such as those in many European countries like The Netherlands, tend to be more efficient and have better adherence to guidelines, thereby reducing costs and harms of screening compared with the U.S. [183,184].
- Systematic Bias. The development of new technologies is subject to systemic biases. The HPV35 story is an example of such a bias. The formative epidemiological studies of cervical cancer did not include enough cases of cervical cancer in women of African descent to detect this important relationship and, consequently, HPV35 is not included in any current HPV vaccine formulations. Those studies that did include cases of cervical cancer from WLWH of African descent from sub-Saharan Africa and differences in type distribution were first attributed to HIV co-infection. Whether current multivalent HPV vaccines generate enough cross-protection to protect against untargeted HPV35 is unknown. However, it was recently announced that one vaccine manufacturer will develop a multivalent (> nine-valent) HPV vaccine that hopefully will include HPV35 [50].
- New technologies can exacerbate health disparities. The role of Pap in accelerating global cervical cancer prevention cannot be overstated. Millions of cervical cancers, and deaths due to cervical cancer, were averted worldwide because of Pap testing, though these benefits were concentrated in high-resource populations. Another important contribution of routine Pap testing was helping to elucidate the natural history of cervical cancer, which had profound consequences for the subsequent development of newer, more effective technologies directly targeting HPV. Having a Pap as a predicate test facilitated the development of HPV testing. In addition, Pap testing-based screening identified and validated CIN2/3 as precursors to cervical cancer, which allowed clinical trials to use them as an early, surrogate endpoint for invasive cervical cancer, which accelerated approvals of HPV testing and HPV vaccines. That said, it is time to sunset Pap/cytology for the next-generation test for screening, HPV testing, which, in addition to better sensitivity and negative predictive value, offers greater flexibility for screening through self-collection, allowing more women to get screened. Unfortunately, as discussed below, we are in danger of repeating the same mistakes as the wealthiest women are given preferential access to these new, more effective, HPV-targeted technologies for cervical cancer prevention.
6. Discussion
- B.
- Part 2: Moving Forward
7. Achieving 90% HPV Vaccination
8. Achieving 70% HPV Testing-Based Screening
9. Achieving 90% Treatment
10. Cancer Care
11. Other Barriers
12. Other Opportunities for Global Cancer Control
13. Final Comments
Funding
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Cohen, C.M.; Wentzensen, N.; Castle, P.E.; Schiffman, M.; Zuna, R.; Arend, R.C.; Clarke, M.A. Racial and Ethnic Disparities in Cervical Cancer Incidence, Survival, and Mortality by Histologic Subtype. J. Clin. Oncol. 2023, 41, 1059–1068. [Google Scholar] [CrossRef]
- Scarinci, I.C.; Garcia, F.A.; Kobetz, E.; Partridge, E.E.; Brandt, H.M.; Bell, M.C.; Dignan, M.; Ma, G.X.; Daye, J.L.; Castle, P.E. Cervical cancer prevention: New tools and old barriers. Cancer 2010, 116, 2531–2542. [Google Scholar] [CrossRef]
- Diaz, A.; Vo, B.; Baade, P.D.; Matthews, V.; Nattabi, B.; Bailie, J.; Whop, L.J.; Bailie, R.; Garvey, G. Service Level Factors Associated with Cervical Screening in Aboriginal and Torres Strait Islander Primary Health Care Centres in Australia. Int. J. Environ. Res. Public. Health 2019, 16, 3630. [Google Scholar] [CrossRef] [PubMed]
- Exarchakou, A.; Rachet, B.; Belot, A.; Maringe, C.; Coleman, M.P. Impact of national cancer policies on cancer survival trends and socioeconomic inequalities in England, 1996–2013: Population based study. BMJ 2018, 360, k764. [Google Scholar] [CrossRef]
- Goodwin, B.C.; Rowe, A.K.; Crawford-Williams, F.; Baade, P.; Chambers, S.K.; Ralph, N.; Aitken, J.F. Geographical Disparities in Screening and Cancer-Related Health Behaviour. Int. J. Environ. Res. Public. Health 2020, 17, 1246. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, M.K.; Campbell, S.; Klungsøyr, O.; Lönnberg, S.; Hansen, B.T.; Nygård, M. Personal and provider level factors influence participation to cervical cancer screening: A retrospective register-based study of 1.3 million women in Norway. Prev. Med. 2017, 94, 31–39. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, E.J.; Geller, S.; Sibanda, N.; Stevenson, K.; Denmead, L.; Adcock, A.; Cram, F.; Hibma, M.; Sykes, P.; Lawton, B. Reaching under-screened/never-screened indigenous peoples with human papilloma virus self-testing: A community-based cluster randomised controlled trial. Aust. New Zealand J. Obstet. Gynaecol. 2021, 61, 135–141. [Google Scholar] [CrossRef]
- Brzoska, P.; Aksakal, T.; Yilmaz-Aslan, Y. Utilization of cervical cancer screening among migrants and non-migrants in Germany: Results from a large-scale population survey. BMC Public Health 2020, 20, 5. [Google Scholar] [CrossRef]
- Vaccarella, S.; Georges, D.; Bray, F.; Ginsburg, O.; Charvat, H.; Martikainen, P.; Brønnum-Hansen, H.; Deboosere, P.; Bopp, M.; Leinsalu, M.; et al. Socioeconomic inequalities in cancer mortality between and within countries in Europe: A population-based study. Lancet Reg. Health Eur. 2023, 25, 100551. [Google Scholar] [CrossRef] [PubMed]
- World Bank Group. GDP per Capita. Available online: https://data.worldbank.org/indicator/NY.GDP.PCAP.CD (accessed on 20 August 2024).
- Walboomers, J.M.; Jacobs, M.V.; Manos, M.M.; Bosch, F.X.; Kummer, J.A.; Shah, K.V.; Snijders, P.J.; Peto, J.; Meijer, C.J.; Muñoz, N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 1999, 189, 12–19. [Google Scholar] [CrossRef]
- World Health Organization. Cervical Cancer Elimination Initiative. Available online: https://www.who.int/initiatives/cervical-cancer-elimination-initiative (accessed on 1 January 2024).
- Castle, P.E.; Faupel-Badger, J.M.; Umar, A.; Rebbeck, T.R. A Proposed Framework and Lexicon for Cancer Prevention. Cancer Discov. 2024, 14, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Simms, K.T.; Steinberg, J.; Caruana, M.; Smith, M.A.; Lew, J.B.; Soerjomataram, I.; Castle, P.E.; Bray, F.; Canfell, K. Impact of scaled up human papillomavirus vaccination and cervical screening and the potential for global elimination of cervical cancer in 181 countries, 2020–2099: A modelling study. Lancet Oncol. 2019, 20, 394–407. [Google Scholar] [CrossRef] [PubMed]
- Arroyo Mühr, L.S.; Gini, A.; Yilmaz, E.; Hassan, S.S.; Lagheden, C.; Hultin, E.; Garcia Serrano, A.; Ure, A.E.; Andersson, H.; Merino, R.; et al. Concomitant human papillomavirus (HPV) vaccination and screening for elimination of HPV and cervical cancer. Nat. Commun. 2024, 15, 3679. [Google Scholar] [CrossRef] [PubMed]
- De Palo, G. Cervical precancer and cancer, past, present and future. Eur. J. Gynaecol. Oncol. 2004, 25, 269–278. [Google Scholar]
- Gasparini, R.; Panatto, D. Cervical cancer: From Hippocrates through Rigoni-Stern to zur Hausen. Vaccine 2009, 27 (Suppl. 1), A4–A5. [Google Scholar] [CrossRef]
- Mammas, I.N.; Spandidos, D.A. Four historic legends in human papillomaviruses research. J. BUON 2015, 20, 658–661. [Google Scholar]
- Papanicolaou, G.N.; Traut, H.F. The diagnostic value of vaginal smears in carcinoma of the uterus. Am. J. Obstet. Gynecol. 1941, 42, 193–206. [Google Scholar] [CrossRef]
- Papanicolaou, G.N. A New Procedure for Staining Vaginal Smears. Science 1942, 95, 438–439. [Google Scholar] [CrossRef]
- Ayre, J.E. Selective cytology smear for diagnosis of cancer. Am. J. Obstet. Gynecol. 1947, 53, 609–617. [Google Scholar] [CrossRef]
- Davey, D.D. American Cancer Society signals transition in cervical cancer screening from cytology to HPV tests. Cancer Cytopathol. 2021, 129, 259–261. [Google Scholar] [CrossRef] [PubMed]
- zur Hausen, H. Human papillomaviruses and their possible role in squamous cell carcinomas. Curr. Top. Microbiol. Immunol. 1977, 78, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Dürst, M.; Gissmann, L.; Ikenberg, H.; zur Hausen, H. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc. Natl. Acad. Sci. USA 1983, 80, 3812–3815. [Google Scholar] [CrossRef]
- Bouvard, V.; Wentzensen, N.; Mackie, A.; Berkhof, J.; Brotherton, J.; Giorgi-Rossi, P.; Kupets, R.; Smith, R.; Arrossi, S.; Bendahhou, K.; et al. The IARC Perspective on Cervical Cancer Screening. N. Engl. J. Med. 2021, 385, 1908–1918. [Google Scholar] [CrossRef]
- World Health Organization. WHO Updates Recommendations on HPV Vaccination Schedule. Available online: https://www.who.int/news/item/20-12-2022-WHO-updates-recommendations-on-HPV-vaccination-schedule#:~:text=WHO%20now%20recommends%3A,women%20older%20than%2021%20years (accessed on 13 January 2024).
- de Sanjose, S.; Quint, W.G.; Alemany, L.; Geraets, D.T.; Klaustermeier, J.E.; Lloveras, B.; Tous, S.; Felix, A.; Bravo, L.E.; Shin, H.R.; et al. Human papillomavirus genotype attribution in invasive cervical cancer: A retrospective cross-sectional worldwide study. Lancet Oncol. 2010, 11, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, M.; Clifford, G.; Buonaguro, F.M. Classification of weakly carcinogenic human papillomavirus types: Addressing the limits of epidemiology at the borderline. Infect. Agent. Cancer 2009, 4, 8. [Google Scholar] [CrossRef]
- Human Papillomaviruses. In IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, and World Health Organization; International Agency for Research on Cancer: Lyon, France, 2007.
- Geraets, D.; Alemany, L.; Guimera, N.; de Sanjose, S.; de Koning, M.; Molijn, A.; Jenkins, D.; Bosch, X.; Quint, W. Detection of rare and possibly carcinogenic human papillomavirus genotypes as single infections in invasive cervical cancer. J. Pathol. 2012, 228, 534–543. [Google Scholar] [CrossRef]
- Guan, P.; Howell-Jones, R.; Li, N.; Bruni, L.; de Sanjosé, S.; Franceschi, S.; Clifford, G.M. Human papillomavirus types in 115,789 HPV-positive women: A meta-analysis from cervical infection to cancer. Int. J. Cancer 2012, 131, 2349–2359. [Google Scholar] [CrossRef]
- Schiffman, M.; Khan, M.J.; Solomon, D.; Herrero, R.; Wacholder, S.; Hildesheim, A.; Rodriguez, A.C.; Bratti, M.C.; Wheeler, C.M.; Burk, R.D. A study of the impact of adding HPV types to cervical cancer screening and triage tests. J. Natl. Cancer Inst. 2005, 97, 147–150. [Google Scholar] [CrossRef]
- Bosch, F.X.; Broker, T.R.; Forman, D.; Moscicki, A.B.; Gillison, M.L.; Doorbar, J.; Stern, P.L.; Stanley, M.; Arbyn, M.; Poljak, M.; et al. Comprehensive control of human papillomavirus infections and related diseases. Vaccine 2013, 31 (Suppl. 6), G1–G31. [Google Scholar] [CrossRef]
- Serrano, B.; Brotons, M.; Bosch, F.X.; Bruni, L. Epidemiology and burden of HPV-related disease. Best. Pract. Res. Clin. Obstet. Gynaecol. 2018, 47, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Forman, D.; de Martel, C.; Lacey, C.J.; Soerjomataram, I.; Lortet-Tieulent, J.; Bruni, L.; Vignat, J.; Ferlay, J.; Bray, F.; Plummer, M.; et al. Global burden of human papillomavirus and related diseases. Vaccine 2012, 30 (Suppl. 5), F12–F23. [Google Scholar] [CrossRef]
- Castle, P.E.; Jeronimo, J.; Schiffman, M.; Herrero, R.; Rodríguez, A.C.; Bratti, M.C.; Hildesheim, A.; Wacholder, S.; Long, L.R.; Neve, L.; et al. Age-related changes of the cervix influence human papillomavirus type distribution. Cancer Res. 2006, 66, 1218–1224. [Google Scholar] [CrossRef]
- Castle, P.E.; Rodriguez, A.C.; Porras, C.; Herrero, R.; Schiffman, M.; Gonzalez, P.; Hildesheim, A.; Burk, R.D. A comparison of cervical and vaginal human papillomavirus. Sex. Transm. Dis. 2007, 34, 849–855. [Google Scholar] [CrossRef]
- Castle, P.E.; Schiffman, M.; Bratti, M.C.; Hildesheim, A.; Herrero, R.; Hutchinson, M.L.; Rodriguez, A.C.; Wacholder, S.; Sherman, M.E.; Kendall, H.; et al. A population-based study of vaginal human papillomavirus infection in hysterectomized women. J. Infect. Dis. 2004, 190, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Castle, P.E.; Schiffman, M.; Glass, A.G.; Rush, B.B.; Scott, D.R.; Wacholder, S.; Dunn, A.; Burk, R.D. Human papillomavirus prevalence in women who have and have not undergone hysterectomies. J. Infect. Dis. 2006, 194, 1702–1705. [Google Scholar] [CrossRef]
- Egawa, N.; Egawa, K.; Griffin, H.; Doorbar, J. Human Papillomaviruses; Epithelial Tropisms, and the Development of Neoplasia. Viruses 2015, 7, 3863–3890. [Google Scholar] [CrossRef] [PubMed]
- Befano, B.; Campos, N.G.; Egemen, D.; Herrero, R.; Schiffman, M.; Porras, C.; Lowy, D.R.; Rodriguez, A.C.; Schiller, J.T.; Ocampo, R.; et al. Estimating human papillomavirus vaccine efficacy from a single-arm trial: Proof-of-principle in the Costa Rica Vaccine Trial. J. Natl. Cancer Inst. 2023, 115, 788–795. [Google Scholar] [CrossRef] [PubMed]
- de Martel, C.; Plummer, M.; Vignat, J.; Franceschi, S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer 2017, 141, 664–670. [Google Scholar] [CrossRef]
- Vidal, A.C.; Murphy, S.K.; Hernandez, B.Y.; Vasquez, B.; Bartlett, J.A.; Oneko, O.; Mlay, P.; Obure, J.; Overcash, F.; Smith, J.S.; et al. Distribution of HPV genotypes in cervical intraepithelial lesions and cervical cancer in Tanzanian women. Infect. Agent. Cancer 2011, 6, 20. [Google Scholar] [CrossRef]
- Denny, L.; Adewole, I.; Anorlu, R.; Dreyer, G.; Moodley, M.; Smith, T.; Snyman, L.; Wiredu, E.; Molijn, A.; Quint, W.; et al. Human papillomavirus prevalence and type distribution in invasive cervical cancer in sub-Saharan Africa. Int. J. Cancer 2014, 134, 1389–1398. [Google Scholar] [CrossRef]
- Pinheiro, M.; Gage, J.C.; Clifford, G.M.; Demarco, M.; Cheung, L.C.; Chen, Z.; Yeager, M.; Cullen, M.; Boland, J.F.; Chen, X.; et al. Association of HPV35 with cervical carcinogenesis among women of African ancestry: Evidence of viral-host interaction with implications for disease intervention. Int. J. Cancer 2020, 147, 2677–2686. [Google Scholar] [CrossRef]
- Siriaunkgul, S.; Suwiwat, S.; Settakorn, J.; Khunamornpong, S.; Tungsinmunkong, K.; Boonthum, A.; Chaisuksunt, V.; Lekawanvijit, S.; Srisomboon, J.; Thorner, P.S. HPV genotyping in cervical cancer in Northern Thailand: Adapting the linear array HPV assay for use on paraffin-embedded tissue. Gynecol. Oncol. 2008, 108, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.C.; You, S.L.; Hsieh, C.Y.; Schiffman, M.; Lin, C.Y.; Pan, M.H.; Chou, Y.C.; Liaw, K.L.; Hsing, A.W.; Chen, C.J. Prevalence of genotype-specific human papillomavirus infection and cervical neoplasia in Taiwan: A community-based survey of 10,602 women. Int. J. Cancer 2011, 128, 1192–1203. [Google Scholar] [CrossRef]
- Chan, P.K.; Cheung, T.H.; Li, W.H.; Yu, M.Y.; Chan, M.Y.; Yim, S.F.; Ho, W.C.; Yeung, A.C.; Ho, K.M.; Ng, H.K. Attribution of human papillomavirus types to cervical intraepithelial neoplasia and invasive cancers in Southern China. Int. J. Cancer 2012, 131, 692–705. [Google Scholar] [CrossRef]
- Merck. Merck Announces Plans to Conduct Clinical Trials of a Novel Investigational Multi-Valent Human Papillomavirus (HPV) Vaccine and Single-Dose Regimen for GARDASIL®9. 2024. Available online: https://www.merck.com/news/merck-announces-plans-to-conduct-clinical-trials-of-a-novel-investigational-multi-valent-human-papillomavirus-hpv-vaccine-and-single-dose-regimen-for-gardasil-9/ (accessed on 21 August 2024).
