Next-Generation Dengue Vaccines: Novel Strategies Currently Under Development
Abstract
:1. Introduction
2. Next Generation Vaccines
2.1. DNA Vaccines
2.2. Adenovirus-Vectored Vaccines
2.3. Alphavirus Replicon Vaccines
2.4. Recombinant 80E Sub-Unit Protein Vaccine
2.5. E protein Domain III Vaccine
3. Conclusions
Acknowledgments
Conflict of Interest
References and Notes
- Halstead, S.B.; Vaughn, D.W. Dengue vaccines. In Vaccines, 5th ed.; Plotkin, S., Orenstein, W.A., Offit, P.A., Eds.; Elsevier: Philadelphia, PA, USA, 2008; pp. 1155–1162. [Google Scholar]
- Beatty, M.; Letson, G.W.; Margolis, H.S. Estimating the global burden of dengue. Am. J. Trop. Med. Hyg. 2009, 81, 231. [Google Scholar]
- Burke, D.S.; Nisalak, A.; Johnson, D.E.; Scott, R.M. A prospective study of dengue infections in Bangkok. Am. J. Trop. Med. Hyg. 1988, 38, 172–180. [Google Scholar] [CrossRef]
- Gibbons, R.V.; Kalanarooj, S.; Jarman, R.G.; Nisalak, A.; Vaughn, D.W.; Endy, T.P.; Mammen, M.P., Jr.; Srikiatkhachorn, A. Analysis of repeat hospital admissions for dengue to estimate the frequency of third or fourth dengue infections resulting in admissions and dengue hemorrhagic fever, and serotype sequences. Am. J. Trop. Med. Hyg. 2007, 77, 910–913. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, D.W.; Green, S.; Kalayanarooj, S.; Innis, B.L.; Nimmannitya, S.; Suntayakorn, S.; Endy, T.P.; Raengsakulrach, B.; Rothman, A.L.; Ennis, F.A.; et al. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J. Infect. Dis. 2000, 181, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Sabin, A. Research on dengue during World War II. Am. J. Trop. Med. Hyg. 1952, 1, 30–50. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, B.M.; Summers, P.L.; Dubois, D.R.; Eckels, K.H. Monoclonal antibodies against dengue 2 virus e-glycoprotein protect mice against lethal dengue infection. Am. J. Trop. Med. Hyg. 1987, 36, 427–434. [Google Scholar] [CrossRef]
- Kaufman, B.M.; Summers, P.L.; Dubois, D.R.; Cohen, W.H.; Gentry, M.K.; Timchak, R.L.; Burke, D.S.; Eckels, K.H. Monoclonal antibodies for dengue virus prm glycoprotein protect mice against lethal dengue infection. Am. J. Trop. Med. Hyg. 1989, 41, 576–580. [Google Scholar] [CrossRef]
- Henchal, E.A.; Henchal, L.S.; Schlesinger, J.J. Synergistic interactions of anti-ns1 monoclonal antibodies protect passively immunized mice from lethal challenge with dengue 2 virus. J. Gen. Virol. 1988, 69, 2101–2107. [Google Scholar] [CrossRef]
- Roehrig, J.T.; Bolin, R.A.; Kelly, R.G. Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology 1998, 246, 317–328. [Google Scholar] [CrossRef]
- Guirakhoo, F.; Bolin, R.A.; Roehrig, J.T. The Murray Valley encephalitis virus prm protein confers acid resistance to virus particles and alters the expression of epitopes within the r2 domain of E glycoprotein. Virology 1992, 191, 921–931. [Google Scholar] [CrossRef]
- Morrison, D.; Legg, T.J.; Billings, C.W.; Forrat, R.; Yoksan, S.; Lang, J. A novel tetravalent dengue vaccine is well tolerated and immunogenic against all 4 serotypes in flavivirus-naive adults. J. Infect. Dis. 2010, 201, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Simasathien, S.; Thomas, S.J.; Watanaveeradej, V.; Nisalak, A.; Barberousse, C.; Innis, B.L.; Sun, W.; Putnak, J.R.; Eckels, K.H.; Hutagalung, Y.; et al. Safety and immunogenicity of a tetravalent live-attenuated dengue vaccine in flavivirus naive children. Am. J. Trop. Med. Hyg. 2008, 78, 426–433. [Google Scholar] [CrossRef]
