Homologous Recombination in Negative Sense RNA Viruses
Abstract
:1. Introduction
2. False Positive Recombination Signals
3. Guidelines for Identifying Recombination
3.1. Excluding the Possibility of Laboratory Contamination
3.2. Excluding the Possibility of False Positive Signals Due to Bioinformatics Errors
4. Recombination Events in Negative Sense RNA Viruses
4.1. Influenza Virus
4.2. Ebola Virus
4.3. Newcastle Disease Virus
4.4. Hantavirus
4.5. Arenavirus
4.6. Summary
5. Constraints on Recombination in Negative Sense RNA Viruses
6. Implications
7. Conclusions and Further Directions
Acknowledgements
Conflict of Interest
References and Notes
- Pringle, C.R. Virus taxonomy—1999. Arch. Virol. 1999, 144, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Holland, J.; Spindler, K.; Horodyski, F.; Grabau, E.; Nichol, S.; VandePol, S. Rapid evolution of RNA genomes. Science 1982, 215, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Duffy, S.; Shackelton, L.A.; Holmes, E.C. Rates of evolutionary change in viruses: Patterns and determinants. Nat. Rev. Genet. 2008, 9, 267–276. [Google Scholar] [CrossRef]
- Worobey, M.; Holmes, E.C. Evolutionary aspects of recombination in RNA viruses. J. Gen. Virol. 1999, 80, 2535–2543. [Google Scholar] [CrossRef]
- Posada, D.; Crandall, K.A.; Holmes, E.C. Recombination in evolutionary genomics. Annu. Rev. Genet. 2002, 36, 75–97. [Google Scholar] [CrossRef]
- Nelson, M.I.; Holmes, E.C. The evolution of epidemic influenza. Nat. Rev. Genet. 2007, 8, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Posada, D.; Crandall, K.A. Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 13757–13762. [Google Scholar] [CrossRef]
- Lai, M.M. RNA recombination in animal and plant viruses. Microbiol. Rev. 1992, 56, 61–79. [Google Scholar] [CrossRef]
- Nagy, P.D.; Simon, A.E. New insights into the mechanisms of RNA recombination. Virology 1997, 235, 1–9. [Google Scholar] [CrossRef]
- Robertson, D. Recombinant Sequence Analysis/Detection Programs. Available online: http://www.bioinf.manchester.ac.uk/recombination/programs.shtml (accessed on 25 July 2011).
- Posada, D. Evaluation of methods for detecting recombination from DNA sequences: Empirical data. Mol. Biol. Evol. 2002, 19, 708–717. [Google Scholar] [CrossRef]
- Boni, M.F.; de Jong, M.D.; van Doorn, H.R.; Holmes, E.C. Guidelines for identifying homologous recombination events in influenza A virus. PLoS One 2010, 5, e10434. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, W. Evidence for recombination between vaccine and wild-type mumps virus strains. Arch. Virol. 2010, 155, 1493–1496. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, W. Erratum to: Evidence for recombination between vaccine and wild-type mumps virus strains. Arch Virol. 2011, 156, 929. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jiangsu University, Jiangsu, China. Personal communication, 2011.
- Forcic, D.; Institute of Immunology, Rockefellerova, Zagreb, Croatia. Personal communication, 2011.