- The Cancer Genome Atlas Research Network. Integrated genomic and molecular characterization of cervical cancer. Nature 2017, 543, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Pendergrass, P.B.; Belovicz, M.W.; Reeves, C.A. Surface area of the human vagina as measured from vinyl polysiloxane casts. Gynecol. Obstet. Invest. 2003, 55, 110–113. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Chapter 1: An introduction to the anatomy of the uterine cervix. In Colposcopy and Treatment of Cervical Intraepithelial Neoplasia: A Beginners’ Manual; Sellors, J.W., Sankaranarayanan, R., Eds.; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- Doorbar, J.; Griffin, H. Refining our understanding of cervical neoplasia and its cellular origins. Papillomavirus Res. 2019, 7, 176–179. [Google Scholar] [CrossRef]
- Schiffman, M.; Castle, P.E.; Jeronimo, J.; Rodriguez, A.C.; Wacholder, S. Human papillomavirus and cervical cancer. Lancet 2007, 370, 890–907. [Google Scholar] [CrossRef]
- Brown, D.R.; Shew, M.L.; Qadadri, B.; Neptune, N.; Vargas, M.; Tu, W.; Juliar, B.E.; Breen, T.E.; Fortenberry, J.D. A longitudinal study of genital human papillomavirus infection in a cohort of closely followed adolescent women. J. Infect. Dis. 2005, 191, 182–192. [Google Scholar] [CrossRef]
- Ho, G.Y.; Bierman, R.; Beardsley, L.; Chang, C.J.; Burk, R.D. Natural history of cervicovaginal papillomavirus infection in young women. N. Engl. J. Med. 1998, 338, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.W.; Kuhn, L.; Ellerbrock, T.V.; Chiasson, M.A.; Bush, T.J.; Wright, T.C., Jr. Human papillomavirus infection in women infected with the human immunodeficiency virus. N. Engl. J. Med. 1997, 337, 1343–1349. [Google Scholar] [CrossRef]
- Syrjänen, S.; Shabalova, I.; Petrovichev, N.; Podistov, J.; Ivanchenko, O.; Zakharenko, S.; Nerovjna, R.; Kljukina, L.; Branovskaja, M.; Juschenko, A.; et al. Age-specific incidence and clearance of high-risk human papillomavirus infections in women in the former Soviet Union. Int. J. STD AIDS 2005, 16, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Winer, R.L.; Lee, S.K.; Hughes, J.P.; Adam, D.E.; Kiviat, N.B.; Koutsky, L.A. Genital human papillomavirus infection: Incidence and risk factors in a cohort of female university students. Am. J. Epidemiol. 2003, 157, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Woodman, C.B.; Collins, S.; Winter, H.; Bailey, A.; Ellis, J.; Prior, P.; Yates, M.; Rollason, T.P.; Young, L.S. Natural history of cervical human papillomavirus infection in young women: A longitudinal cohort study. Lancet 2001, 357, 1831–1836. [Google Scholar] [CrossRef] [PubMed]
- Chesson, H.W.; Dunne, E.F.; Hariri, S.; Markowitz, L.E. The estimated lifetime probability of acquiring human papillomavirus in the United States. Sex. Transm. Dis. 2014, 41, 660–664. [Google Scholar] [CrossRef]
- Castle, P.E.; Rodríguez, A.C.; Burk, R.D.; Herrero, R.; Wacholder, S.; Alfaro, M.; Morales, J.; Guillen, D.; Sherman, M.E.; Solomon, D.; et al. Short term persistence of human papillomavirus and risk of cervical precancer and cancer: Population based cohort study. BMJ 2009, 339, b2569. [Google Scholar] [CrossRef]
- Koshiol, J.; Lindsay, L.; Pimenta, J.M.; Poole, C.; Jenkins, D.; Smith, J.S. Persistent human papillomavirus infection and cervical neoplasia: A systematic review and meta-analysis. Am. J. Epidemiol. 2008, 168, 123–137. [Google Scholar] [CrossRef]
- Kjær, S.K.; Frederiksen, K.; Munk, C.; Iftner, T. Long-term absolute risk of cervical intraepithelial neoplasia grade 3 or worse following human papillomavirus infection: Role of persistence. J. Natl. Cancer Inst. 2010, 102, 1478–1488. [Google Scholar] [CrossRef]
- Tainio, K.; Athanasiou, A.; Tikkinen, K.A.O.; Aaltonen, R.; Cárdenas, J.; Hernándes; Glazer-Livson, S.; Jakobsson, M.; Joronen, K.; Kiviharju, M.; et al. Clinical course of untreated cervical intraepithelial neoplasia grade 2 under active surveillance: Systematic review and meta-analysis. BMJ 2018, 360, k499. [Google Scholar] [CrossRef]
- Castle, P.E.; Wentzensen, N. Clarifying the Equivocal Diagnosis of Cervical Intraepithelial Neoplasia 2: Still a Work in Progress. J. Clin. Oncol. 2023, 41, 419–420. [Google Scholar] [CrossRef]
- Lycke, K.D.; Kahlert, J.; Damgaard, R.K.; Eriksen, D.O.; Bennetsen, M.H.; Gravitt, P.E.; Petersen, L.K.; Hammer, A. Clinical course of cervical intraepithelial neoplasia grade 2: A population-based cohort study. Am. J. Obstet. Gynecol. 2023, 229, e651–e656. [Google Scholar] [CrossRef]
- Burger, E.A.; de Kok, I.; Groene, E.; Killen, J.; Canfell, K.; Kulasingam, S.; Kuntz, K.M.; Matthijsse, S.; Regan, C.; Simms, K.T.; et al. Estimating the Natural History of Cervical Carcinogenesis Using Simulation Models: A CISNET Comparative Analysis. J. Natl. Cancer Inst. 2020, 112, 955–963. [Google Scholar] [CrossRef]
- McCredie, M.R.; Sharples, K.J.; Paul, C.; Baranyai, J.; Medley, G.; Jones, R.W.; Skegg, D.C. Natural history of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia 3: A retrospective cohort study. Lancet Oncol. 2008, 9, 425–434. [Google Scholar] [CrossRef]
- Schiffman, M.; Rodríguez, A.C. Heterogeneity in CIN3 diagnosis. Lancet Oncol. 2008, 9, 404–406. [Google Scholar] [CrossRef]
- Plummer, M.; Peto, J.; Franceschi, S. Time since first sexual intercourse and the risk of cervical cancer. Int. J. Cancer 2012, 130, 2638–2644. [Google Scholar] [CrossRef] [PubMed]
- Friborg, J.; Koch, A.; Wohlfarht, J.; Storm, H.H.; Melbye, M. Cancer in Greenlandic Inuit 1973–1997: A cohort study. Int. J. Cancer 2003, 107, 1017–1022. [Google Scholar] [CrossRef]
- Yang, M.; Du, J.; Lu, H.; Xiang, F.; Mei, H.; Xiao, H. Global trends and age-specific incidence and mortality of cervical cancer from 1990 to 2019: An international comparative study based on the Global Burden of Disease. BMJ Open 2022, 12, e055470. [Google Scholar] [CrossRef]
- Winer, R.L.; Hughes, J.P.; Feng, Q.; O’Reilly, S.; Kiviat, N.B.; Holmes, K.K.; Koutsky, L.A. Condom use and the risk of genital human papillomavirus infection in young women. N. Engl. J. Med. 2006, 354, 2645–2654. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.U.; Rebolj, M.; Dugué, P.A.; Bonde, J.; von Euler-Chelpin, M.; Lynge, E. Condom use in prevention of Human Papillomavirus infections and cervical neoplasia: Systematic review of longitudinal studies. J. Med. Screen. 2014, 21, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Tobian, A.A.; Serwadda, D.; Quinn, T.C.; Kigozi, G.; Gravitt, P.E.; Laeyendecker, O.; Charvat, B.; Ssempijja, V.; Riedesel, M.; Oliver, A.E.; et al. Male circumcision for the prevention of HSV-2 and HPV infections and syphilis. N. Engl. J. Med. 2009, 360, 1298–1309. [Google Scholar] [CrossRef]
- Shapiro, S.B.; Laurie, C.; El-Zein, M.; Franco, E.L. Association between male circumcision and human papillomavirus infection in males and females: A systematic review, meta-analysis, and meta-regression. Clin. Microbiol. Infect. 2023, 29, 968–978. [Google Scholar] [CrossRef] [PubMed]
- Laurie, C.; El-Zein, M.; Botting-Provost, S.; Tota, J.E.; Tellier, P.P.; Coutlée, F.; Burchell, A.N.; Franco, E.L. Efficacy and safety of a self-applied carrageenan-based gel to prevent human papillomavirus infection in sexually active young women (CATCH study): An exploratory phase IIB randomised, placebo-controlled trial. EClinicalMedicine 2023, 60, 102038. [Google Scholar] [CrossRef]
- Laurie, C.; El-Zein, M.; Franco, E.L. Safety of carrageenan-based gels as preventive microbicides: A narrative review. Sex. Transm. Infect. 2024, 100, 388–394. [Google Scholar] [CrossRef]
- Grulich, A.E.; van Leeuwen, M.T.; Falster, M.O.; Vajdic, C.M. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: A meta-analysis. Lancet 2007, 370, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.; Hu, Y.; Zhou, X.; Yang, L.; Wang, H.; Li, L.; Wang, J.; Qian, H.Z.; Clifford, G.M.; Zou, H. Incidence and mortality of non-AIDS-defining cancers among people living with HIV: A systematic review and meta-analysis. EClinicalMedicine 2022, 52, 101613. [Google Scholar] [CrossRef]
- Jin, F.; Vajdic, C.M.; Poynten, I.M.; McGee-Avila, J.K.; Castle, P.E.; Grulich, A.E. Cancer risk in people living with HIV and solid organ transplant recipients: A systematic review and meta-analysis. Lancet Oncol. 2024, 25, 933–944. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim Khalil, A.; Zhang, L.; Muwonge, R.; Sauvaget, C.; Basu, P. Efficacy and safety of therapeutic HPV vaccines to treat CIN 2/CIN 3 lesions: A systematic review and meta-analysis of phase II/III clinical trials. BMJ Open 2023, 13, e069616. [Google Scholar] [CrossRef]
- Santesso, N.; Mustafa, R.A.; Wiercioch, W.; Kehar, R.; Gandhi, S.; Chen, Y.; Cheung, A.; Hopkins, J.; Khatib, R.; Ma, B.; et al. Systematic reviews and meta-analyses of benefits and harms of cryotherapy, LEEP, and cold knife conization to treat cervical intraepithelial neoplasia. Int. J. Gynaecol. Obstet. 2016, 132, 266–271. [Google Scholar] [CrossRef]
- Prudden, H.J.; Achilles, S.L.; Schocken, C.; Broutet, N.; Canfell, K.; Akaba, H.; Basu, P.; Bhatla, N.; Chirenje, Z.M.; Delany-Moretlwe, S.; et al. Understanding the public health value and defining preferred product characteristics for therapeutic human papillomavirus (HPV) vaccines: World Health Organization consultations, October 2021–March 2022. Vaccine 2022, 40, 5843–5855. [Google Scholar] [CrossRef]
- Doorbar, J. The human Papillomavirus twilight zone—Latency, immune control and subclinical infection. Tumour Virus Res. 2023, 16, 200268. [Google Scholar] [CrossRef] [PubMed]
- Gravitt, P.E.; Winer, R.L. Natural History of HPV Infection across the Lifespan: Role of Viral Latency. Viruses 2017, 9, 267. [Google Scholar] [CrossRef] [PubMed]
- Schiller, J.T.; Lowy, D.R. Understanding and learning from the success of prophylactic human papillomavirus vaccines. Nat. Rev. Microbiol. 2012, 10, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Beachler, D.C.; Jenkins, G.; Safaeian, M.; Kreimer, A.R.; Wentzensen, N. Natural Acquired Immunity Against Subsequent Genital Human Papillomavirus Infection: A Systematic Review and Meta-analysis. J. Infect. Dis. 2016, 213, 1444–1454. [Google Scholar] [CrossRef]
- Yokoji, K.; Giguère, K.; Malagón, T.; Rönn, M.M.; Mayaud, P.; Kelly, H.; Delany-Moretlwe, S.; Drolet, M.; Brisson, M.; Boily, M.C.; et al. Association of naturally acquired type-specific HPV antibodies and subsequent HPV re-detection: Systematic review and meta-analysis. Infect. Agent. Cancer 2023, 18, 70. [Google Scholar] [CrossRef]
- Tsang, S.H.; Sampson, J.N.; Schussler, J.; Porras, C.; Wagner, S.; Boland, J.; Cortes, B.; Lowy, D.R.; Schiller, J.T.; Schiffman, M.; et al. Durability of Cross-Protection by Different Schedules of the Bivalent HPV Vaccine: The CVT Trial. J. Natl. Cancer Inst. 2020, 112, 1030–1037. [Google Scholar] [CrossRef]
- Tota, J.E.; Struyf, F.; Sampson, J.N.; Gonzalez, P.; Ryser, M.; Herrero, R.; Schussler, J.; Karkada, N.; Rodriguez, A.C.; Folschweiller, N.; et al. Efficacy of the AS04-Adjuvanted HPV16/18 Vaccine: Pooled Analysis of the Costa Rica Vaccine and PATRICIA Randomized Controlled Trials. J. Natl. Cancer Inst. 2020, 112, 818–828. [Google Scholar] [CrossRef]
- Brown, D.R.; Joura, E.A.; Yen, G.P.; Kothari, S.; Luxembourg, A.; Saah, A.; Walia, A.; Perez, G.; Khoury, H.; Badgley, D.; et al. Systematic literature review of cross-protective effect of HPV vaccines based on data from randomized clinical trials and real-world evidence. Vaccine 2021, 39, 2224–2236. [Google Scholar] [CrossRef] [PubMed]
- Joura, E.A.; Giuliano, A.R.; Iversen, O.E.; Bouchard, C.; Mao, C.; Mehlsen, J.; Moreira, E.D., Jr.; Ngan, Y.; Petersen, L.K.; Lazcano-Ponce, E.; et al. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N. Engl. J. Med. 2015, 372, 711–723. [Google Scholar] [CrossRef]
- Sharma, H.; Parekh, S.; Pujari, P.; Shewale, S.; Desai, S.; Bhatla, N.; Joshi, S.; Pimple, S.; Kawade, A.; Balasubramani, L.; et al. Immunogenicity and safety of a new quadrivalent HPV vaccine in girls and boys aged 9-14 years versus an established quadrivalent HPV vaccine in women aged 15–26 years in India: A randomised, active-controlled, multicentre, phase 2/3 trial. Lancet Oncol. 2023, 24, 1321–1333. [Google Scholar] [CrossRef]
- Zaman, K.; Schuind, A.E.; Adjei, S.; Antony, K.; Aponte, J.J.; Buabeng, P.B.; Qadri, F.; Kemp, T.J.; Hossain, L.; Pinto, L.A.; et al. Safety and immunogenicity of Innovax bivalent human papillomavirus vaccine in girls 9–14 years of age: Interim analysis from a phase 3 clinical trial. Vaccine 2024, 42, 2290–2298. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.H.; Wu, T.; Hu, Y.M.; Wei, L.H.; Li, M.Q.; Huang, W.J.; Chen, W.; Huang, S.J.; Pan, Q.J.; Zhang, X.; et al. Efficacy, safety, and immunogenicity of an Escherichia coli-produced Human Papillomavirus (16 and 18) L1 virus-like-particle vaccine: End-of-study analysis of a phase 3, double-blind, randomised, controlled trial. Lancet Infect. Dis. 2022, 22, 1756–1768. [Google Scholar] [CrossRef]