- Sun, W.; Cunningham, D.; Wasserman, S.S.; Perry, J.; Putnak, J.R.; Eckels, K.H.; Vaughn, D.W.; Thomas, S.J.; Kanesa-Thasan, N.; Innis, B.L.; et al. Phase 2 clinical trial of three formulations of tetravalent live-attenuated dengue vaccine in flavivirus-naive adults. Hum. Vaccin. 2009, 5, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Kanesa-thasan, N.; Sun, W.; Kim-Ahn, G.; Van Albert, S.; Putnak, J.R.; King, A.; Raengsakulsrach, B.; Christ-Schmidt, H.; Gilson, K.; Zahradnik, J.M.; et al. Safety and immunogenicity of attenuated dengue virus vaccines (aventis pasteur) in human volunteers. Vaccine 2001, 19, 3179–3188. [Google Scholar] [CrossRef] [PubMed]
- Sabchareon, A.; Lang, J.; Chanthavanich, P.; Yoksan, S.; Forrat, R.; Attanath, P.; Sirivichayakul, C.; Pengsaa, K.; Pojjaroen-Anant, C.; Chambonneau, L.; et al. Safety and immunogenicity of a three dose regimen of two tetravalent live-attenuated dengue vaccines in five- to twelve-year-old thai children. Pediatr. Infect. Dis. J. 2004, 23, 99–109. [Google Scholar] [CrossRef]
- Guirakhoo, F.; Pugachev, K.; Zhang, Z.; Myers, G.; Levenbook, I.; Draper, K.; Lang, J.; Ocran, S.; Mitchell, F.; Parsons, M.; et al. Safety and efficacy of chimeric yellow fever-dengue virus tetravalent vaccine formulations in nonhuman primates. J. Virol. 2004, 78, 4761–4775. [Google Scholar] [CrossRef]
- Poo, J.; Galan, F.; Forrat, R.; Zambrano, B.; Lang, J.; Dayan, G.H. Live-attenuated tetravalent dengue vaccine in dengue-naive children, adolescents, and adults in Mexico city: Randomized controlled phase 1 trial of safety and immunogenicity. Pediatr. Infect. Dis. J. 2011, 30, e9–e17. [Google Scholar] [CrossRef]
- Capeding, R.Z.; Luna, I.A.; Bomasang, E.; Lupisan, S.; Lang, J.; Forrat, R.; Wartel, A.; Crevat, D. Live-attenuated, tetravalent dengue vaccine in children, adolescents and adults in a dengue endemic country: Randomized controlled phase I trial in the Philippines. Vaccine 2011, 29, 3863–3872. [Google Scholar] [CrossRef]
- Durbin, A.P.; Whitehead, S.S. Dengue vaccine candidates in development. Curr. Top. Microbiol. Immunol. 2010, 338, 129–143. [Google Scholar]
- Whitehead, S.S.; Durbin, A.P. Prospects and challenges for dengue virus vaccine development. In Frontiers in Dengue Virus Research; Hanley, K.A., Weaver, S.C., Eds.; Caister Academic Press: Portland, OR, USA, 2010. [Google Scholar]
- Guy, B.; Barban, V.; Mantel, N.; Aguirre, M.; Gulia, S.; Pontvianne, J.; Jourdier, T.M.; Ramirez, L.; Gregoire, V.; Charnay, C.; et al. Evaluation of interferences between dengue vaccine serotypes in a monkey model. Am. J. Trop. Med. Hyg. 2009, 80, 302–311. [Google Scholar] [CrossRef]
- Kitchener, S.; Nissen, M.; Nasveld, P.; Forrat, R.; Yoksan, S.; Lang, J.; Saluzzo, J.F. Immunogenicity and safety of two live-attenuated tetravalent dengue vaccine formulations in healthy Australian adults. Vaccine 2006, 24, 1238–1241. [Google Scholar] [CrossRef]
- Moss, B. Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 11341–11348. [Google Scholar] [CrossRef] [PubMed]