- Hon, C.C.; Lam, T.T.; Yip, C.W.; Wong, R.T.; Shi, M.; Jiang, J.; Zeng, F.; Leung, F.C. Phylogenetic evidence for homologous recombination within the family Birnaviridae. J. Gen. Virol. 2008, 89, 3156–3164. [Google Scholar] [CrossRef]
- Ashelford, K.E.; Chuzhanova, N.A.; Fry, J.C.; Jones, A.J.; Weightman, A.J. At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl. Environ. Microbiol. 2005, 71, 7724–7736. [Google Scholar] [CrossRef]
- Liu, W.; Li, Y.; Learn, G.H.; Rudicell, R.S.; Robertson, J.D.; Keele, B.F.; Ndjango, J.B.; Sanz, C.M.; Morgan, D.B.; Locatelli, S.; et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 2010, 467, 420–425. [Google Scholar] [CrossRef]
- Gibbs, M.J.; Armstrong, J.S.; Gibbs, A.J. Recombination in the hemagglutinin gene of the 1918 "Spanish flu". Science 2001, 293, 1842–1845. [Google Scholar] [CrossRef]
- Worobey, M.; Rambaut, A.; Pybus, O.G.; Robertson, D.L. Questioning the evidence for genetic recombination in the 1918 "Spanish flu" virus. Science 2002, 296, 211, discussion 211. [Google Scholar] [CrossRef]
- Stanhope, M.J.; Lupas, A.; Italia, M.J.; Koretke, K.K.; Volker, C.; Brown, J.R. Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature 2001, 411, 940–944. [Google Scholar] [CrossRef]
- Simmonds, P.; Balfe, P.; Peutherer, J.F.; Ludlam, C.A.; Bishop, J.O.; Brown, A.J. Human immunodeficiency virus-infected individuals contain provirus in small numbers of peripheral mononuclear cells and at low copy numbers. J. Virol. 1990, 64, 864–872. [Google Scholar] [CrossRef]
- Palmer, S.; Kearney, M.; Maldarelli, F.; Halvas, E.K.; Bixby, C.J.; Bazmi, H.; Rock, D.; Falloon, J.; Davey, R.T.; Dewar, R.L.; et al. Multiple, linked human immunodeficiency virus type 1 drug resistance mutations in treatment-experienced patients are missed by standard genotype analysis. J. Clin. Microbiol. 2005, 43, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Gonzalez, J.F.; Bailes, E.; Pham, K.T.; Salazar, M.G.; Guffey, M.B.; Keele, B.F.; Derdeyn, C.A.; Farmer, P.; Hunter, E.; Allen, S.; et al. Deciphering human immunodeficiency virus type 1 transmission and early envelope diversification by single-genome amplification and sequencing. J. Virol. 2008, 82, 3952–3970. [Google Scholar] [CrossRef] [PubMed]
- Keele, B.F.; Giorgi, E.E.; Salazar-Gonzalez, J.F.; Decker, J.M.; Pham, K.T.; Salazar, M.G.; Sun, C.; Grayson, T.; Wang, S.; Li, H.; et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc. Natl Acad. Sci. U. S. A. 2008, 105, 7552–7557. [Google Scholar] [CrossRef] [PubMed]
- Keele, B.F.; Li, H.; Learn, G.H.; Hraber, P.; Giorgi, E.E.; Grayson, T.; Sun, C.; Chen, Y.; Yeh, W.W.; Letvin, N.L.; et al. Low dose rectal inoculation of rhesus macaques by SIVsmE660 or SIVmac251 recapitulates human mucosal infection by HIV-1. J. Exp. Med. 2009, 206, 1117–1134. [Google Scholar] [CrossRef] [PubMed]
- Shimodaira, H.; Hasegawa, M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 1999, 16, 1114–1116. [Google Scholar] [CrossRef]
- Lazzarini, R.A.; Keene, J.D.; Schubert, M. The origins of defective interfering particles of the negative-strand RNA viruses. Cell 1981, 26, 145–154. [Google Scholar] [CrossRef]
- Hirst, G.K. Genetic recombination with Newcastle disease virus, polioviruses, and influenza. Cold Spring Harb. Symp. Quant. Biol. 1962, 27, 303–309. [Google Scholar] [CrossRef]