- Zhu, F.C.; Zhong, G.H.; Huang, W.J.; Chu, K.; Zhang, L.; Bi, Z.F.; Zhu, K.X.; Chen, Q.; Zheng, T.Q.; Zhang, M.L.; et al. Head-to-head immunogenicity comparison of an Escherichia coli-produced 9-valent human papillomavirus vaccine and Gardasil 9 in women aged 18–26 years in China: A randomised blinded clinical trial. Lancet Infect. Dis. 2023, 23, 1313–1322. [Google Scholar] [CrossRef]
- Schiller, J.T.; Castellsagué, X.; Garland, S.M. A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine 2012, 30 (Suppl. 5), F123–F138. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Ploner, A.; Elfström, K.M.; Wang, J.; Roth, A.; Fang, F.; Sundström, K.; Dillner, J.; Sparén, P. HPV Vaccination and the Risk of Invasive Cervical Cancer. N. Engl. J. Med. 2020, 383, 1340–1348. [Google Scholar] [CrossRef]
- Luostarinen, T.; Apter, D.; Dillner, J.; Eriksson, T.; Harjula, K.; Natunen, K.; Paavonen, J.; Pukkala, E.; Lehtinen, M. Vaccination protects against invasive HPV-associated cancers. Int. J. Cancer 2018, 142, 2186–2187. [Google Scholar] [CrossRef] [PubMed]
- Kjaer, S.K.; Dehlendorff, C.; Belmonte, F.; Baandrup, L. Real-World Effectiveness of Human Papillomavirus Vaccination Against Cervical Cancer. J. Natl. Cancer Inst. 2021, 113, 1329–1335. [Google Scholar] [CrossRef]
- Falcaro, M.; Castañon, A.; Ndlela, B.; Checchi, M.; Soldan, K.; Lopez-Bernal, J.; Elliss-Brookes, L.; Sasieni, P. The effects of the national HPV vaccination programme in England, UK, on cervical cancer and grade 3 cervical intraepithelial neoplasia incidence: A register-based observational study. Lancet 2021, 398, 2084–2092. [Google Scholar] [CrossRef]
- Palmer, T.J.; Kavanagh, K.; Cuschieri, K.; Cameron, R.; Graham, C.; Wilson, A.; Roy, K. Invasive cervical cancer incidence following bivalent human papillomavirus vaccination: A population-based observational study of age at immunization, dose, and deprivation. J. Natl. Cancer Inst. 2024, 116, 857–865. [Google Scholar] [CrossRef]
- Villa, A.; Patton, L.L.; Giuliano, A.R.; Estrich, C.G.; Pahlke, S.C.; O’Brien, K.K.; Lipman, R.D.; Araujo, M.W.B. Summary of the evidence on the safety, efficacy, and effectiveness of human papillomavirus vaccines: Umbrella review of systematic reviews. J. Am. Dent. Assoc. 2020, 151, 245–254.e224. [Google Scholar] [CrossRef]
- Willame, C.; Gadroen, K.; Bramer, W.; Weibel, D.; Sturkenboom, M. Systematic Review and Meta-analysis of Postlicensure Observational Studies on Human Papillomavirus Vaccination and Autoimmune and Other Rare Adverse Events. Pediatr. Infect. Dis. J. 2020, 39, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Scheller, N.M.; Pasternak, B.; Mølgaard-Nielsen, D.; Svanström, H.; Hviid, A. Quadrivalent HPV Vaccination and the Risk of Adverse Pregnancy Outcomes. N. Engl. J. Med. 2017, 376, 1223–1233. [Google Scholar] [CrossRef] [PubMed]
- Porras, C.; Tsang, S.H.; Herrero, R.; Guillén, D.; Darragh, T.M.; Stoler, M.H.; Hildesheim, A.; Wagner, S.; Boland, J.; Lowy, D.R.; et al. Efficacy of the bivalent HPV vaccine against HPV 16/18-associated precancer: Long-term follow-up results from the Costa Rica Vaccine Trial. Lancet Oncol. 2020, 21, 1643–1652. [Google Scholar] [CrossRef]
- Basu, P.; Malvi, S.G.; Joshi, S.; Bhatla, N.; Muwonge, R.; Lucas, E.; Verma, Y.; Esmy, P.O.; Poli, U.R.R.; Shah, A.; et al. Vaccine efficacy against persistent human papillomavirus (HPV) 16/18 infection at 10 years after one, two, and three doses of quadrivalent HPV vaccine in girls in India: A multicentre, prospective, cohort study. Lancet Oncol. 2021, 22, 1518–1529. [Google Scholar] [CrossRef]
- Baisley, K.; Kemp, T.J.; Kreimer, A.R.; Basu, P.; Changalucha, J.; Hildesheim, A.; Porras, C.; Whitworth, H.; Herrero, R.; Lacey, C.J.; et al. Comparing one dose of HPV vaccine in girls aged 9-14 years in Tanzania (DoRIS) with one dose of HPV vaccine in historical cohorts: An immunobridging analysis of a randomised controlled trial. Lancet Glob. Health 2022, 10, e1485–e1493. [Google Scholar] [CrossRef] [PubMed]
- Barnabas, R.V.; Brown, E.R.; Onono, M.A.; Bukusi, E.A.; Njoroge, B.; Winer, R.L.; Galloway, D.A.; Pinder, L.F.; Donnell, D.; I, N.W.; et al. Durability of single-dose HPV vaccination in young Kenyan women: Randomized controlled trial 3-year results. Nat. Med. 2023, 29, 3224–3232. [Google Scholar] [CrossRef] [PubMed]
- Kreimer, A.R.; Cernuschi, T.; Rees, H.; Brotherton, J.M.L.; Porras, C.; Schiller, J. Public health opportunities resulting from sufficient HPV vaccine supply and a single-dose vaccination schedule. J. Natl. Cancer Inst. 2023, 115, 246–249. [Google Scholar] [CrossRef]
- Kreimer, A.R.; Sampson, J.N.; Porras, C.; Schiller, J.T.; Kemp, T.; Herrero, R.; Wagner, S.; Boland, J.; Schussler, J.; Lowy, D.R.; et al. Evaluation of Durability of a Single Dose of the Bivalent HPV Vaccine: The CVT Trial. J. Natl. Cancer Inst. 2020, 112, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Kreimer, A.R.; Struyf, F.; Del Rosario-Raymundo, M.R.; Hildesheim, A.; Skinner, S.R.; Wacholder, S.; Garland, S.M.; Herrero, R.; David, M.P.; Wheeler, C.M.; et al. Efficacy of fewer than three doses of an HPV-16/18 AS04-adjuvanted vaccine: Combined analysis of data from the Costa Rica Vaccine and PATRICIA Trials. Lancet Oncol. 2015, 16, 775–786. [Google Scholar] [CrossRef]
- Castle, P.E.; Einstein, M.H.; Sahasrabuddhe, V.V. Cervical cancer prevention and control in women living with human immunodeficiency virus. CA Cancer J. Clin. 2021, 71, 505–526. [Google Scholar] [CrossRef] [PubMed]
- Staadegaard, L.; Rönn, M.M.; Soni, N.; Bellerose, M.E.; Bloem, P.; Brisson, M.; Maheu-Giroux, M.; Barnabas, R.V.; Drolet, M.; Mayaud, P.; et al. Immunogenicity, safety, and efficacy of the HPV vaccines among people living with HIV: A systematic review and meta-analysis. EClinicalMedicine 2022, 52, 101585. [Google Scholar] [CrossRef] [PubMed]
- Zizza, A.; Banchelli, F.; Guido, M.; Marotta, C.; Di Gennaro, F.; Mazzucco, W.; Pistotti, V.; D’Amico, R. Efficacy and safety of human papillomavirus vaccination in HIV-infected patients: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 4954. [Google Scholar] [CrossRef] [PubMed]
- Curry, S.J.; Krist, A.H.; Owens, D.K.; Barry, M.J.; Caughey, A.B.; Davidson, K.W.; Doubeni, C.A.; Epling, J.W., Jr.; Kemper, A.R.; Kubik, M.; et al. Screening for Cervical Cancer: US Preventive Services Task Force Recommendation Statement. JAMA 2018, 320, 674–686. [Google Scholar] [CrossRef] [PubMed]
- Fontham, E.T.H.; Wolf, A.M.D.; Church, T.R.; Etzioni, R.; Flowers, C.R.; Herzig, A.; Guerra, C.E.; Oeffinger, K.C.; Shih, Y.T.; Walter, L.C.; et al. Cervical cancer screening for individuals at average risk: 2020 guideline update from the American Cancer Society. CA Cancer J. Clin. 2020, 70, 321–346. [Google Scholar] [CrossRef]
- Perkins, R.B.; Wentzensen, N.; Guido, R.S.; Schiffman, M. Cervical Cancer Screening: A Review. JAMA 2023, 330, 547–558. [Google Scholar] [CrossRef]
- Koliopoulos, G.; Nyaga, V.N.; Santesso, N.; Bryant, A.; Martin-Hirsch, P.P.; Mustafa, R.A.; Schünemann, H.; Paraskevaidis, E.; Arbyn, M. Cytology versus HPV testing for cervical cancer screening in the general population. Cochrane Database Syst. Rev. 2017, 8, Cd008587. [Google Scholar] [CrossRef] [PubMed]
- Ronco, G.; Dillner, J.; Elfström, K.M.; Tunesi, S.; Snijders, P.J.; Arbyn, M.; Kitchener, H.; Segnan, N.; Gilham, C.; Giorgi-Rossi, P.; et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: Follow-up of four European randomised controlled trials. Lancet 2014, 383, 524–532. [Google Scholar] [CrossRef]
- Sankaranarayanan, R.; Nene, B.M.; Shastri, S.S.; Jayant, K.; Muwonge, R.; Budukh, A.M.; Hingmire, S.; Malvi, S.G.; Thorat, R.; Kothari, A.; et al. HPV screening for cervical cancer in rural India. N. Engl. J. Med. 2009, 360, 1385–1394. [Google Scholar] [CrossRef]
- Dillner, J.; Rebolj, M.; Birembaut, P.; Petry, K.U.; Szarewski, A.; Munk, C.; de Sanjose, S.; Naucler, P.; Lloveras, B.; Kjaer, S.; et al. Long term predictive values of cytology and human papillomavirus testing in cervical cancer screening: Joint European cohort study. BMJ 2008, 337, a1754. [Google Scholar] [CrossRef]
- Gage, J.C.; Schiffman, M.; Katki, H.A.; Castle, P.E.; Fetterman, B.; Wentzensen, N.; Poitras, N.E.; Lorey, T.; Cheung, L.C.; Kinney, W.K. Reassurance against future risk of precancer and cancer conferred by a negative human papillomavirus test. J. Natl. Cancer Inst. 2014, 106, dju153. [Google Scholar] [CrossRef]
- Arbyn, M.; Castle, P.E.; Schiffman, M.; Wentzensen, N.; Heckman-Stoddard, B.; Sahasrabuddhe, V.V. Meta-analysis of agreement/concordance statistics in studies comparing self- vs clinician-collected samples for HPV testing in cervical cancer screening. Int. J. Cancer 2022, 151, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Arbyn, M.; Smith, S.B.; Temin, S.; Sultana, F.; Castle, P. Detecting cervical precancer and reaching underscreened women by using HPV testing on self samples: Updated meta-analyses. BMJ 2018, 363, k4823. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.; Verberckmoes, B.; Castle, P.E.; Arbyn, M. Offering HPV self-sampling kits: An updated meta-analysis of the effectiveness of strategies to increase participation in cervical cancer screening. Br. J. Cancer 2023, 128, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, H.; Yeh, P.T.; Oguntade, H.; Kennedy, C.E.; Narasimhan, M. HPV self-sampling for cervical cancer screening: A systematic review of values and preferences. BMJ Glob. Health 2021, 6, e003743. [Google Scholar] [CrossRef]
- Camara, H.; Zhang, Y.; Lafferty, L.; Vallely, A.J.; Guy, R.; Kelly-Hanku, A. Self-collection for HPV-based cervical screening: A qualitative evidence meta-synthesis. BMC Public Health 2021, 21, 1503. [Google Scholar] [CrossRef]
- Morgan, K.; Azzani, M.; Khaing, S.L.; Wong, Y.L.; Su, T.T. Acceptability of Women Self-Sampling versus Clinician-Collected Samples for HPV DNA Testing: A Systematic Review. J. Low. Genit. Tract. Dis. 2019, 23, 193–199. [Google Scholar] [CrossRef]
- Pils, S.; Mlakar, J.; Poljak, M.; Domjanič, G.G.; Kaufmann, U.; Springer, S.; Salat, A.; Langthaler, E.; Joura, E.A. HPV screening in the urine of transpeople—A prevalence study. EClinicalMedicine 2022, 54, 101702. [Google Scholar] [CrossRef]
- Cho, H.W.; Shim, S.R.; Lee, J.K.; Hong, J.H. Accuracy of human papillomavirus tests on self-collected urine versus clinician-collected samples for the detection of cervical precancer: A systematic review and meta-analysis. J. Gynecol. Oncol. 2022, 33, e4. [Google Scholar] [CrossRef]
- Shin, H.Y.; Lee, B.; Hwang, S.H.; Lee, D.O.; Sung, N.Y.; Park, J.Y.; Jun, J.K. Evaluation of satisfaction with three different cervical cancer screening modalities: Clinician-collected Pap test vs. HPV test by self-sampling vs. HPV test by urine sampling. J. Gynecol. Oncol. 2019, 30, e76. [Google Scholar] [CrossRef]
- Sargent, A.; Fletcher, S.; Bray, K.; Kitchener, H.C.; Crosbie, E.J. Cross-sectional study of HPV testing in self-sampled urine and comparison with matched vaginal and cervical samples in women attending colposcopy for the management of abnormal cervical screening. BMJ Open 2019, 9, e025388. [Google Scholar] [CrossRef]
- Ørnskov, D.; Jochumsen, K.; Steiner, P.H.; Grunnet, I.M.; Lykkebo, A.W.; Waldstrøm, M. Clinical performance and acceptability of self-collected vaginal and urine samples compared with clinician-taken cervical samples for HPV testing among women referred for colposcopy. A cross-sectional study. BMJ Open 2021, 11, e041512. [Google Scholar] [CrossRef]
- Rohner, E.; McGuire, F.H.; Liu, Y.; Li, Q.; Miele, K.; Desai, S.A.; Schmitt, J.W.; Knittel, A.; Nelson, J.A.E.; Edelman, C.; et al. Racial and Ethnic Differences in Acceptability of Urine and Cervico-Vaginal Sample Self-Collection for HPV-Based Cervical Cancer Screening. J. Womens Health 2020, 29, 971–979. [Google Scholar] [CrossRef]
- Castle, P.E.; Solomon, D.; Schiffman, M.; Wheeler, C.M. Human papillomavirus type 16 infections and 2-year absolute risk of cervical precancer in women with equivocal or mild cytologic abnormalities. J. Natl. Cancer Inst. 2005, 97, 1066–1071. [Google Scholar] [CrossRef]