- Liniger, M.; Zuniga, A.; Naim, H.Y. Use of viral vectors for the development of vaccines. Expet Rev. Vaccine. 2007, 6, 255–266. [Google Scholar] [CrossRef]
- Catanzaro, A.T.; Koup, R.A.; Roederer, M.; Bailer, R.T.; Enama, M.E.; Moodie, Z.; Gu, L.; Martin, J.E.; Novik, L.; Chakrabarti, B.K.; et al. Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 candidate vaccine delivered by a replication-defective recombinant adenovirus vector. J. Infect. Dis. 2006, 194, 1638–1649. [Google Scholar] [CrossRef] [PubMed]
- Kochel, T.; Wu, S.J.; Raviprakash, K.; Hobart, P.; Hoffman, S.; Porter, K.; Hayes, C. Inoculation of plasmids expressing the dengue-2 envelope gene elicit neutralizing antibodies in mice. Vaccine 1997, 15, 547–552. [Google Scholar] [CrossRef]
- Simmons, M.; Murphy, G.S.; Hayes, C.G. Short report: Antibody responses of mice immunized with a tetravalent dengue recombinant protein subunit vaccine. Am. J. Trop. Med. Hyg. 2001, 65, 159–161. [Google Scholar] [CrossRef]
- Simmons, M.; Murphy, G.S.; Kochel, T.; Raviprakash, K.; Hayes, C.G. Characterization of antibody responses to combinations of a dengue-2 DNA and dengue-2 recombinant subunit vaccine. Am. J. Trop. Med. Hyg. 2001, 65, 420–426. [Google Scholar] [CrossRef]
- Porter, K.R.; Kochel, T.J.; Wu, S.J.; Raviprakash, K.; Phillips, I.; Hayes, C.G. Protective efficacy of a dengue 2 DNA vaccine in mice and the effect of cpg immuno-stimulatory motifs on antibody responses. Arch. Virol. 1998, 143, 997–1003. [Google Scholar] [CrossRef]
- Raviprakash, K.; Marques, E.; Ewing, D.; Lu, Y.; Phillips, I.; Porter, K.R.; Kochel, T.J.; August, T.J.; Hayes, C.G.; Murphy, G.S. Synergistic neutralizing antibody response to a dengue virus type 2 DNA vaccine by incorporation of lysosome-associated membrane protein sequences and use of plasmid expressing gm-csf. Virology 2001, 290, 74–82. [Google Scholar] [CrossRef]
- Lu, Y.; Raviprakash, K.; Leao, I.C.; Chikhlikar, P.R.; Ewing, D.; Anwar, A.; Chougnet, C.; Murphy, G.; Hayes, C.G.; August, T.J.; et al. Dengue 2 prem-e/lamp chimera targeted to the mhc class ii compartment elicits long-lasting neutralizing antibodies. Vaccine 2003, 21, 2178–2189. [Google Scholar] [CrossRef] [PubMed]
- Raviprakash, K.; Kochel, T.J.; Ewing, D.; Simmons, M.; Phillips, I.; Hayes, C.G.; Porter, K.R. Immunogenicity of dengue virus type 1 DNA vaccines expressing truncated and full length envelope protein. Vaccine 2000, 18, 2426–2434. [Google Scholar] [CrossRef] [PubMed]
- Raviprakash, K.; Porter, K.R.; Kochel, T.J.; Ewing, D.; Simmons, M.; Phillips, I.; Murphy, G.S.; Weiss, W.R.; Hayes, C.G. Dengue virus type 1 DNA vaccine induces protective immune responses in rhesus macaques. J. Gen. Virol. 2000, 81, 1659–1667. [Google Scholar] [CrossRef]
- Kochel, T.J.; Raviprakash, K.; Hayes, C.G.; Watts, D.M.; Russell, K.L.; Gozalo, A.S.; Phillips, I.A.; Ewing, D.F.; Murphy, G.S.; Porter, K.R. A dengue virus serotype-1 DNA vaccine induces virus neutralizing antibodies and provides protection from viral challenge in aotus monkeys. Vaccine 2000, 18, 3166–3173. [Google Scholar] [CrossRef]