- Plyusnin, A.; Kukkonen, S.K.; Plyusnina, A.; Vapalahti, O.; Vaheri, A. Transfection-mediated generation of functionally competent Tula hantavirus with recombinant S RNA segment. EMBO J. 2002, 21, 1497–1503. [Google Scholar] [CrossRef]
- Spann, K.M.; Collins, P.L.; Teng, M.N. Genetic recombination during coinfection of two mutants of human respiratory syncytial virus. J. Virol. 2003, 77, 11201–11211. [Google Scholar] [CrossRef]
- Chare, E.R.; Gould, E.A.; Holmes, E.C. Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J. Gen. Virol. 2003, 84, 2691–2703. [Google Scholar] [CrossRef]
- Archer, A.M.; Rico-Hesse, R. High genetic divergence and recombination in Arenaviruses from the Americas. Virology 2002, 304, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Charrel, R.N.; de Lamballerie, X.; Fulhorst, C.F. The Whitewater Arroyo virus: Natural evidence for genetic recombination among Tacaribe serocomplex viruses (family Arenaviridae). Virology 2001, 283, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Cajimat, M.N.; Milazzo, M.L.; Hess, B.D.; Rood, M.P.; Fulhorst, C.F. Principal host relationships and evolutionary history of the North American arenaviruses. Virology 2007, 367, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Emonet, S.F.; de la Torre, J.C.; Domingo, E.; Sevilla, N. Arenavirus genetic diversity and its biological implications. Infect. Genet. Evol. 2009, 9, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Charrel, R.N.; de Lamballerie, X.; Emonet, S. Phylogeny of the genus Arenavirus. Curr. Opin. Microbiol. 2008, 11, 362–268. [Google Scholar] [CrossRef]
- Lukashev, A.N. Evidence for recombination in Crimean-Congo hemorrhagic fever virus. J. Gen. Virol. 2005, 86, 2333–2338. [Google Scholar] [CrossRef]
- Deyde, V.M.; Khristova, M.L.; Rollin, P.E.; Ksiazek, T.G.; Nichol, S.T. Crimean-Congo hemorrhagic fever virus genomics and global diversity. J. Virol. 2006, 80, 8834–8842. [Google Scholar] [CrossRef]
- Sibold, C.; Meisel, H.; Krüger, D.H.; Labuda, M.; Lysy, J.; Kozuch, O.; Pejcoch, M.; Vaheri, A.; Plyusnin, A. Recombination in Tula hantavirus evolution: Analysis of genetic lineages from Slovakia. J. Virol. 1999, 73, 667–675. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Dong, X.; Yuan, J.; Zhang, H.; Yang, X.; Zhou, P.; Ge, X.; Li, Y.; Wang, L.F.; et al. Hantavirus outbreak associated with laboratory rats in Yunnan, China. Infect. Genet. Evol. 2010, 10, 638–644. [Google Scholar] [CrossRef]
- Klempa, B.; Schmidt, H.A.; Ulrich, R.; Kaluz, S.; Labuda, M.; Meisel, H.; Hjelle, B.; Krüger, D.H. Genetic interaction between distinct Dobrava hantavirus subtypes in Apodemus agrarius and A. flavicollis in nature. J. Virol. 2003, 77, 804–809. [Google Scholar] [CrossRef]
- Medina, R.A.; Torres-Perez, F.; Galeno, H.; Navarrete, M.; Vial, P.A.; Palma, R.E.; Ferres, M.; Cook, J.A.; Hjelle, B. Ecology, genetic diversity, and phylogeographic structure of andes virus in humans and rodents in Chile. J. Virol. 2009, 83, 2446–2459. [Google Scholar] [CrossRef] [PubMed]
- Klempa, B.; Stanko, M.; Labuda, M.; Ulrich, R.; Meisel, H.; Krüger, D.H. Central European Dobrava Hantavirus isolate from a striped field mouse (Apodemus agrarius). J. Clin. Microbiol. 2005, 43, 2756–2763. [Google Scholar] [CrossRef] [PubMed]
- Zuo, S.Q.; Fang, L.Q.; Zhan, L.; Zhang, P.H.; Jiang, J.F.; Wang, L.P.; Ma, J.Q.; Wang, B.C.; Wang, R.M.; Wu, X.M.; et al. Geo-spatial hotspots of hemorrhagic fever with renal syndrome and genetic characterization of seoul variants in Beijing, China. PLoS Negl. Trop. Dis. 2011, 5, e945. [Google Scholar] [CrossRef] [PubMed]