- Castle, P.E.; Stoler, M.H.; Wright, T.C., Jr.; Sharma, A.; Wright, T.L.; Behrens, C.M. Performance of carcinogenic human papillomavirus (HPV) testing and HPV16 or HPV18 genotyping for cervical cancer screening of women aged 25 years and older: A subanalysis of the ATHENA study. Lancet Oncol. 2011, 12, 880–890. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.J.; Castle, P.E.; Lorincz, A.T.; Wacholder, S.; Sherman, M.; Scott, D.R.; Rush, B.B.; Glass, A.G.; Schiffman, M. The elevated 10-year risk of cervical precancer and cancer in women with human papillomavirus (HPV) type 16 or 18 and the possible utility of type-specific HPV testing in clinical practice. J. Natl. Cancer Inst. 2005, 97, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Stoler, M.H.; Parvu, V.; Yanson, K.; Andrews, J.; Vaughan, L. Risk stratification of HPV-positive results using extended genotyping and cytology: Data from the baseline phase of the Onclarity trial. Gynecol. Oncol. 2023, 174, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Stoler, M.H.; Wright, T.C., Jr.; Parvu, V.; Yanson, K.; Cooper, C.K.; Andrews, J.A. Detection of high-grade cervical neoplasia using extended genotyping: Performance data from the longitudinal phase of the Onclarity trial. Gynecol. Oncol. 2023, 170, 143–152. [Google Scholar] [CrossRef]
- Wheeler, C.M.; Torrez-Martinez, N.E.; Torres-Chavolla, E.; Parvu, V.; Andrews, J.C.; Du, R.; Robertson, M.; Joste, N.E.; Cuzick, J. Comparing the performance of 2 human papillomavirus assays for a new use indication: A real-world evidence-based evaluation in the United States. Am. J. Obstet. Gynecol. 2024, 230, e241–e243. [Google Scholar] [CrossRef]
- Clarke, M.A.; Wentzensen, N.; Perkins, R.B.; Garcia, F.; Arrindell, D.; Chelmow, D.; Cheung, L.C.; Darragh, T.M.; Egemen, D.; Guido, R.; et al. Recommendations for Use of p16/Ki67 Dual Stain for Management of Individuals Testing Positive for Human Papillomavirus. J. Low. Genit. Tract. Dis. 2024, 28, 124–130. [Google Scholar] [CrossRef]
- Wentzensen, N.; Clarke, M.A.; Bremer, R.; Poitras, N.; Tokugawa, D.; Goldhoff, P.E.; Castle, P.E.; Schiffman, M.; Kingery, J.D.; Grewal, K.K.; et al. Clinical Evaluation of Human Papillomavirus Screening With p16/Ki-67 Dual Stain Triage in a Large Organized Cervical Cancer Screening Program. JAMA Intern. Med. 2019, 179, 881–888. [Google Scholar] [CrossRef]
- Wright, T.C., Jr.; Stoler, M.H.; Ranger-Moore, J.; Fang, Q.; Volkir, P.; Safaeian, M.; Ridder, R. Clinical validation of p16/Ki-67 dual-stained cytology triage of HPV-positive women: Results from the IMPACT trial. Int. J. Cancer 2022, 150, 461–471. [Google Scholar] [CrossRef]
- von Knebel Doeberitz, M.; Prigge, E.S. Role of DNA methylation in HPV associated lesions. Papillomavirus Res. 2019, 7, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Bowden, S.J.; Kalliala, I.; Veroniki, A.A.; Arbyn, M.; Mitra, A.; Lathouras, K.; Mirabello, L.; Chadeau-Hyam, M.; Paraskevaidis, E.; Flanagan, J.M.; et al. The use of human papillomavirus DNA methylation in cervical intraepithelial neoplasia: A systematic review and meta-analysis. EBioMedicine 2019, 50, 246–259. [Google Scholar] [CrossRef]
- Kelly, H.; Benavente, Y.; Pavon, M.A.; De Sanjose, S.; Mayaud, P.; Lorincz, A.T. Performance of DNA methylation assays for detection of high-grade cervical intraepithelial neoplasia (CIN2+): A systematic review and meta-analysis. Br. J. Cancer 2019, 121, 954–965. [Google Scholar] [CrossRef] [PubMed]
- Taghavi, K.; Zhao, F.; Downham, L.; Baena, A.; Basu, P. Molecular triaging options for women testing HPV positive with self-collected samples. Front. Oncol. 2023, 13, 1243888. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Siejka-Zielińska, P.; Velikova, G.; Bi, Y.; Yuan, F.; Tomkova, M.; Bai, C.; Chen, L.; Schuster-Böckler, B.; Song, C.X. Bisulfite-free direct detection of 5-methylcytosine and 5-hydroxymethylcytosine at base resolution. Nat. Biotechnol. 2019, 37, 424–429. [Google Scholar] [CrossRef]
- Vaisvila, R.; Ponnaluri, V.K.C.; Sun, Z.; Langhorst, B.W.; Saleh, L.; Guan, S.; Dai, N.; Campbell, M.A.; Sexton, B.S.; Marks, K.; et al. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA. Genome Res. 2021, 31, 1280–1289. [Google Scholar] [CrossRef] [PubMed]
- Schreiberhuber, L.; Barrett, J.E.; Wang, J.; Redl, E.; Herzog, C.; Vavourakis, C.D.; Sundström, K.; Dillner, J.; Widschwendter, M. Cervical cancer screening using DNA methylation triage in a real-world population. Nat. Med. 2024, 30, 2251–2257. [Google Scholar] [CrossRef]
- de Sanjosé, S.; Perkins, R.B.; Campos, N.; Inturrisi, F.; Egemen, D.; Befano, B.; Rodriguez, A.C.; Jerónimo, J.; Cheung, L.C.; Desai, K.; et al. Design of the HPV-automated visual evaluation (PAVE) study: Validating a novel cervical screening strategy. eLife 2024, 12, RP91469. [Google Scholar] [CrossRef]
- Xue, P.; Wang, J.; Qin, D.; Yan, H.; Qu, Y.; Seery, S.; Jiang, Y.; Qiao, Y. Deep learning in image-based breast and cervical cancer detection: A systematic review and meta-analysis. NPJ Digit. Med. 2022, 5, 19. [Google Scholar] [CrossRef]
- Parham, G.P.; Egemen, D.; Befano, B.; Mwanahamuntu, M.H.; Rodriguez, A.C.; Antani, S.; Chisele, S.; Munalula, M.K.; Kaunga, F.; Musonda, F.; et al. Validation in Zambia of a cervical screening strategy including HPV genotyping and artificial intelligence (AI)-based automated visual evaluation. Infect. Agent. Cancer 2023, 18, 61. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, M.; Doorbar, J.; Wentzensen, N.; de Sanjosé, S.; Fakhry, C.; Monk, B.J.; Stanley, M.A.; Franceschi, S. Carcinogenic human papillomavirus infection. Nat. Rev. Dis. Primers 2016, 2, 16086. [Google Scholar] [CrossRef] [PubMed]
- Doorbar, J.; Quint, W.; Banks, L.; Bravo, I.G.; Stoler, M.; Broker, T.R.; Stanley, M.A. The biology and life-cycle of human papillomaviruses. Vaccine 2012, 30 (Suppl. 5), F55–F70. [Google Scholar] [CrossRef]
- Iftner, T.; Neis, K.J.; Castanon, A.; Landy, R.; Holz, B.; Woll-Herrmann, A.; Iftner, A.; Staebler, A.; Wallwiener, D.; Hann von Weyhern, C.; et al. Longitudinal Clinical Performance of the RNA-Based Aptima Human Papillomavirus (AHPV) Assay in Comparison to the DNA-Based Hybrid Capture 2 HPV Test in Two Consecutive Screening Rounds with a 6-Year Interval in Germany. J. Clin. Microbiol. 2019, 57, e01177-18. [Google Scholar] [CrossRef]
- Iftner, T.; Becker, S.; Neis, K.J.; Castanon, A.; Iftner, A.; Holz, B.; Staebler, A.; Henes, M.; Rall, K.; Haedicke, J.; et al. Head-to-Head Comparison of the RNA-Based Aptima Human Papillomavirus (HPV) Assay and the DNA-Based Hybrid Capture 2 HPV Test in a Routine Screening Population of Women Aged 30 to 60 Years in Germany. J. Clin. Microbiol. 2015, 53, 2509–2516. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.L.; Jeronimo, J.; Zhao, F.H.; Schweizer, J.; Chen, W.; Valdez, M.; Lu, P.; Zhang, X.; Kang, L.N.; Bansil, P.; et al. Lower cost strategies for triage of human papillomavirus DNA-positive women. Int. J. Cancer 2014, 134, 2891–2901. [Google Scholar] [CrossRef]
- Castle, P.E.; Sideri, M.; Jeronimo, J.; Solomon, D.; Schiffman, M. Risk assessment to guide the prevention of cervical cancer. J. Low. Genit. Tract. Dis. 2008, 12, 1–7. [Google Scholar] [CrossRef]
- Perkins, R.B.; Guido, R.S.; Castle, P.E.; Chelmow, D.; Einstein, M.H.; Garcia, F.; Huh, W.K.; Kim, J.J.; Moscicki, A.B.; Nayar, R.; et al. 2019 ASCCP Risk-Based Management Consensus Guidelines for Abnormal Cervical Cancer Screening Tests and Cancer Precursors. J. Low. Genit. Tract. Dis. 2020, 24, 102–131. [Google Scholar] [CrossRef]
- Schiffman, M.; Wentzensen, N.; Perkins, R.B.; Guido, R.S. An Introduction to the 2019 ASCCP Risk-Based Management Consensus Guidelines. J. Low. Genit. Tract. Dis. 2020, 24, 87–89. [Google Scholar] [CrossRef]
- Burger, E.A.; Kim, J.J.; Sy, S.; Castle, P.E. Age of Acquiring Causal Human Papillomavirus (HPV) Infections: Leveraging Simulation Models to Explore the Natural History of HPV-induced Cervical Cancer. Clin. Infect. Dis. 2017, 65, 893–899. [Google Scholar] [CrossRef]
- Schiffman, M.; Castle, P.E. The promise of global cervical-cancer prevention. N. Engl. J. Med. 2005, 353, 2101–2104. [Google Scholar] [CrossRef]
- Wheeler, C.M.; Hunt, W.C.; Joste, N.E.; Key, C.R.; Quint, W.G.; Castle, P.E. Human papillomavirus genotype distributions: Implications for vaccination and cancer screening in the United States. J. Natl. Cancer Inst. 2009, 101, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Adcock, R.; Cuzick, J.; Hunt, W.C.; McDonald, R.M.; Wheeler, C.M. Role of HPV Genotype, Multiple Infections, and Viral Load on the Risk of High-Grade Cervical Neoplasia. Cancer Epidemiol. Biomarkers Prev. 2019, 28, 1816–1824. [Google Scholar] [CrossRef]
- Clifford, G.M.; Tully, S.; Franceschi, S. Carcinogenicity of Human Papillomavirus (HPV) Types in HIV-Positive Women: A Meta-Analysis From HPV Infection to Cervical Cancer. Clin. Infect. Dis. 2017, 64, 1228–1235. [Google Scholar] [CrossRef]
- Dovey de la Cour, C.; Guleria, S.; Nygård, M.; Trygvadóttir, L.; Sigurdsson, K.; Liaw, K.L.; Hortlund, M.; Lagheden, C.; Hansen, B.T.; Munk, C.; et al. Human papillomavirus types in cervical high-grade lesions or cancer among Nordic women-Potential for prevention. Cancer Med. 2019, 8, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Castle, P.E.; Schiffman, M.; Wheeler, C.M.; Wentzensen, N.; Gravitt, P.E. Impact of improved classification on the association of human papillomavirus with cervical precancer. Am. J. Epidemiol. 2010, 171, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Tsoumpou, I.; Arbyn, M.; Kyrgiou, M.; Wentzensen, N.; Koliopoulos, G.; Martin-Hirsch, P.; Malamou-Mitsi, V.; Paraskevaidis, E. p16(INK4a) immunostaining in cytological and histological specimens from the uterine cervix: A systematic review and meta-analysis. Cancer Treat. Rev. 2009, 35, 210–220. [Google Scholar] [CrossRef]
- Castle, P.E.; Pierz, A.J.; Adcock, R.; Aslam, S.; Basu, P.S.; Belinson, J.L.; Cuzick, J.; El-Zein, M.; Ferreccio, C.; Firnhaber, C.; et al. A Pooled Analysis to Compare the Clinical Characteristics of Human Papillomavirus-positive and -Negative Cervical Precancers. Cancer Prev. Res. 2020, 13, 829–840. [Google Scholar] [CrossRef]
- Castle, P.E.; Schiffman, M.; Wheeler, C.M.; Solomon, D. Evidence for frequent regression of cervical intraepithelial neoplasia-grade 2. Obstet. Gynecol. 2009, 113, 18–25. [Google Scholar] [CrossRef]
- Castle, P.E.; Stoler, M.H.; Solomon, D.; Schiffman, M. The relationship of community biopsy-diagnosed cervical intraepithelial neoplasia grade 2 to the quality control pathology-reviewed diagnoses: An ALTS report. Am. J. Clin. Pathol. 2007, 127, 805–815. [Google Scholar] [CrossRef]
- Cogliano, V.; Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; El Ghissassi, F. Carcinogenicity of human papillomaviruses. Lancet Oncol. 2005, 6, 204. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.; Katanoda, K.; Saito, E.; Acuti Martellucci, C.; Tanaka, S.; Ikeda, S.; Sakamoto, H.; Machelek, D.; Ml Brotherton, J.; Hocking, J.S. Genotype prevalence and age distribution of human papillomavirus from infection to cervical cancer in Japanese women: A systematic review and meta-analysis. Vaccine 2022, 40, 5971–5996. [Google Scholar] [CrossRef]
- Wentzensen, N.; Wacholder, S. From differences in means between cases and controls to risk stratification: A business plan for biomarker development. Cancer Discov. 2013, 3, 148–157. [Google Scholar] [CrossRef]
- Castle, P.E.; Kinney, W.K.; Chen, L.; Kim, J.J.; Jenison, S.; Rossi, G.; Kang, H.; Cuzick, J.; Wheeler, C.M. Adherence to National Guidelines on Cervical Screening: A Population-Based Evaluation from a Statewide Registry. J. Natl. Cancer Inst. 2021, 114, 626–630. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.D.; Chen, L.; Tergas, A.I.; Melamed, A.; St Clair, C.M.; Hou, J.Y.; Khoury-Collado, F.; Gockley, A.; Accordino, M.; Hershman, D.L. Overuse of Cervical Cancer Screening Tests Among Women With Average Risk in the United States From 2013 to 2014. JAMA Netw. Open 2021, 4, e218373. [Google Scholar] [CrossRef] [PubMed]
- Salingaros, S.; Shieh, Y.; Finkel, M.L.; Polaneczky, M.; Korenstein, D.; Marti, J.L. Public cervical cancer screening recommendations from US cancer centers: Assessing adherence to national guidelines. J. Med. Screen. 2024, 31, 201–204. [Google Scholar] [CrossRef]
- Habbema, D.; De Kok, I.M.; Brown, M.L. Cervical cancer screening in the United States and the Netherlands: A tale of two countries. Milbank Q. 2012, 90, 5–37. [Google Scholar] [CrossRef] [PubMed]
- Habbema, D.; Weinmann, S.; Arbyn, M.; Kamineni, A.; Williams, A.E.; de Kok, I.M.; van Kemenade, F.; Field, T.S.; van Rosmalen, J.; Brown, M.L. Harms of cervical cancer screening in the United States and the Netherlands. Int. J. Cancer 2017, 140, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Freeman, H.P.; Wingrove, B.K. Excess Cervical Cancer Mortality: A Marker for Low Access to Health Care in Poor Communities; National Cancer Institute: Bethesda, MD, USA, 2005.