- Raviprakash, K.; Ewing, D.; Simmons, M.; Porter, K.R.; Jones, T.R.; Hayes, C.G.; Stout, R.; Murphy, G.S. Needle-free biojector injection of a dengue virus type 1 DNA vaccine with human immunostimulatory sequences and the gm-csf gene increases immunogenicity and protection from virus challenge in aotus monkeys. Virology 2003, 315, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Beckett, C.G.; Tjaden, J.; Burgess, T.; Danko, J.R.; Tamminga, C.; Simmons, M.; Wu, S.J.; Sun, P.; Kochel, T.; Raviprakash, K.; et al. Evaluation of a prototype dengue-1 DNA vaccine in a phase 1 clinical trial. Vaccine 2011, 29, 960–968. [Google Scholar] [CrossRef]
- Konishi, E.; Yamaoka, M.; Kurane, I.; Mason, P.W. A DNA vaccine expressing dengue type 2 virus premembrane and envelope genes induces neutralizing antibody and memory b cells in mice. Vaccine 2000, 18, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Konishi, E.; Kosugi, S.; Imoto, J. Dengue tetravalent DNA vaccine inducing neutralizing antibody and anamnestic responses to four serotypes in mice. Vaccine 2006, 24, 2200–2207. [Google Scholar] [CrossRef]
- Imoto, J.; Konishi, E. Dengue tetravalent DNA vaccine increases its immunogenicity in mice when mixed with a dengue type 2 subunit vaccine or an inactivated Japanese encephalitis vaccine. Vaccine 2007, 25, 1076–1084. [Google Scholar] [CrossRef] [PubMed]
- Apt, D.; Raviprakash, K.; Brinkman, A.; Semyonov, A.; Yang, S.; Skinner, C.; Diehl, L.; Lyons, R.; Porter, K.; Punnonen, J. Tetravalent neutralizing antibody response against four dengue serotypes by a single chimeric dengue envelope antigen. Vaccine 2006, 24, 335–344. [Google Scholar] [CrossRef]
- Raviprakash, K.; Apt, D.; Brinkman, A.; Skinner, C.; Yang, S.; Dawes, G.; Ewing, D.; Wu, S.J.; Bass, S.; Punnonen, J.; et al. A chimeric tetravalent dengue DNA vaccine elicits neutralizing antibody to all four virus serotypes in rhesus macaques. Virology 2006, 353, 166–173. [Google Scholar] [CrossRef]
- Holman, D.H.; Wang, D.; Raviprakash, K.; Raja, N.U.; Luo, M.; Zhang, J.; Porter, K.R.; Dong, J.Y. Two complex, adenovirus-based vaccines that together induce immune responses to all four dengue virus serotypes. Clin. Vaccine Immunol. 2007, 14, 182–189. [Google Scholar] [CrossRef]
- Raja, N.U.; Holman, D.H.; Wang, D.; Raviprakash, K.; Juompan, L.Y.; Deitz, S.B.; Luo, M.; Zhang, J.; Porter, K.R.; Dong, J.Y. Induction of bivalent immune responses by expression of dengue virus type 1 and type 2 antigens from a single complex adenoviral vector. Am. J. Trop. Med. Hyg. 2007, 76, 743–751. [Google Scholar] [CrossRef]
- Raviprakash, K.; Wang, D.; Ewing, D.; Holman, D.H.; Block, K.; Woraratanadharm, J.; Chen, L.; Hayes, C.; Dong, J.Y.; Porter, K. A tetravalent dengue vaccine based on a complex adenovirus vector provides significant protection in rhesus monkeys against all four serotypes of dengue viruses. J. Virol. 2008, 82, 6927–6934. [Google Scholar] [CrossRef]
- Khanam, S.; Rajendra, P.; Khanna, N.; Swaminathan, S. An adenovirus prime/plasmid boost strategy for induction of equipotent immune responses to two dengue virus serotypes. BMC Biotechnol. 2007, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- White, L.J.; Parsons, M.M.; Whitmore, A.C.; Williams, B.M.; de Silva, A.; Johnston, R.E. An immunogenic and protective alphavirus replicon particle-based dengue vaccine overcomes maternal antibody interference in weanling mice. J. Virol. 2007, 81, 10329–10339. [Google Scholar] [CrossRef] [PubMed]