- Sironen, T.; Vaheri, A.; Plyusnin, A. Molecular evolution of Puumala hantavirus. J. Virol. 2001, 75, 11803–11810. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, T.J.; Biek, R.; Hassanin, A.; Rouquet, P.; Reed, P.; Yaba, P.; Pourrut, X.; Real, L.A.; Gonzalez, J.P.; Leroy, E.M. Isolates of Zaire ebolavirus from wild apes reveal genetic lineage and recombinants. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 17123–17127. [Google Scholar] [CrossRef] [PubMed]
- Devold, M.; Karlsen, M.; Nylund, A. Sequence analysis of the fusion protein gene from infectious salmon anemia virus isolates: Evidence of recombination and reassortment. J. Gen. Virol. 2006, 87, 2031–2040. [Google Scholar] [CrossRef]
- Devold, M.; Falk, K.; Dale, B.; Krossøy, B.; Biering, E.; Aspehaug, V.; Nilsen, F.; Nylund, A. Strain variation, based on the hemagglutinin gene, in Norwegian ISA virus isolates collected from 1987 to 2001: indications of recombination. Dis. Aquat. Organ. 2001, 47, 119–128. [Google Scholar] [CrossRef]
- He, C.Q.; Xie, Z.X.; Han, G.Z.; Dong, J.B.; Wang, D.; Liu, J.B.; Ma, L.Y.; Tang, X.F.; Liu, X.P.; Pang, Y.S.; et al. Homologous recombination as an evolutionary force in the avian influenza A virus. Mol. Biol. Evol. 2009, 26, 177–187. [Google Scholar] [CrossRef]
- Liu, X.; Wu, C.; Chen, A.Y. Codon usage bias and recombination events for neuraminidase and hemagglutinin genes in Chinese isolates of influenza A virus subtype H9N2. Arch. Virol. 2010, 155, 685–693. [Google Scholar] [CrossRef]
- He, C.Q.; Han, G.Z.; Wang, D.; Liu, W.; Li, G.R.; Liu, X.P.; Ding, N.Z. Homologous recombination evidence in human and swine influenza A viruses. Virology 2008, 380, 12–20. [Google Scholar] [CrossRef]
- Hao, W. Evidence of intra-segmental homologous recombination in influenza A virus. Gene 2011, 481, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Rohde, W.; Scholtissek, C. On the origin of the gene coding for an influenze A virus nucleocapsid protein. Arch. Virol. 1980, 64, 213–223. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, A.J.; Shaw, M.A.; Goodman, S.J. Pathogen evolution and disease emergence in carnivores. Proc. Biol. Sci. 2007, 274, 3165–3174. [Google Scholar] [CrossRef]
- Han, G.Z.; Liu, X.P.; Li, S.S. Cross-species recombination in the haemagglutinin gene of canine distemper virus. Virus Res. 2008, 136, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Storch, G.A.; Zang, C.; Peret, T.C.; Park, C.S.; Anderson, L.J. Genetic variability in envelope-associated protein genes of closely related group A strains of respiratory syncytial virus. Virus Res. 1999, 59, 89–99. [Google Scholar] [CrossRef]
- Schierup, M.H.; Mordhorst, C.H.; Muller, C.P.; Christensen, L.S. Evidence of recombination among early-vaccination era measles virus strains. BMC Evol. Biol. 2005, 5, 52. [Google Scholar] [CrossRef]
- Yang, H.T.; Jiang, Q.; Zhou, X.; Bai, M.Q.; Si, H.L.; Wang, X.J.; Lu, Y.; Zhao, H.; He, H.B.; He, C.Q. Identification of a natural human serotype 3 parainfluenza virus. Virol. J. 2011, 8, 58. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, X.; Su, J.; Zhao, J.; Zhang, G. Isolation and analysis of two naturally-occurring multi-recombination Newcastle disease viruses in China. Virus Res. 2010, 151, 45–53. [Google Scholar] [CrossRef]