- Castle, P.E. Charting the Future of Cancer Health Disparities Research-Letter. Cancer Res. 2018, 78, 1883–1885. [Google Scholar] [CrossRef]
- Moss, J.L.; Pinto, C.N.; Srinivasan, S.; Cronin, K.A.; Croyle, R.T. Enduring Cancer Disparities by Persistent Poverty, Rurality, and Race: 1990–1992 to 2014–2018. J. Natl. Cancer Inst. 2022, 114, 829–836. [Google Scholar] [CrossRef]
- Human papillomavirus vaccination coverage among adolescent girls, 2007–2012, and postlicensure vaccine safety monitoring, 2006–2013—United States. MMWR Morb. Mortal. Wkly. Rep. 2013, 62, 591–595.
- Pingali, C.; Yankey, D.; Elam-Evans, L.D.; Markowitz, L.E.; Valier, M.R.; Fredua, B.; Crowe, S.J.; DeSisto, C.L.; Stokley, S.; Singleton, J.A. Vaccination Coverage Among Adolescents Aged 13–17 Years—National Immunization Survey-Teen, United States, 2022. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 912–919. [Google Scholar] [CrossRef]
- Barbaro, B.; Brotherton, J.M. Assessing HPV vaccine coverage in Australia by geography and socioeconomic status: Are we protecting those most at risk? Aust. New Zealand J. Public Health 2014, 38, 419–423. [Google Scholar] [CrossRef]
- Cancer Australia. National Cancer Control Indicators: HPV Vaccination Uptake. Available online: https://ncci.canceraustralia.gov.au/prevention/hpv-vaccination-uptake/hpv-vaccination-uptake# (accessed on 21 August 2024).
- Australian Government. Cancer Australia: Cervical Cancer. Available online: https://www.canceraustralia.gov.au/cancer-types/cervical-cancer/statistics#:~:text=In%202022%2C%20it%20is%20estimated,by%20the%20age%20of%2085.&text=In%202018%2C%20the%20age%2Dstandardised,7.3%20cases%20per%20100%2C000%20females. (accessed on 19 August 2024).
- Immunize.org. Vaccine-Specific Requirements: State Laws and Requirements by Vaccine. Available online: https://www.immunize.org/official-guidance/state-policies/requirements/ (accessed on 12 July 2024).
- Centers for Disease Control and Prevention (National Center for Health Statistics). Table VaxCh. Vaccination coverage for selected diseases by age 24 months, by race and Hispanic origin, poverty level, and location of residence: United States, birth years 2010–2016 (2020–2021). Available online: https://www.cdc.gov/nchs/data/hus/2020-2021/VaxCh.pdf (accessed on 12 July 2024).
- Holman, D.M.; Benard, V.; Roland, K.B.; Watson, M.; Liddon, N.; Stokley, S. Barriers to human papillomavirus vaccination among US adolescents: A systematic review of the literature. JAMA Pediatr. 2014, 168, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, H.B.; Trotter, C.; Hickman, M.; Audrey, S. Barriers and facilitators to HPV vaccination of young women in high-income countries: A qualitative systematic review and evidence synthesis. BMC Public Health 2014, 14, 700. [Google Scholar] [CrossRef] [PubMed]
- Kasting, M.L.; Shapiro, G.K.; Rosberger, Z.; Kahn, J.A.; Zimet, G.D. Tempest in a teapot: A systematic review of HPV vaccination and risk compensation research. Hum. Vaccin. Immunother. 2016, 12, 1435–1450. [Google Scholar] [CrossRef]
- Madhivanan, P.; Pierre-Victor, D.; Mukherjee, S.; Bhoite, P.; Powell, B.; Jean-Baptiste, N.; Clarke, R.; Avent, T.; Krupp, K. Human Papillomavirus Vaccination and Sexual Disinhibition in Females: A Systematic Review. Am. J. Prev. Med. 2016, 51, 373–383. [Google Scholar] [CrossRef]
- Cartmell, K.B.; Mzik, C.R.; Sundstrom, B.L.; Luque, J.S.; White, A.; Young-Pierce, J. HPV Vaccination Communication Messages, Messengers, and Messaging Strategies. J. Cancer Educ. 2019, 34, 1014–1023. [Google Scholar] [CrossRef]
- Gilkey, M.B.; Zhou, M.; McRee, A.L.; Kornides, M.L.; Bridges, J.F.P. Parents’ Views on the Best and Worst Reasons for Guideline-Consistent HPV Vaccination. Cancer Epidemiol. Biomarkers Prev. 2018, 27, 762–767. [Google Scholar] [CrossRef]
- Lama, Y.; Qin, Y.; Nan, X.; Knott, C.; Adebamowo, C.; Ntiri, S.O.; Wang, M.Q. Human Papillomavirus Vaccine Acceptability and Campaign Message Preferences Among African American Parents: A Qualitative Study. J. Cancer Educ. 2022, 37, 1691–1701. [Google Scholar] [CrossRef]
- Donovan, B.; Franklin, N.; Guy, R.; Grulich, A.E.; Regan, D.G.; Ali, H.; Wand, H.; Fairley, C.K. Quadrivalent human papillomavirus vaccination and trends in genital warts in Australia: Analysis of national sentinel surveillance data. Lancet Infect. Dis. 2011, 11, 39–44. [Google Scholar] [CrossRef]
- Burger, E.A.; Sy, S.; Nygård, M.; Kristiansen, I.S.; Kim, J.J. Prevention of HPV-related cancers in Norway: Cost-effectiveness of expanding the HPV vaccination program to include pre-adolescent boys. PLoS ONE 2014, 9, e89974. [Google Scholar] [CrossRef] [PubMed]
- Foerster, V.; Khangura, S.; Severn, M. CADTH Rapid Response Reports. In HPV Vaccination in Men: A Review of Clinical Effectiveness, Cost-Effectiveness, and Guidelines; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, USA, 2017. [Google Scholar]
- Linertová, R.; Guirado-Fuentes, C.; Mar Medina, J.; Imaz-Iglesia, I.; Rodríguez-Rodríguez, L.; Carmona-Rodríguez, M. Cost-effectiveness of extending the HPV vaccination to boys: A systematic review. J. Epidemiol. Community Health 2021, 75, 910–916. [Google Scholar] [CrossRef]
- Ng, S.S.; Hutubessy, R.; Chaiyakunapruk, N. Systematic review of cost-effectiveness studies of human papillomavirus (HPV) vaccination: 9-Valent vaccine, gender-neutral and multiple age cohort vaccination. Vaccine 2018, 36, 2529–2544. [Google Scholar] [CrossRef] [PubMed]
- Wolff, E.; Elfström, K.M.; Haugen Cange, H.; Larsson, S.; Englund, H.; Sparén, P.; Roth, A. Cost-effectiveness of sex-neutral HPV-vaccination in Sweden, accounting for herd-immunity and sexual behaviour. Vaccine 2018, 36, 5160–5165. [Google Scholar] [CrossRef] [PubMed]
- Scarinci, I.C.; Li, Y.; Tucker, L.; Campos, N.G.; Kim, J.J.; Peral, S.; Castle, P.E. Given a choice between self-sampling at home for HPV testing and standard of care screening at the clinic, what do African American women choose? Findings from a group randomized controlled trial. Prev. Med. 2021, 142, 106358. [Google Scholar] [CrossRef] [PubMed]
- Winer, R.L.; Lin, J.; Anderson, M.L.; Tiro, J.A.; Green, B.B.; Gao, H.; Meenan, R.T.; Hansen, K.; Sparks, A.; Buist, D.S.M. Strategies to Increase Cervical Cancer Screening With Mailed Human Papillomavirus Self-Sampling Kits: A Randomized Clinical Trial. JAMA 2023, 330, 1971–1981. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. National Breast and Cervical Cancer Early Detection Program (NBCCEDP). 2023. Available online: https://www.cdc.gov/breast-cervical-cancer-screening/about/index.html (accessed on 21 August 2024).
- 106th Congress. Breast and Cervical Cancer Prevention and Treatment Act (BCCPTA) (Public Law 106–354). 2000. Available online: https://www.congress.gov/106/plaws/publ354/PLAW-106publ354.pdf (accessed on 21 August 2024).
- Tangka, F.; Kenny, K.; Miller, J.; Howard, D.H. The eligibility and reach of the national breast and cervical cancer early detection program after implementation of the affordable care act. Cancer Causes Control 2020, 31, 473–489. [Google Scholar] [CrossRef]
- Shalowitz, D.I.; Vinograd, A.M.; Giuntoli, R.L., 2nd. Geographic access to gynecologic cancer care in the United States. Gynecol. Oncol. 2015, 138, 115–120. [Google Scholar] [CrossRef]
- Ackroyd, S.A.; Shih, Y.T.; Kim, B.; Lee, N.K.; Halpern, M.T. A look at the gynecologic oncologist workforce—Are we meeting patient demand? Gynecol. Oncol. 2021, 163, 229–236. [Google Scholar] [CrossRef]
- Allanson, E.R.; Zafar, S.N.; Anakwenze, C.P.; Schmeler, K.M.; Trimble, E.L.; Grover, S. The global burden of cervical cancer requiring surgery: Database estimates. Infect. Agent. Cancer 2024, 19, 5. [Google Scholar] [CrossRef]
- Rayburn, W.F.; Klagholz, J.C.; Murray-Krezan, C.; Dowell, L.E.; Strunk, A.L. Distribution of American Congress of Obstetricians and Gynecologists fellows and junior fellows in practice in the United States. Obstet. Gynecol. 2012, 119, 1017–1022. [Google Scholar] [CrossRef]
- Friedman, S.; Shaw, J.G.; Hamilton, A.B.; Vinekar, K.; Washington, D.L.; Mattocks, K.; Yano, E.M.; Phibbs, C.S.; Johnson, A.M.; Saechao, F.; et al. Gynecologist Supply Deserts Across the VA and in the Community. J. Gen. Intern. Med. 2022, 37, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Cleary, J.; Powell, R.A.; Munene, G.; Mwangi-Powell, F.N.; Luyirika, E.; Kiyange, F.; Merriman, A.; Scholten, W.; Radbruch, L.; Torode, J.; et al. Formulary availability and regulatory barriers to accessibility of opioids for cancer pain in Africa: A report from the Global Opioid Policy Initiative (GOPI). Ann. Oncol. 2013, 24 (Suppl. 11), xi14–xi23. [Google Scholar] [CrossRef]
- Kim, J.J.; Simms, K.T.; Killen, J.; Smith, M.A.; Burger, E.A.; Sy, S.; Regan, C.; Canfell, K. Human papillomavirus vaccination for adults aged 30 to 45 years in the United States: A cost-effectiveness analysis. PLoS Med. 2021, 18, e1003534. [Google Scholar] [CrossRef]
- Chesson, H.W.; Meites, E.; Ekwueme, D.U.; Saraiya, M.; Markowitz, L.E. Cost-effectiveness of HPV vaccination for adults through age 45 years in the United States: Estimates from a simplified transmission model. Vaccine 2020, 38, 8032–8039. [Google Scholar] [CrossRef] [PubMed]
- León-Maldonado, L.; Cabral, A.; Brown, B.; Ryan, G.W.; Maldonado, A.; Salmerón, J.; Allen-Leigh, B.; Lazcano-Ponce, E. Feasibility of a combined strategy of HPV vaccination and screening in Mexico: The FASTER-Tlalpan study experience. Hum. Vaccin. Immunother. 2019, 15, 1986–1994. [Google Scholar] [CrossRef] [PubMed]
- Bosch, F.X.; Robles, C.; Díaz, M.; Arbyn, M.; Baussano, I.; Clavel, C.; Ronco, G.; Dillner, J.; Lehtinen, M.; Petry, K.U.; et al. HPV-FASTER: Broadening the scope for prevention of HPV-related cancer. Nat. Rev. Clin. Oncol. 2016, 13, 119–132. [Google Scholar] [CrossRef]
- Bruni, L.; Saura-Lázaro, A.; Montoliu, A.; Brotons, M.; Alemany, L.; Diallo, M.S.; Afsar, O.Z.; LaMontagne, D.S.; Mosina, L.; Contreras, M.; et al. HPV vaccination introduction worldwide and WHO and UNICEF estimates of national HPV immunization coverage 2010–2019. Prev. Med. 2021, 144, 106399. [Google Scholar] [CrossRef]
- GAVI. Human Papillomavirus Vaccine Support. Available online: https://www.gavi.org/types-support/vaccine-support/human-papillomavirus (accessed on 21 August 2024).