- White, L.J.; Yingsiwaphat, V.; Wahala, W.; Parsons, M.M.; Fuller, L.; Collier, M.; Sariol, C.A.; de Silva, A. An alphavirus replicon based dengue vaccine is immunogenic and protective in rhesus macaques and induces predominantly domain iii reactive neutralizing antibodies. Proceedings of The American Society of Tropical Medicine and Hygiene 59th Annual Meeting, American Society of Tropical Medicine and Hygiene, Atlanta, GA, USA; 2010; Volume 83, p. 246. [Google Scholar]
- Putnak, J.R.; Coller, B.A.; Voss, G.; Vaughn, D.W.; Clements, D.; Peters, I.; Bignami, G.; Houng, H.S.; Chen, R.C.; Barvir, D.A.; et al. An evaluation of dengue type-2 inactivated, recombinant subunit, and live-attenuated vaccine candidates in the rhesus macaque model. Vaccine 2005, 23, 4442–4452. [Google Scholar] [CrossRef] [PubMed]
- Clements, D.E.; Coller, B.A.; Lieberman, M.M.; Ogata, S.; Wang, G.; Harada, K.E.; Putnak, J.R.; Ivy, J.M.; McDonell, M.; Bignami, G.S.; et al. Development of a recombinant tetravalent dengue virus vaccine: Immunogenicity and efficacy studies in mice and monkeys. Vaccine 2010, 28, 2705–2715. [Google Scholar] [CrossRef]
- Hermida, L.; Bernardo, L.; Martin, J.; Alvarez, M.; Prado, I.; Lopez, C.; Sierra Bde, L.; Martinez, R.; Rodriguez, R.; Zulueta, A.; et al. A recombinant fusion protein containing the domain iii of the dengue-2 envelope protein is immunogenic and protective in nonhuman primates. Vaccine 2006, 24, 3165–3171. [Google Scholar] [CrossRef] [PubMed]
- Valdes, I.; Bernardo, L.; Gil, L.; Pavon, A.; Lazo, L.; Lopez, C.; Romero, Y.; Menendez, I.; Falcon, V.; Betancourt, L.; et al. A novel fusion protein domain iii-capsid from dengue-2, in a highly aggregated form, induces a functional immune response and protection in mice. Virology 2009, 394, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Valdes, I.; Gil, L.; Romero, Y.; Castro, J.; Puente, P.; Lazo, L.; Marcos, E.; Guzman, M.G.; Guillen, G.; Hermida, L. The chimeric protein domain iii-capsid of dengue virus serotype 2 (den-2) successfully boosts neutralizing antibodies generated in monkeys upon infection with den-2. Clin. Vaccine Immunol. 2011, 18, 455–459. [Google Scholar] [CrossRef]
- Valdes, I.; Hermida, L.; Martin, J.; Menendez, T.; Gil, L.; Lazo, L.; Castro, J.; Niebla, O.; Lopez, C.; Bernardo, L.; et al. Immunological evaluation in nonhuman primates of formulations based on the chimeric protein p64k-domain iii of dengue 2 and two components of neisseria meningitidis. Vaccine 2009, 27, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Santra, S.; Seaman, M.S.; Xu, L.; Barouch, D.H.; Lord, C.I.; Lifton, M.A.; Gorgone, D.A.; Beaudry, K.R.; Svehla, K.; Welcher, B.; et al. Replication-defective adenovirus serotype 5 vectors elicit durable cellular and humoral immune responses in nonhuman primates. J. Virol. 2005, 79, 6516–6522. [Google Scholar] [CrossRef]
- Barouch, D.H.; Nabel, G.J. Adenovirus vector-based vaccines for human immunodeficiency virus type 1. Hum. Gene Ther. 2005, 16, 149–156. [Google Scholar] [CrossRef]
- Sullivan, N.J.; Sanchez, A.; Rollin, P.E.; Yang, Z.Y.; Nabel, G.J. Development of a preventive vaccine for ebola virus infection in primates. Nature 2000, 408, 605–609. [Google Scholar] [CrossRef]