- Qin, Z.; Sun, L.; Ma, B.; Cui, Z.; Zhu, Y.; Kitamura, Y.; Liu, W. F gene recombination between genotype II and VII Newcastle disease virus. Virus Res. 2008, 131, 299–303. [Google Scholar] [CrossRef]
- Han, G.Z.; He, C.Q.; Ding, N.Z.; Ma, L.Y. Identification of a natural multi-recombinant of Newcastle disease virus. Virology 2008, 371, 54–60. [Google Scholar] [CrossRef]
- Rui, Z.; Juan, P.; Jingliang, S.; Jixun, Z.; Xiaoting, W.; Shouping, Z.; Xiaojiao, L.; Guozhong, Z. Phylogenetic characterization of Newcastle disease virus isolated in the mainland of China during 2001–2009. Vet. Microbiol. 2010, 141, 246–257. [Google Scholar] [CrossRef] [PubMed]
- Chong, Y.L.; Padhi, A.; Hudson, P.J.; Poss, M. The effect of vaccination on the evolution and population dynamics of avian paramyxovirus-1. PLoS Pathog. 2010, 6, e1000872. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Cortey, M.; Zhang, Y.; Cui, S.; Dolz, R.; Wang, J.; Gong, Z. Molecular characterization of Newcastle disease viruses in Ostriches (Struthio camelus L.): Further evidences of recombination within avian paramyxovirus type 1. Vet. Microbiol. 2010, 149, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.J.; Kim, L.M.; Ip, H.S.; Afonso, C.L. Evolutionary dynamics of Newcastle disease virus. Virology 2009, 391, 64–72. [Google Scholar] [CrossRef]
- Geue, L.; Schares, S.; Schnick, C.; Kliemt, J.; Beckert, A.; Freuling, C.; Conraths, F.J.; Hoffmann, B.; Zanoni, R.; Marston, D.; et al. Genetic characterisation of attenuated SAD rabies virus strains used for oral vaccination of wildlife. Vaccine 2008, 26, 3227–3235. [Google Scholar] [CrossRef]
- Orlich, M.; Gottwald, H.; Rott, R. Nonhomologous recombination between the hemagglutinin gene and the nucleoprotein gene of an influenza virus. Virology 1994, 204, 462–465. [Google Scholar] [CrossRef]
- Khatchikian, D.; Orlich, M.; Rott, R. Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature 1989, 340, 156–157. [Google Scholar] [CrossRef]
- Suarez, D.L.; Senne, D.A.; Banks, J.; Brown, I.H.; Essen, S.C.; Lee, C.W.; Manvell, R.J.; Mathieu-Benson, C.; Moreno, V.; Pedersen, J.C.; et al. Recombination resulting in virulence shift in avian influenza outbreak, Chile. Emerg. Infect. Dis. 2004, 10, 693–699. [Google Scholar] [CrossRef]
- Smith, G.J.D.; The University of Hong Kong, Hong Kong, China. Personal communication, 2008.
- Bausch, D.G.; Nichol, S.T.; Muyembe-Tamfum, J.J.; Borchert, M.; Rollin, P.E.; Sleurs, H.; Campbell, P.; Tshioko, F.K.; Roth, C.; Colebunders, R.; et al. International Scientific and Technical Committee for Marburg Hemorrhagic Fever Control in the Democratic Republic of the Congo. Marburg hemorrhagic fever associated with multiple genetic lineages of virus. N. Engl. J. Med. 2006, 355, 909–919. [Google Scholar] [CrossRef]
- Kim, L.M.; King, D.J.; Curry, P.E.; Suarez, D.L.; Swayne, D.E.; Stallknecht, D.E.; Slemons, R.D.; Pedersen, J.C.; Senne, D.A.; Winker, K.; et al. Phylogenetic diversity among low-virulence Newcastle disease viruses from waterfowl and shorebirds and comparison of genotype distributions to those of poultry-origin isolates. J. Virol. 2007, 81, 12641–12653. [Google Scholar] [CrossRef]
- Afonso, C.L. Not so fast on recombination analysis of Newcastle disease virus. J. Virol. 2008, 82, 9303. [Google Scholar] [CrossRef] [PubMed]
- Afonso, C.L.; Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, GA, USA. Personal communication, 2008.