- Pan American Health Organization (PAHO). PAHO Revolving Fund Vaccine Prices for 2023. Available online: https://www.paho.org/en/documents/paho-revolving-fund-vaccine-prices-2023 (accessed on 21 August 2024).
- World Health Organization. Redesigning Child and Adolescent Health Programmes; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Patton, G.C.; Coffey, C.; Cappa, C.; Currie, D.; Riley, L.; Gore, F.; Degenhardt, L.; Richardson, D.; Astone, N.; Sangowawa, A.O.; et al. Health of the world’s adolescents: A synthesis of internationally comparable data. Lancet 2012, 379, 1665–1675. [Google Scholar] [CrossRef] [PubMed]
- Resnick, M.D.; Catalano, R.F.; Sawyer, S.M.; Viner, R.; Patton, G.C. Seizing the opportunities of adolescent health. Lancet 2012, 379, 1564–1567. [Google Scholar] [CrossRef]
- Sawyer, S.M.; Afifi, R.A.; Bearinger, L.H.; Blakemore, S.J.; Dick, B.; Ezeh, A.C.; Patton, G.C. Adolescence: A foundation for future health. Lancet 2012, 379, 1630–1640. [Google Scholar] [CrossRef] [PubMed]
- Viner, R.M.; Ozer, E.M.; Denny, S.; Marmot, M.; Resnick, M.; Fatusi, A.; Currie, C. Adolescence and the social determinants of health. Lancet 2012, 379, 1641–1652. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, S.M.; Reavley, N.; Bonell, C.; Patton, G.C. Platforms for Delivering Adolescent Health Actions. In Child and Adolescent Health and Development; Bundy, D.A.P., Silva, N.D., Horton, S., Jamison, D.T., Patton, G.C., Eds.; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Ross, D.A.; Mshana, G.; Guthold, R. Adolescent Health Series: The health of adolescents in sub-Saharan Africa: Challenges and opportunities. Trop. Med. Int. Health 2021, 26, 1326–1332. [Google Scholar] [CrossRef] [PubMed]
- Population Reference Bureau (PRB). World population data sheet. Available online: https://interactives.prb.org/2021-wpds/ (accessed on 21 August 2024).
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019; United Nations: New York, NY, USA, 2019. [Google Scholar]
- World Bank Group. Lower secondary completion rate, total (% of relevant age group). Available online: https://data.worldbank.org/indicator/SE.SEC.CMPT.LO.ZS (accessed on 19 April 2024).
- World Health Organization. Essential Programme on Immunization. Available online: https://www.who.int/teams/immunization-vaccines-and-biologicals/essential-programme-on-immunization (accessed on 19 April 2024).
- World Health Organization. WHO recommendations for routine immunization—summary tables. Available online: https://www.who.int/teams/immunization-vaccines-and-biologicals/policies/who-recommendations-for-routine-immunization---summary-tables (accessed on 19 April 2024).
- UNICEF; World Health Organization. Progress Towards Global Immunization Goals—2019; UNICEF: New York, NY, USA, 2020. [Google Scholar]
- Our World in Data. Vaccination. Available online: https://ourworldindata.org/vaccination (accessed on 22 April 2024).
- UNICEF. Immunization Country Profiles. Available online: https://data.unicef.org/resources/immunization-country-profiles/ (accessed on 22 April 2024).
- Bobo, F.T.; Asante, A.; Woldie, M.; Dawson, A.; Hayen, A. Child vaccination in sub-Saharan Africa: Increasing coverage addresses inequalities. Vaccine 2022, 40, 141–150. [Google Scholar] [CrossRef]
- Vanderslott, S.; Marks, T. Charting mandatory childhood vaccination policies worldwide. Vaccine 2021, 39, 4054–4062. [Google Scholar] [CrossRef]
- Schwarz, T.F.; Galaj, A.; Spaczynski, M.; Wysocki, J.; Kaufmann, A.M.; Poncelet, S.; Suryakiran, P.V.; Folschweiller, N.; Thomas, F.; Lin, L.; et al. Ten-year immune persistence and safety of the HPV-16/18 AS04-adjuvanted vaccine in females vaccinated at 15–55 years of age. Cancer Med. 2017, 6, 2723–2731. [Google Scholar] [CrossRef]
- Schwarz, T.F.; Huang, L.M.; Valencia, A.; Panzer, F.; Chiu, C.H.; Decreux, A.; Poncelet, S.; Karkada, N.; Folschweiller, N.; Lin, L.; et al. A ten-year study of immunogenicity and safety of the AS04-HPV-16/18 vaccine in adolescent girls aged 10-14 years. Hum. Vaccin. Immunother. 2019, 15, 1970–1979. [Google Scholar] [CrossRef]
- Donken, R.; Dobson, S.R.M.; Marty, K.D.; Cook, D.; Sauvageau, C.; Gilca, V.; Dionne, M.; McNeil, S.; Krajden, M.; Money, D.; et al. Immunogenicity of 2 and 3 Doses of the Quadrivalent Human Papillomavirus Vaccine up to 120 Months Postvaccination: Follow-up of a Randomized Clinical Trial. Clin. Infect. Dis. 2020, 71, 1022–1029. [Google Scholar] [CrossRef]
- Arbyn, M.; Ronco, G.; Anttila, A.; Meijer, C.J.; Poljak, M.; Ogilvie, G.; Koliopoulos, G.; Naucler, P.; Sankaranarayanan, R.; Peto, J. Evidence regarding human papillomavirus testing in secondary prevention of cervical cancer. Vaccine 2012, 30 (Suppl. 5), F88–F99. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. European Guidelines for Quality Assurance in Cervical Cancer Screening; International Agency for Research on Cancer: Lyon, France, 2008. [Google Scholar]
- Martinez, M.E.; Schmeler, K.M.; Lajous, M.; Newman, L.A. Cancer Screening in Low- and Middle-Income Countries. Am. Soc. Clin. Oncol. Educ. Book. 2024, 44, e431272. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, A.T.; Valls, J.; Baena, A.; Rojas, F.D.; Ramírez, K.; Álvarez, R.; Cristaldo, C.; Henríquez, O.; Moreno, A.; Reynaga, D.C.; et al. Performance of cervical cytology and HPV testing for primary cervical cancer screening in Latin America: An analysis within the ESTAMPA study. Lancet Reg. Health Am. 2023, 26, 100593. [Google Scholar] [CrossRef] [PubMed]
- Lemp, J.M.; De Neve, J.W.; Bussmann, H.; Chen, S.; Manne-Goehler, J.; Theilmann, M.; Marcus, M.E.; Ebert, C.; Probst, C.; Tsabedze-Sibanyoni, L.; et al. Lifetime Prevalence of Cervical Cancer Screening in 55 Low- and Middle-Income Countries. JAMA 2020, 324, 1532–1542. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, K.; Maza, M.; Cremer, M.; Masch, R.; Soler, M. Removing global barriers to cervical cancer prevention and moving towards elimination. Nat. Rev. Cancer 2021, 21, 607–608. [Google Scholar] [CrossRef]
- Lazcano-Ponce, E.; Lorincz, A.T.; Cruz-Valdez, A.; Salmerón, J.; Uribe, P.; Velasco-Mondragón, E.; Nevarez, P.H.; Acosta, R.D.; Hernández-Avila, M. Self-collection of vaginal specimens for human papillomavirus testing in cervical cancer prevention (MARCH): A community-based randomised controlled trial. Lancet 2011, 378, 1868–1873. [Google Scholar] [CrossRef]
- Suba, E.J.; Donnelly, A.D.; Duong, D.V.; Gonzalez Mena, L.E.; Neethling, G.S.; Thai, N.V. WHO should adjust its global strategy for cervical cancer prevention. BMJ Glob. Health 2023, 8, e012031. [Google Scholar] [CrossRef] [PubMed]
- Suba, E.J.; Zarka, M.A.; Raab, S.S. Human papillomavirus screening for low and middle-income countries. Prev. Med. 2017, 100, 296. [Google Scholar] [CrossRef]
- Suba, E.J. Researchers should no longer delay implementation of Pap screening in low and middle income countries pending research into novel screening approaches. Infect. Agent. Cancer 2024, 19, 18. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Guideline for Screening and Treatment of Cervical Pre-Cancer Lesions for Cervical Cancer Prevention; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Hall, M.T.; Simms, K.T.; Murray, J.M.; Keane, A.; Nguyen, D.T.N.; Caruana, M.; Lui, G.; Kelly, H.; Eckert, L.O.; Santesso, N.; et al. Benefits and harms of cervical screening, triage and treatment strategies in women living with HIV. Nat. Med. 2023, 29, 3059–3066. [Google Scholar] [CrossRef]
- Simms, K.T.; Keane, A.; Nguyen, D.T.N.; Caruana, M.; Hall, M.T.; Lui, G.; Gauvreau, C.; Demke, O.; Arbyn, M.; Basu, P.; et al. Benefits, harms and cost-effectiveness of cervical screening, triage and treatment strategies for women in the general population. Nat. Med. 2023, 29, 3050–3058. [Google Scholar] [CrossRef]
- Bruni, L.; Serrano, B.; Roura, E.; Alemany, L.; Cowan, M.; Herrero, R.; Poljak, M.; Murillo, R.; Broutet, N.; Riley, L.M.; et al. Cervical cancer screening programmes and age-specific coverage estimates for 202 countries and territories worldwide: A review and synthetic analysis. Lancet Glob. Health 2022, 10, e1115–e1127. [Google Scholar] [CrossRef]
- Kundrod, K.A.; Jeronimo, J.; Vetter, B.; Maza, M.; Murenzi, G.; Phoolcharoen, N.; Castle, P.E. Toward 70% cervical cancer screening coverage: Technical challenges and opportunities to increase access to human papillomavirus (HPV) testing. PLOS Glob. Public Health 2023, 3, e0001982. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Existing HIV and TB Laboratory Systems Facilitating COVID-19 Testing in Africa. Available online: https://www.who.int/news/item/26-11-2020-existing-hiv-and-tb-laboratory-systems-facilitating-covid-19-testing-in-africa (accessed on 22 April 2024).
- Adesina, A.; Chumba, D.; Nelson, A.M.; Orem, J.; Roberts, D.J.; Wabinga, H.; Wilson, M.; Rebbeck, T.R. Improvement of pathology in sub-Saharan Africa. Lancet Oncol. 2013, 14, e152–e157. [Google Scholar] [CrossRef] [PubMed]
- Adeyi, O.A. Pathology services in developing countries-the West African experience. Arch. Pathol. Lab. Med. 2011, 135, 183–186. [Google Scholar] [CrossRef]
- The Pathologist. Constant Demand, Patchy Supply. Available online: https://thepathologist.com/outside-the-lab/constant-demand-patchy-supply (accessed on 24 April 2024).
- Albayrak, A.; Akhan, A.U.; Calik, N.; Capar, A.; Bilgin, G.; Toreyin, B.U.; Muezzinoglu, B.; Turkmen, I.; Durak-Ata, L. A whole-slide image grading benchmark and tissue classification for cervical cancer precursor lesions with inter-observer variability. Med. Biol. Eng. Comput. 2021, 59, 1545–1561. [Google Scholar] [CrossRef]
- Cho, B.J.; Kim, J.W.; Park, J.; Kwon, G.Y.; Hong, M.; Jang, S.H.; Bang, H.; Kim, G.; Park, S.T. Automated Diagnosis of Cervical Intraepithelial Neoplasia in Histology Images via Deep Learning. Diagnostics 2022, 12, 548. [Google Scholar] [CrossRef] [PubMed]
- Sornapudi, S.; Addanki, R.; Stanley, R.J.; Stoecker, W.V.; Long, R.; Zuna, R.; Frazier, S.R.; Antani, S. Automated Cervical Digitized Histology Whole-Slide Image Analysis Toolbox. J. Pathol. Inform. 2021, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Sornapudi, S.; Stanley, R.J.; Stoecker, W.V.; Long, R.; Xue, Z.; Zuna, R.; Frazier, S.R.; Antani, S. DeepCIN: Attention-Based Cervical histology Image Classification with Sequential Feature Modeling for Pathologist-Level Accuracy. J. Pathol. Inform. 2020, 11, 40. [Google Scholar] [CrossRef]
- Kyrgiou, M.; Athanasiou, A.; Kalliala, I.E.J.; Paraskevaidi, M.; Mitra, A.; Martin-Hirsch, P.P.; Arbyn, M.; Bennett, P.; Paraskevaidis, E. Obstetric outcomes after conservative treatment for cervical intraepithelial lesions and early invasive disease. Cochrane Database Syst. Rev. 2017, 11, Cd012847. [Google Scholar] [CrossRef] [PubMed]
- Brenes, D.; Salcedo, M.P.; Coole, J.B.; Maker, Y.; Kortum, A.; Schwarz, R.A.; Carns, J.; Vohra, I.S.; Possati-Resende, J.C.; Antoniazzi, M.; et al. Multiscale Optical Imaging Fusion for Cervical Precancer Diagnosis: Integrating Widefield Colposcopy and High-Resolution Endomicroscopy. IEEE Trans. Biomed. Eng. 2024, 71, 2547–2556. [Google Scholar] [CrossRef]
- Hunt, B.; Fregnani, J.; Brenes, D.; Schwarz, R.A.; Salcedo, M.P.; Possati-Resende, J.C.; Antoniazzi, M.; de Oliveira Fonseca, B.; Santana, I.V.V.; de Macêdo Matsushita, G.; et al. Cervical lesion assessment using real-time microendoscopy image analysis in Brazil: The CLARA study. Int. J. Cancer 2021, 149, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Kundrod, K.A.; Barra, M.; Wilkinson, A.; Smith, C.A.; Natoli, M.E.; Chang, M.M.; Coole, J.B.; Santhanaraj, A.; Lorenzoni, C.; Mavume, C.; et al. An integrated isothermal nucleic acid amplification test to detect HPV16 and HPV18 DNA in resource-limited settings. Sci. Transl. Med. 2023, 15, eabn4768. [Google Scholar] [CrossRef]
- Inturrisi, F.; de Sanjosé, S.; Desai, K.T.; Dagnall, C.; Egemen, D.; Befano, B.; Rodriguez, A.C.; Jeronimo, J.A.; Zuna, R.E.; Hoffman, A.; et al. A rapid HPV typing assay to support global cervical cancer screening and risk-based management: A cross-sectional study. Int. J. Cancer 2024, 154, 241–250. [Google Scholar] [CrossRef]
- American Cancer Society. Treatment Options for Cervical Cancer, by Stage. Available online: https://www.cancer.org/cancer/types/cervical-cancer/treating/by-stage.html (accessed on 20 July 2024).