- Jaiswal, S.; Khanna, N.; Swaminathan, S. Replication-defective adenoviral vaccine vector for the induction of immune responses to dengue virus type 2. J. Virol. 2003, 77, 12907–12913. [Google Scholar] [CrossRef]
- MacDonald, G.H.; Johnston, R.E. Role of dendritic cell targeting in venezuelan equine encephalitis virus pathogenesis. J. Virol. 2000, 74, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.M.; Whitmore, A.C.; Konopka, J.L.; Collier, M.L.; Richmond, E.M.; Davis, N.L.; Staats, H.F.; Johnston, R.E. Mucosal and systemic adjuvant activity of alphavirus replicon particles. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 3722–3727. [Google Scholar] [CrossRef] [PubMed]
- Coller, B.A.; Clements, D.; Ogata, S.; Martyak, T.; Thorne, M.; Yelmene, M.; Parks, E. Clinical development of a recombinant subunit vaccine for dengue. In Proceedings of the American Society of Tropical Medicine and Hygiene 59th Annual Meeting, Atlanta, GA, USA, 4–7 November 2010; p. 248. [Google Scholar]
- Zhang, W.; Chipman, P.R.; Corver, J.; Johnson, P.R.; Zhang, Y.; Mukhopadhyay, S.; Baker, T.S.; Strauss, J.H.; Rossmann, M.G.; Kuhn, R.J. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat. Struct. Biol. 2003, 10, 907–912. [Google Scholar] [CrossRef]
- Roehrig, J.T. Antigenic structure of flavivirus proteins. Adv. Virus Res. 2003, 59, 141–175. [Google Scholar]
- Crill, W.D.; Roehrig, J.T. Monoclonal antibodies that bind to domain iii of dengue virus e glycoprotein are the most efficient blockers of virus adsorption to vero cells. J. Virol. 2001, 75, 7769–7773. [Google Scholar] [CrossRef]
- Hermida, L.; Rodriguez, R.; Lazo, L.; Silva, R.; Zulueta, A.; Chinea, G.; Lopez, C.; Guzman, M.G.; Guillen, G. A dengue-2 envelope fragment inserted within the structure of the p64k meningococcal protein carrier enables a functional immune response against the virus in mice. J. Virol. Methods 2004, 115, 41–49. [Google Scholar] [CrossRef] [PubMed]
Vaccine | State of Development | Reference |
Naked DNA vaccines—monovalent | Preclinical Phase I clinical trial | [27,28,29,30,31,32,33,34,35,36,37,38] |
Naked DNA vaccines—tetravalent | Preclinical | [39,40] |
DNA “shuffle” vaccines | Preclinical | [41,42] |
Recombinant adenovirus vaccines | Preclinical | [43,44,45,46] |
Alphavirus replicons | Preclinical | [47,48] |
Sub-unit protein vaccine | Phase I clinical trial | [49,50] |
E protein domain III | Preclinical | [51,52,53,54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2011 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durbin, A.P.; Whitehead, S.S. Next-Generation Dengue Vaccines: Novel Strategies Currently Under Development. Viruses 2011, 3, 1800-1814. https://doi.org/10.3390/v3101800
Durbin AP, Whitehead SS. Next-Generation Dengue Vaccines: Novel Strategies Currently Under Development. Viruses. 2011; 3(10):1800-1814. https://doi.org/10.3390/v3101800
Chicago/Turabian StyleDurbin, Anna P., and Stephen S. Whitehead. 2011. "Next-Generation Dengue Vaccines: Novel Strategies Currently Under Development" Viruses 3, no. 10: 1800-1814. https://doi.org/10.3390/v3101800
APA StyleDurbin, A. P., & Whitehead, S. S. (2011). Next-Generation Dengue Vaccines: Novel Strategies Currently Under Development. Viruses, 3(10), 1800-1814. https://doi.org/10.3390/v3101800