- Song, Q.; Cao, Y.; Li, Q.; Gu, M.; Zhong, L.; Hu, S.; Wan, H.; Liu, X. Artificial recombination may influence evolutionary analysis of Newcastle disease virus. J. Virol. 2011. [Google Scholar] [CrossRef] [PubMed]
- Damonte, E.B.; Mersich, S.E.; Coto, C.E. Response of cells persistently infected with arenaviruses to superinfection with homotypic and heterotypic viruses. Virology 1983, 129, 474–478. [Google Scholar] [CrossRef]
- Ellenberg, P.; Edreira, M.; Scolaro, L. Resistance to superinfection of Vero cells persistently infected with Junin virus. Arch. Virol. 2004, 149, 507–522. [Google Scholar] [CrossRef] [PubMed]
- Ellenberg, P.; Linero, F.N.; Scolaro, L.A. Superinfection exclusion in BHK-21 cells persistently infected with Junin virus. J. Gen. Virol. 2007, 88, 2730–2739. [Google Scholar] [CrossRef] [PubMed]
- Conzelmann, K.K. Nonsegmented negative-strand RNA viruses: Genetics and manipulation of viral genomes. Annu. Rev. Genet. 1998, 32, 123–162. [Google Scholar] [CrossRef] [PubMed]
- Green, T.J.; Zhang, X.; Wertz, G.W.; Luo, M. Structure of the vesicular stomatitis virus nucleoprotein-RNA complex. Science 2006, 313, 357–360. [Google Scholar] [CrossRef]
- Tawar, R.G.; Duquerroy, S.; Vonrhein, C.; Varela, P.F.; Damier-Piolle, L.; Castagné, N.; MacLellan, K.; Bedouelle, H.; Bricogne, G.; Bhella, D.; et al. Crystal structure of a nucleocapsid-like nucleoprotein-RNA complex of respiratory syncytial virus. Science 2009, 326, 1279–1283. [Google Scholar] [CrossRef]
- Albertini, A.A.; Wernimont, A.K.; Muziol, T.; Ravelli, R.B.; Clapier, C.R.; Schoehn, G.; Weissenhorn, W.; Ruigrok, R.W. Crystal structure of the rabies virus nucleoprotein-RNA complex. Science 2006, 313, 360–363. [Google Scholar] [CrossRef]
- Fernandez-Munoz, R.; Celma, M.L. Measles virus from a long-term persistently infected human T lymphoblastoid cell line, in contrast to the cytocidal parental virus, establishes an immediate persistence in the original cell line. J. Gen. Virol. 1992, 73, 2195–2202. [Google Scholar] [CrossRef]
- Formella, S.; Jehle, C.; Sauder, C.; Staeheli, P.; Schwemmle, M. Sequence variability of Borna disease virus: resistance to superinfection may contribute to high genome stability in persistently infected cells. J. Virol. 2000, 74, 7878–7883. [Google Scholar] [CrossRef] [PubMed]
- Plyusnina, A.; Plyusnin, A. Recombinant Tula hantavirus shows reduced fitness but is able to survive in the presence of a parental virus: Analysis of consecutive passages in a cell culture. Virol. J. 2005, 2, 12. [Google Scholar] [CrossRef] [PubMed]
- Posada, D.; Crandall, K.A. Intraspecific gene genealogies: Trees grafting into networks. Trends Ecol. Evol. 2001, 16, 37–45. [Google Scholar] [CrossRef]
- Bukreyev, A.; Collins, P.L. Newcastle disease virus as a vaccine vector for humans. Curr. Opin. Mol. Ther. 2008, 10, 46–55. [Google Scholar] [PubMed]