- U.S. National Cancer Institute. Cervical Cancer Treatment. Available online: https://www.cancer.gov/types/cervical/treatment (accessed on 20 July 2024).
- Shiels, M.S.; Lipkowitz, S.; Campos, N.G.; Schiffman, M.; Schiller, J.T.; Freedman, N.D.; Berrington de González, A. Opportunities for Achieving the Cancer Moonshot Goal of a 50% Reduction in Cancer Mortality by 2047. Cancer Discov. 2023, 13, 1084–1099. [Google Scholar] [CrossRef]
- Holmer, H.; Shrime, M.G.; Riesel, J.N.; Meara, J.G.; Hagander, L. Towards closing the gap of the global surgeon, anaesthesiologist, and obstetrician workforce: Thresholds and projections towards 2030. Lancet 2015, 385 (Suppl. S2), 40. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, R.; Alatise, O.I.; Anderson, B.O.; Audisio, R.; Autier, P.; Aggarwal, A.; Balch, C.; Brennan, M.F.; Dare, A.; D’Cruz, A.; et al. Global cancer surgery: Delivering safe, affordable, and timely cancer surgery. Lancet Oncol. 2015, 16, 1193–1224. [Google Scholar] [CrossRef]
- Desai, K.T.; de Sanjosé, S.; Schiffman, M. Treatment of Cervical Precancers is the Major Remaining Challenge in Cervical Screening Research. Cancer Prev. Res. 2023, 16, 649–651. [Google Scholar] [CrossRef] [PubMed]
- Shaffi, A.F.; Odongo, E.B.; Itsura, P.M.; Tonui, P.K.; Mburu, A.W.; Hassan, A.R.; Rosen, B.P.; Covens, A.L. Cervical cancer management in a low resource setting: A 10-year review in a tertiary care hospital in Kenya. Gynecol. Oncol. Rep. 2024. [Google Scholar] [CrossRef] [PubMed]
- Batman, S.; Rangeiro, R.; Monteiro, E.; Changule, D.; Daud, S.; Ribeiro, M.; Tsambe, E.; Bila, C.; Osman, N.; Carrilho, C.; et al. Expanding Cervical Cancer Screening in Mozambique: Challenges Associated With Diagnosing and Treating Cervical Cancer. JCO Glob. Oncol. 2023, 9, e2300139. [Google Scholar] [CrossRef]
- Kassa, R.; Irene, Y.; Woldetsadik, E.; Kidane, E.; Higgins, M.; Dejene, T.; Wells, J. Survival of women with cervical cancer in East Africa: A systematic review and meta-analysis. J. Obstet. Gynaecol. 2023, 43, 2253308. [Google Scholar] [CrossRef]
- Anakwenze, C.P.; Allanson, E.; Ewongwo, A.; Lumley, C.; Bazzett-Matabele, L.; Msadabwe, S.C.; Kamfwa, P.; Shouman, T.; Lombe, D.; Rubagumya, F.; et al. Mapping of Radiation Oncology and Gynecologic Oncology Services Available to Treat the Growing Burden of Cervical Cancer in Africa. Int. J. Radiat. Oncol. Biol. Phys. 2024, 118, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Definitive Healthcare. How many Oncologists Are in the U.S.? Available online: https://www.definitivehc.com/resources/healthcare-insights/how-many-oncologists-in-us#:~:text=As%20of%20August%202023%2C%20the,a%20total%20of%2026%2C241%20oncologists. (accessed on 20 July 2024).
- Ige, T.A.; Jenkins, A.; Burt, G.; Angal-Kalinin, D.; McIntosh, P.; Coleman, C.N.; Pistenmaa, D.A.; O’Brien, D.; Dosanjh, M. Surveying the Challenges to Improve Linear Accelerator-based Radiation Therapy in Africa: A Unique Collaborative Platform of All 28 African Countries Offering Such Treatment. Clin. Oncol. 2021, 33, e521–e529. [Google Scholar] [CrossRef] [PubMed]
- CERNCOURIER. Developing Medical Linacs for Challenging Regions. Available online: https://cerncourier.com/a/developing-medical-linacs-for-challenging-regions/ (accessed on 13 May 2024).
- IAEA Directory of Radiotherapy Centers. Number of Radiotherapy Machines Per Million Population. Available online: https://dirac.iaea.org/Query/Map (accessed on 21 August 2024).
- World Health Organization. The Global Health Observatory: Radiotherapy Units (Per Million Population), Total Density. Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/total-density-per-million-population-radiotherapy-units (accessed on 21 August 2024).
- Maitre, P.; Krishnatry, R.; Chopra, S.; Gondhowiardjo, S.; Likonda, B.M.; Hussain, Q.M.; Zubizarreta, E.H.; Agarwal, J.P. Modern Radiotherapy Technology: Obstacles and Opportunities to Access in Low- and Middle-Income Countries. JCO Glob. Oncol. 2022, 8, e2100376. [Google Scholar] [CrossRef] [PubMed]
- Chuang, L.T.; Temin, S.; Camacho, R.; Dueñas-Gonzalez, A.; Feldman, S.; Gultekin, M.; Gupta, V.; Horton, S.; Jacob, G.; Kidd, E.A.; et al. Management and Care of Women With Invasive Cervical Cancer: American Society of Clinical Oncology Resource-Stratified Clinical Practice Guideline. J. Glob. Oncol. 2016, 2, 311–340. [Google Scholar] [CrossRef]
- Chuang, L.; Rainville, N.; Byrne, M.; Randall, T.; Schmeler, K. Cervical cancer screening and treatment capacity: A survey of members of the African Organisation for Research and Training in Cancer (AORTIC). Gynecol. Oncol. Rep. 2021, 38, 100874. [Google Scholar] [CrossRef]
- Beltrán Ponce, S.E.; Abunike, S.A.; Bikomeye, J.C.; Sieracki, R.; Niyonzima, N.; Mulamira, P.; Kibudde, S.; Ortiz de Choudens, S.; Siker, M.; Small, C.; et al. Access to Radiation Therapy and Related Clinical Outcomes in Patients With Cervical and Breast Cancer Across Sub-Saharan Africa: A Systematic Review. JCO Glob. Oncol. 2023, 9, e2200218. [Google Scholar] [CrossRef]
- Swanson, M.; Ueda, S.; Chen, L.M.; Huchko, M.J.; Nakisige, C.; Namugga, J. Evidence-based improvisation: Facing the challenges of cervical cancer care in Uganda. Gynecol. Oncol. Rep. 2018, 24, 30–35. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. From Emergency to Expansion: With IAEA Support, Uganda Recovers and Improves its Radiotherapy Services. Available online: https://www.iaea.org/newscenter/news/from-emergency-to-expansion-with-iaea-support-uganda-recovers-and-improves-its-radiotherapy-services (accessed on 21 August 2024).
- International Gynecologic Cancer Society. Global Gynecologic Oncology Fellowship Program. Available online: https://igcs.org/mentorship-and-training/global-curriculum/ (accessed on 13 May 2024).
- International Gynecologic Cancer Society. Radiation Oncology Consortium. Available online: https://igcs.org/radiation-oncology-consortium/ (accessed on 13 May 2024).
- IAEA. Rays of Hope. Available online: https://www.iaea.org/raysofhope (accessed on 13 May 2024).
- Chuang, L.; Kanis, M.J.; Miller, B.; Wright, J.; Small, W., Jr.; Creasman, W. Treating Locally Advanced Cervical Cancer With Concurrent Chemoradiation Without Brachytherapy in Low-resource Countries. Am. J. Clin. Oncol. 2016, 39, 92–97. [Google Scholar] [CrossRef]
- Ngabonziza, E.; Ghebre, R.; DeBoer, R.J.; Ntasumbumuyange, D.; Magriples, U.; George, J.; Grover, S.; Bazzett-Matabele, L. Outcomes of neoadjuvant chemotherapy and radical hysterectomy for locally advanced cervical cancer at Kigali University Teaching Hospital, Rwanda: A retrospective descriptive study. BMC Womens Health 2024, 24, 204. [Google Scholar] [CrossRef]
- Kokka, F.; Bryant, A.; Olaitan, A.; Brockbank, E.; Powell, M.; Oram, D. Hysterectomy with radiotherapy or chemotherapy or both for women with locally advanced cervical cancer. Cochrane Database Syst. Rev. 2022, 8, Cd010260. [Google Scholar] [CrossRef] [PubMed]
- Miriyala, R.; Mahantshetty, U.; Maheshwari, A.; Gupta, S. Neoadjuvant chemotherapy followed by surgery in cervical cancer: Past, present and future. Int. J. Gynecol. Cancer 2022, 32, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.T.; Winterman, S.; Playe, M.; Benbara, A.; Zelek, L.; Pamoukdjian, F.; Bousquet, G. Dose-Intense Cisplatin-Based Neoadjuvant Chemotherapy Increases Survival in Advanced Cervical Cancer: An Up-to-Date Meta-Analysis. Cancers 2022, 14, 842. [Google Scholar] [CrossRef]
- Wang, D.; Fang, X. Meta-analysis of the efficacy of neoadjuvant chemotherapy for locally advanced cervical cancer. Eur. J. Obstet. Gynecol. Reprod. Biol. 2024, 297, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Desai, K.T.; Hansen, N.; Rodriguez, A.C.; Befano, B.; Egemen, D.; Gage, J.C.; Wentzensen, N.; Lopez, C.; Jeronimo, J.; de Sanjose, S.; et al. Squamocolumnar junction visibility, age, and implications for cervical cancer screening programs. Prev. Med. 2024, 180, 107881. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, C.A.; Pereira-da-Silva, G.; Silveira, R.; Mayer, P.C.M.; Zilly, A.; Lopes-Júnior, L.C. Safety, Efficacy, and Immunogenicity of Therapeutic Vaccines for Patients with High-Grade Cervical Intraepithelial Neoplasia (CIN 2/3) Associated with Human Papillomavirus: A Systematic Review. Cancers 2024, 16, 672. [Google Scholar] [CrossRef]
- Alouini, S.; Pichon, C. Therapeutic Vaccines for HPV-Associated Cervical Malignancies: A Systematic Review. Vaccines 2024, 12, 428. [Google Scholar] [CrossRef]
- Trimble, C.L.; Levinson, K.; Maldonado, L.; Donovan, M.J.; Clark, K.T.; Fu, J.; Shay, M.E.; Sauter, M.E.; Sanders, S.A.; Frantz, P.S.; et al. A first-in-human proof-of-concept trial of intravaginal artesunate to treat cervical intraepithelial neoplasia 2/3 (CIN2/3). Gynecol. Oncol. 2020, 157, 188–194. [Google Scholar] [CrossRef]
- Stoler, M.H.; Schiffman, M. Interobserver reproducibility of cervical cytologic and histologic interpretations: Realistic estimates from the ASCUS-LSIL Triage Study. JAMA 2001, 285, 1500–1505. [Google Scholar] [CrossRef]
- Çuburu, N.; Khan, S.; Thompson, C.D.; Kim, R.; Vellinga, J.; Zahn, R.; Lowy, D.R.; Scheper, G.; Schiller, J.T. Adenovirus vector-based prime-boost vaccination via heterologous routes induces cervicovaginal CD8(+) T cell responses against HPV16 oncoproteins. Int. J. Cancer 2018, 142, 1467–1479. [Google Scholar] [CrossRef]
- Stelzle, D.; Tanaka, L.F.; Lee, K.K.; Ibrahim Khalil, A.; Baussano, I.; Shah, A.S.V.; McAllister, D.A.; Gottlieb, S.L.; Klug, S.J.; Winkler, A.S.; et al. Estimates of the global burden of cervical cancer associated with HIV. Lancet Glob. Health 2021, 9, e161–e169. [Google Scholar] [CrossRef]
- Athanasiou, A.; Veroniki, A.A.; Efthimiou, O.; Kalliala, I.; Naci, H.; Bowden, S.; Paraskevaidi, M.; Arbyn, M.; Lyons, D.; Martin-Hirsch, P.; et al. Comparative effectiveness and risk of preterm birth of local treatments for cervical intraepithelial neoplasia and stage IA1 cervical cancer: A systematic review and network meta-analysis. Lancet Oncol. 2022, 23, 1097–1108. [Google Scholar] [CrossRef]
- Clark, D.; Baur, N.; Clelland, D.; Garralda, E.; López-Fidalgo, J.; Connor, S.; Centeno, C. Mapping Levels of Palliative Care Development in 198 Countries: The Situation in 2017. J. Pain. Symptom Manage 2020, 59, 794–807.e794. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.; Crowther, L.; Johnson, M.J.; Ramsenthaler, C.; Currow, D.C. Calculating worldwide needs for morphine for pain in advanced cancer and proportions feasibly met by country estimates of requirements and consumption. Retrospective, time-series analysis (1997–2017). PLOS Glob. Public Health 2022, 2, e0000533. [Google Scholar] [CrossRef]
- World Health Organization. Palliative Care. Available online: https://www.who.int/news-room/fact-sheets/detail/palliative-care (accessed on 22 April 2024).
- International Narcotics Control Board. Availability of Narcotic Drugs for Medical Use. Available online: https://www.incb.org/incb/en/narcotic-drugs/Availability/availability.html (accessed on 23 April 2024).