- Bukreyev, A.; Huang, Z.; Yang, L.; Elankumaran, S.; Claire, M. St.; Murphy, B.R.; Samal, S.K.; Collins, P.L. Recombinant Newcastle disease virus expressing a foreign viral antigen is attenuated and highly immunogenic in primates. J. Virol. 2005, 79, 13275–13284. [Google Scholar] [CrossRef]
- Bukreyev, A.; Skiadopoulos, M.H.; Murphy, B.R.; Collins, P.L. Nonsegmented negative-strand viruses as vaccine vectors. J. Virol. 2006, 80, 10293–10306. [Google Scholar] [CrossRef]
- Han, G.Z.; Liu, X.P.; Li, S.S. Caution about Newcastle diseasevirus-based live attenuated vaccine. J. Virol. 2008, 82, 6782. [Google Scholar] [CrossRef]
- Collins, P.L.; Bukreyev, A.; Murphy, B.R. What are the risks—Hypothetical and observed—Of recombination involving live vaccines and vaccine vectors based on nonsegmented negative-strain RNA viruses? J. Virol. 2008, 82, 9805–9806. [Google Scholar] [CrossRef]
- DiNapoli, J.M.; Yang, L.; Samal, S.K.; Murphy, B.R.; Collins, P.L.; Bukreyev, A. Respiratory tract immunization of non-human primates with a Newcastle disease virus-vectored vaccine candidate against Ebola virus elicits a neutralizing antibody response. Vaccine 2010, 29, 17–25. [Google Scholar] [CrossRef]
Virus | Type | Family | Evidence | Reference |
---|---|---|---|---|
Arenavirus | Segmented | Arenaviridae | Sequence | [34,35,36,37,38] |
Crimean-Congo hemorrhagic fever virus | Segmented | Bunyaviridae | Sequence | [39,40] |
Hantaviruses | Segmented | Bunyaviridae | Sequence/Transfection | [31,41,42,43,44,45,46,47] |
Zaire ebolavirus | Nonsegmented | Filoviridae | Sequence | [48] |
Infectious salmon anemia virus | Segmented | Orthomyxoviridae | Sequence | [49,50] |
Influenza A virus | Segmented | Orthomyxoviridae | Sequence/Coinfection | [20,51,52,53,54,55] |
Canine distemper virus | Nonsegmented | Paramyxoviridae | Sequence | [56,57] |
Respiratory syncytial virus | Nonsegmented | Paramyxoviridae | Sequence/Coinfection | [32,58] |
Measles virus | Nonsegmented | Paramyxoviridae | Sequence | [59] |
Mumps virus | Nonsegmented | Paramyxoviridae | Sequence | [13,33] |
Human parainfluenza virus | Nonsegmented | Paramyxoviridae | Sequence | [60] |
Newcastle disease virus | Nonsegmented | Paramyxoviridae | Sequence | [33,61,62,63,64,65,66,67] |
Rabies virus | Nonsegmented | Rhabdoviridae | Sequence | [68] |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Han, G.-Z.; Worobey, M. Homologous Recombination in Negative Sense RNA Viruses. Viruses 2011, 3, 1358-1373. https://doi.org/10.3390/v3081358
Han G-Z, Worobey M. Homologous Recombination in Negative Sense RNA Viruses. Viruses. 2011; 3(8):1358-1373. https://doi.org/10.3390/v3081358
Chicago/Turabian StyleHan, Guan-Zhu, and Michael Worobey. 2011. "Homologous Recombination in Negative Sense RNA Viruses" Viruses 3, no. 8: 1358-1373. https://doi.org/10.3390/v3081358
APA StyleHan, G. -Z., & Worobey, M. (2011). Homologous Recombination in Negative Sense RNA Viruses. Viruses, 3(8), 1358-1373. https://doi.org/10.3390/v3081358