- Reichenvater, H.; Matias, L.D. Is Africa a ‘Graveyard’ for Linear Accelerators? Clin. Oncol. 2016, 28, e179–e183. [Google Scholar] [CrossRef]
- Marks, I.H.; Thomas, H.; Bakhet, M.; Fitzgerald, E. Medical equipment donation in low-resource settings: A review of the literature and guidelines for surgery and anaesthesia in low-income and middle-income countries. BMJ Glob. Health 2019, 4, e001785. [Google Scholar] [CrossRef] [PubMed]
- Palefsky, J.M.; Lee, J.Y.; Jay, N.; Goldstone, S.E.; Darragh, T.M.; Dunlevy, H.A.; Rosa-Cunha, I.; Arons, A.; Pugliese, J.C.; Vena, D.; et al. Treatment of Anal High-Grade Squamous Intraepithelial Lesions to Prevent Anal Cancer. N. Engl. J. Med. 2022, 386, 2273–2282. [Google Scholar] [CrossRef] [PubMed]
- Stier, E.A.; Clarke, M.A.; Deshmukh, A.A.; Wentzensen, N.; Liu, Y.; Poynten, I.M.; Cavallari, E.N.; Fink, V.; Barroso, L.F.; Clifford, G.M.; et al. International Anal Neoplasia Society’s consensus guidelines for anal cancer screening. Int. J. Cancer 2024, 154, 1694–1702. [Google Scholar] [CrossRef]
- Manne, V.; Ryan, J.; Wong, J.; Vengayil, G.; Basit, S.A.; Gish, R.G. Hepatitis C Vaccination: Where We Are and Where We Need to Be. Pathogens 2021, 10, 1619. [Google Scholar] [CrossRef]
- Zhong, L.; Krummenacher, C.; Zhang, W.; Hong, J.; Feng, Q.; Chen, Y.; Zhao, Q.; Zeng, M.S.; Zeng, Y.X.; Xu, M.; et al. Urgency and necessity of Epstein-Barr virus prophylactic vaccines. NPJ Vaccines 2022, 7, 159. [Google Scholar] [CrossRef]
- Cohen, J.I. Vaccine Development for Epstein-Barr Virus. Adv. Exp. Med. Biol. 2018, 1045, 477–493. [Google Scholar] [CrossRef]
- Bjornevik, K.; Münz, C.; Cohen, J.I.; Ascherio, A. Epstein-Barr virus as a leading cause of multiple sclerosis: Mechanisms and implications. Nat. Rev. Neurol. 2023, 19, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-J.; Yu, X.; Lu, Y.-Q.; Pfeiffer, R.M.; Ling, W.; Xie, S.-H.; Wu, Z.-C.; Li, X.-Q.; Fan, Y.-Y.; Wu, B.-H.; et al. Impact of an EBV Serology-Based Screening Program on Nasopharyngeal Carcinoma Mortality: A Cluster Randomized Controlled Trial. J. Clin. Oncol. 2024; in press. [Google Scholar]
- Morgan, E.; Arnold, M.; Camargo, M.C.; Gini, A.; Kunzmann, A.T.; Matsuda, T.; Meheus, F.; Verhoeven, R.H.A.; Vignat, J.; Laversanne, M.; et al. The current and future incidence and mortality of gastric cancer in 185 countries, 2020–2040: A population-based modelling study. EClinicalMedicine 2022, 47, 101404. [Google Scholar] [CrossRef]
- Huang, R.J.; Epplein, M.; Hamashima, C.; Choi, I.J.; Lee, E.; Deapen, D.; Woo, Y.; Tran, T.; Shah, S.C.; Inadomi, J.M.; et al. An Approach to the Primary and Secondary Prevention of Gastric Cancer in the United States. Clin. Gastroenterol. Hepatol. 2022, 20, 2218–2228.e2212. [Google Scholar] [CrossRef]
- Lee, E.; Tsai, K.Y.; Zhang, J.; Hwang, A.E.; Deapen, D.; Koh, J.J.; Kawaguchi, E.S.; Buxbaum, J.; Ahn, S.H.; Liu, L. Population-based evaluation of disparities in stomach cancer by nativity among Asian and Hispanic populations in California, 2011–2015. Cancer 2024, 130, 1092–1100. [Google Scholar] [CrossRef]
- In, H.; Solsky, I.; Castle, P.E.; Schechter, C.B.; Parides, M.; Friedmann, P.; Wylie-Rosett, J.; Kemeny, M.M.; Rapkin, B.D. Utilizing Cultural and Ethnic Variables in Screening Models to Identify Individuals at High Risk for Gastric Cancer: A Pilot Study. Cancer Prev. Res. 2020, 13, 687–698. [Google Scholar] [CrossRef]
- Greenberg, E.R.; Anderson, G.L.; Morgan, D.R.; Torres, J.; Chey, W.D.; Bravo, L.E.; Dominguez, R.L.; Ferreccio, C.; Herrero, R.; Lazcano-Ponce, E.C.; et al. 14-day triple, 5-day concomitant, and 10-day sequential therapies for Helicobacter pylori infection in seven Latin American sites: A randomised trial. Lancet 2011, 378, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Morgan, D.R.; Torres, J.; Sexton, R.; Herrero, R.; Salazar-Martínez, E.; Greenberg, E.R.; Bravo, L.E.; Dominguez, R.L.; Ferreccio, C.; Lazcano-Ponce, E.C.; et al. Risk of recurrent Helicobacter pylori infection 1 year after initial eradication therapy in 7 Latin American communities. JAMA 2013, 309, 578–586. [Google Scholar] [CrossRef]
- Sarıkaya, B.; Çetinkaya, R.A.; Özyiğitoğlu, D.; Işık, S.A.; Kaplan, M.; Kırkık, D.; Görenek, L. High antibiotic resistance rates in Helicobacter pylori strains in Turkey over 20 years: Implications for gastric disease treatment. Eur. J. Gastroenterol. Hepatol. 2024, 36, 545–553. [Google Scholar] [CrossRef]
- Garvey, E.; Rhead, J.; Suffian, S.; Whiley, D.; Mahmood, F.; Bakshi, N.; Letley, D.; White, J.; Atherton, J.; Winter, J.A.; et al. High incidence of antibiotic resistance amongst isolates of Helicobacter pylori collected in Nottingham, UK, between 2001 and 2018. J. Med. Microbiol. 2023, 72, 1. [Google Scholar] [CrossRef]
- Dutta, S.; Jain, S.; Das, K.; Verma, P.; Som, A.; Das, R. Primary antibiotic resistance of Helicobacter pylori in India over the past two decades: A systematic review. Helicobacter 2024, 29, e13057. [Google Scholar] [CrossRef]
- Shrestha, A.B.; Pokharel, P.; Sapkota, U.H.; Shrestha, S.; Mohamed, S.A.; Khanal, S.; Jha, S.K.; Mohanty, A.; Padhi, B.K.; Asija, A.; et al. Drug Resistance Patterns of Commonly Used Antibiotics for the Treatment of Helicobacter pylori Infection among South Asian Countries: A Systematic Review and Meta-Analysis. Trop. Med. Infect. Dis. 2023, 8, 172. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute Clinical Trials and Translational Researchadvisory Committee (CTAC) Gastric and Esophageal Cancers Working Group. Work Group Report. 2022. Available online: https://deainfo.nci.nih.gov/advisory/ctac/workgroup/gec/2022-11-09-GECWG-Report.pdf (accessed on 21 August 2024).
- Huang, Y.K.; Yu, J.C.; Kang, W.M.; Ma, Z.Q.; Ye, X.; Tian, S.B.; Yan, C. Significance of Serum Pepsinogens as a Biomarker for Gastric Cancer and Atrophic Gastritis Screening: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0142080. [Google Scholar] [CrossRef]
- Syrjänen, K. Accuracy of Serum Biomarker Panel (GastroPanel(®)) in the Diagnosis of Atrophic Gastritis of the Corpus. Systematic Review and Meta-analysis. Anticancer. Res. 2022, 42, 1679–1696. [Google Scholar] [CrossRef]
- Lee, S.Y.; Ahn, Y.S.; Moon, H.W. Comparison between the GastroPanel test and the serum pepsinogen assay interpreted with the ABC method-A prospective study. Helicobacter 2024, 29, e13056. [Google Scholar] [CrossRef]
- Dos Santos Viana, I.; Cordeiro Santos, M.L.; Santos Marques, H.; Lima de Souza Gonçalves, V.; Bittencourt de Brito, B.; França da Silva, F.A.; Oliveira, E.S.N.; Dantas Pinheiro, F.; Fernandes Teixeira, A.; Tanajura Costa, D.; et al. Vaccine development against Helicobacter pylori: From ideal antigens to the current landscape. Expert. Rev. Vaccines 2021, 20, 989–999. [Google Scholar] [CrossRef]
- Robinson, K.; Lehours, P. Review—Helicobacter, inflammation, immunology and vaccines. Helicobacter 2020, 25 (Suppl. 1), e12737. [Google Scholar] [CrossRef]
- Sedarat, Z.; Taylor-Robinson, A.W. Helicobacter pylori Outer Membrane Proteins and Virulence Factors: Potential Targets for Novel Therapies and Vaccines. Pathogens 2024, 13, 392. [Google Scholar] [CrossRef]
- Best, L.M.; Takwoingi, Y.; Siddique, S.; Selladurai, A.; Gandhi, A.; Low, B.; Yaghoobi, M.; Gurusamy, K.S. Non-invasive diagnostic tests for Helicobacter pylori infection. Cochrane Database Syst. Rev. 2018, 3, Cd012080. [Google Scholar] [CrossRef]
- Khadangi, F.; Yassi, M.; Kerachian, M.A. Review: Diagnostic accuracy of PCR-based detection tests for Helicobacter Pylori in stool samples. Helicobacter 2017, 22. [Google Scholar] [CrossRef]
- Nieuwenburg, S.A.V.; Mommersteeg, M.C.; Wolters, L.M.M.; van Vuuren, A.J.; Erler, N.; Peppelenbosch, M.P.; Fuhler, G.M.; Bruno, M.J.; Kuipers, E.J.; Spaander, M.C.W. Accuracy of H. pylori fecal antigen test using fecal immunochemical test (FIT). Gastric Cancer 2022, 25, 375–381. [Google Scholar] [CrossRef]
- Lei, W.Y.; Lee, J.Y.; Chuang, S.L.; Bair, M.J.; Chen, C.L.; Wu, J.Y.; Wu, D.C.; Tien O’Donnell, F.; Tien, H.W.; Chen, Y.R.; et al. Eradicating Helicobacter pylori via (13)C-urea breath screening to prevent gastric cancer in indigenous communities: A population-based study and development of a family index-case method. Gut 2023, 72, 2231–2240. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Danovaro-Holliday, M.C.; Mwinnyaa, G.; Gacic-Dobo, M.; Francis, L.; Grevendonk, J.; Sodha, S.V.; Sugerman, C.; Wallace, A. Routine Vaccination Coverage—Worldwide, 2022. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990-2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2100–2132. [CrossRef] [PubMed]
- World Health Organization. The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death#:~:text=The%20top%20global%20causes%20of,birth%20asphyxia%20and%20birth%20trauma%2C (accessed on 23 April 2024).
- Ritchie, H.; Spooner, F.; Roser, M. Clean water. Available online: https://ourworldindata.org/clean-water (accessed on 23 April 2024).
- Guida, F.; Kidman, R.; Ferlay, J.; Schüz, J.; Soerjomataram, I.; Kithaka, B.; Ginsburg, O.; Mailhot Vega, R.B.; Galukande, M.; Parham, G.; et al. Global and regional estimates of orphans attributed to maternal cancer mortality in 2020. Nat. Med. 2022, 28, 2563–2572. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.T.N.; Hughes, S.; Egger, S.; LaMontagne, D.S.; Simms, K.; Castle, P.E.; Canfell, K. Risk of childhood mortality associated with death of a mother in low-and-middle-income countries: A systematic review and meta-analysis. BMC Public Health 2019, 19, 1281. [Google Scholar] [CrossRef] [PubMed]
- Woldemariam, M.T.; Jimma, W. Adoption of electronic health record systems to enhance the quality of healthcare in low-income countries: A systematic review. BMJ Health Care Inform. 2023, 30, e100704. [Google Scholar] [CrossRef]
Quadrivalent HPV Vaccines | Bivalent HPV Vaccines | Nonavalent HPV Vaccines | |
---|---|---|---|
U.S. FDA-approved product name | Gardasil | Cervarix | Gardasil-9 |
Manufacturer | Merck | GSK | Merck |
Virus-like particle type and dosing | 40 mg HPV16; 20 mg HPV18; 20 mg HPV6; 40 mg HPV11 | 20 mg HPV16; 20 mg HPV18 | 60 mg HPV16; 40 mg HPV18; 30 mg HPV6; 40 mg HPV11; 20 mg HPV31; 20 mg HPV33; 20 mg HPV45; 20 mg HPV52; 20 mg HPV58 |
Adjuvant | 225 mg amorphous aluminum hydroxyphosphate sulfate | 500 mg aluminum hydroxide and 50 mg 3-O-desacyl-4′ monophosphoryl lipid A (MPL) | 500 mg amorphous aluminum hydroxyphosphate sulfate |
Projected, estimated prevention benefits | 70% of cervical cancers; 90% of warts | 84% of cervical cancers † | 90% of cervical cancers; 90% of warts |
Biosimilars | Cervivac ™ [96] (Serum Institute of India, Pune, India) | Cecolin ® [97,98] (Xiamen Innovax Biotech Co. Ltd.; Xiamen, China); Walrinvax (Walvax Biotechnology Co.; Yunnan, China) | Cecolin 9 ® [99] (Xiamen Innovax Biotech Co. Ltd.; Xiamen, China) |
Characteristic | Comment |
---|---|
| Approximately 13 HPV types cause virtually all cervical cancer worldwide. There are no other cancers for which there is a single, identifiable causal agent. |
| Average sojourn time from HPV exposure (initiation) to cancer is ~25 years. |
| The cervix can be sampled directly by a brush for cytology and molecular testing for screening and by biopsy forceps to collect tissue for diagnosis with an outpatient speculum exam. The relative acceptability of sampling from this tissue allowed the early development of Pap testing, which was key to elucidating the natural history of cervical cancer, including the identification of a good surrogate (see D). Cervicovaginal sampling collects sufficient amounts of HPV for detection that self-collection is feasible. |
| The vast majority of HPV-related genital cancers occur in a very small annulus of tissue, the cervical transformation zone, with the most distal (from the vaginal opening) boundary defined by the squamocolumnar junction, which can be visualized, making sampling and diagnostic biopsies much simpler. |
| CIN3/AIS have some characteristics of invasive cervical cancer, most notably an HPV-type distribution. A proven surrogate permitted the more rapid validation of novel, HPV-targeted intervention strategies including HPV vaccination and HPV testing-based screening. |
HPV Vaccination | Challenge | Potential Solution (s) | |
Financial |
|
| |
Technical/Logistical |
|
| |
Human Capacity |
|
| |
Infrastructure |
|
| |
HPV Testing-Based Screening | Challenge | Potential Solution(s) | |
Financial |
|
| |
|
| ||
Technical/logistical |
|
| |
|
| ||
Human capacity |
|
| |
Infrastructure |
|
| |
Other | |||
Management/Treatment of Precursors | Challenge | Potential Solution (s) | |
Human capacity |
|
| |
|
| ||
Infrastructure |
|
| |
Cancer Treatment, Management, and Care | |||
Financial |
|
| |
Technical/logistical |
|
| |
Human capacity |
|
| |
Infrastructure |
|
| |
Policy |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castle, P.E. Looking Back, Moving Forward: Challenges and Opportunities for Global Cervical Cancer Prevention and Control. Viruses 2024, 16, 1357. https://doi.org/10.3390/v16091357
Castle PE. Looking Back, Moving Forward: Challenges and Opportunities for Global Cervical Cancer Prevention and Control. Viruses. 2024; 16(9):1357. https://doi.org/10.3390/v16091357
Chicago/Turabian StyleCastle, Philip E. 2024. "Looking Back, Moving Forward: Challenges and Opportunities for Global Cervical Cancer Prevention and Control" Viruses 16, no. 9: 1357. https://doi.org/10.3390/v16091357
APA StyleCastle, P. E. (2024). Looking Back, Moving Forward: Challenges and Opportunities for Global Cervical Cancer Prevention and Control. Viruses, 16(9), 1357. https://doi.org/10.3390/v16091357