Diagnosis of West Nile Virus Human Infections: Overview and Proposal of Diagnostic Protocols Considering the Results of External Quality Assessment Studies
Abstract
:1. Introduction
2. Virus Detection
3. Serological Methods
Clinical Issue (biological sample) | Suggested laboratory tools |
---|---|
Diagnosis of patients with suspected WNV infection: neuroinvasive disease and WNV fever (serum and/or plasma, whole blood, CSF, urine). | It is advisable to prioritize the order of the tests as follows: MAC-EIA, Indirect IgG EIA, IF, virus isolation, RT-PCR, Real time RT-PCR, PRNT90 |
Evaluation of seroprevalence (serum and/or plasma) | PRNT50; Indirect IgG EIA, IF; Epitope blocking EIA |
Screening of blood and organ donations (serum or plasma) | NATs [MAC-EIA and IF (IgG and IgM) are suggested to perform the serologic follow up of the NATs positive donors and as early additional testing in case of not confirmed NAT positivity] |
Post-mortem evaluation (tissue biopsy) | Immunohistochemistry |
4. External Quality Assurance Studies for the Serological and Molecular Diagnostics of WNV Infections
5. Conclusions
Acknowledgments
Conflicts of Interest
References and Notes
- Monini, M.; Falcone, E.; Busani, L.; Romi, R.; Ruggeri, F.M. West nile virus: Characteristics of an african virus adapting to the third millennium world. Open Virol. J. 2010, 4, 42–51. [Google Scholar]
- Rossi, S.L.; Ross, T.M.; Evans, J.D. West Nile virus. Clin. Lab. Med. 2010, 30, 47–65. [Google Scholar] [CrossRef]
- Lim, S.M.; Koraka, P.; Osterhaus, A.D.; Martina, B.E. West Nile virus: Immunity and pathogenesis. Viruses 2011, 3, 811–828. [Google Scholar] [CrossRef]
- Gray, T.J.; Burrow, J.N.; Markey, P.G.; Whelan, P.I.; Jackson, J.; Smith, D.W.; Currie, B.J. West nile virus (Kunjin subtype) disease in the northern territory of Australia—A case of encephalitis and review of all reported cases. Am. J. Trop. Med. Hyg. 2011, 85, 952–956. [Google Scholar] [CrossRef]
- Bagnarelli, P.; Marinelli, K.; Trotta, D.; Monachetti, A.; Tavio, M.; Del Gobbo, R.; Capobianchi, M.; Menzo, S.; Nicoletti, L.; Magurano, F.; et al. Human case of autochthonous West Nile virus lineage 2 infection in Italy, September 2011. Euro Surveill. 2011, 16, pii: 20002. [Google Scholar]
- Papa, A.; Politis, C.; Tsoukala, A.; Eglezou, A.; Bakaloudi, V.; Hatzitaki, M.; Tsergouli, K. West Nile virus lineage 2 from blood donor, Greece. Emerg. Infect. Dis. 2012, 18, 688–689. [Google Scholar] [CrossRef]
- Papa, A.; Xanthopoulou, K.; Gewehr, S.; Mourelatos, S. Detection of West Nile virus lineage 2 in mosquitoes during a human outbreak in Greece. Clin. Microbiol. Infect. 2011, 17, 1176–1180. [Google Scholar] [CrossRef]
- Sirbu, A.; Ceianu, C.S.; Panculescu-Gatej, R.I.; Vazquez, A.; Tenorio, A.; Rebreanu, R.; Niedrig, M.; Nicolescu, G.; Pistol, A. Outbreak of West Nile virus infection in humans, Romania, July to October 2010. Euro Surveill. 2011, 16, pii: 19762. [Google Scholar]
- Bakonyi, T.; Hubalek, Z.; Rudolf, I.; Nowotny, N. Novel flavivirus or new lineage of West Nile virus, central Europe. Emerg. Infect. Dis. 2005, 11, 225–231. [Google Scholar] [CrossRef]
- Bondre, V.P.; Jadi, R.S.; Mishra, A.C.; Yergolkar, P.N.; Arankalle, V.A. West Nile virus isolates from India: evidence for a distinct genetic lineage. J. Gen. Virol. 2007, 88, 875–884. [Google Scholar] [CrossRef]
- Vazquez, A.; Sanchez-Seco, M.P.; Ruiz, S.; Molero, F.; Hernandez, L.; Moreno, J.; Magallanes, A.; Tejedor, C.G.; Tenorio, A. Putative new lineage of west nile virus, Spain. Emerg. Infect. Dis. 2010, 16, 549–552. [Google Scholar] [CrossRef]
- Weissenbock, H.; Kolodziejek, J.; Url, A.; Lussy, H.; Rebel-Bauder, B.; Nowotny, N. Emergence of Usutu virus, an African mosquito-borne flavivirus of the Japanese encephalitis virus group, central Europe. Emerg. Infect. Dis. 2002, 8, 652–656. [Google Scholar] [CrossRef]
- Dauphin, G.; Zientara, S. West Nile virus: Recent trends in diagnosis and vaccine development. Vaccine 2007, 25, 5563–5576. [Google Scholar] [CrossRef]
- Zou, S.; Foster, G.A.; Dodd, R.Y.; Petersen, L.R.; Stramer, S.L. West Nile fever characteristics among viremic persons identified through blood donor screening. J. Infect. Dis. 2010, 202, 1354–1361. [Google Scholar] [CrossRef]
- Rossini, G.; Carletti, F.; Bordi, L.; Cavrini, F.; Gaibani, P.; Landini, M.P.; Pierro, A.; Capobianchi, M.R.; Di Caro, A.; Sambri, V. Phylogenetic analysis of West Nile virus isolates, Italy, 2008–2009. Emerg. Infect. Dis. 2011, 17, 903–906. [Google Scholar] [CrossRef]
- Caceda, E.R.; Kochel, T.J. Application of modified shell vial culture procedure for arbovirus detection. PLoS One 2007, 2, e1034. [Google Scholar] [CrossRef]
- Jayakeerthi, R.S.; Potula, R.V.; Srinivasan, S.; Badrinath, S. Shell Vial Culture assay for the rapid diagnosis of Japanese encephalitis, West Nile and Dengue-2 viral encephalitis. Virol. J. 2006, 3, 2. [Google Scholar] [CrossRef]
- Sudeep, A.B.; Parashar, D.; Jadi, R.S.; Basu, A.; Mokashi, C.; Arankalle, V.A.; Mishra, A.C. Establishment and characterization of a new Aedes aegypti (L.) (Diptera: Culicidae) cell line with special emphasis on virus susceptibility. In Vitro Cell. Dev. Biol. Anim. 2009, 45, 491–495. [Google Scholar] [CrossRef]
- Busch, M.P.; Kleinman, S.H.; Tobler, L.H.; Kamel, H.T.; Norris, P.J.; Walsh, I.; Matud, J.L.; Prince, H.E.; Lanciotti, R.S.; Wright, D.J.; et al. Virus and antibody dynamics in acute west nile virus infection. J. Infect. Dis. 2008, 198, 984–993. [Google Scholar] [CrossRef]
- Murray, K.; Walker, C.; Herrington, E.; Lewis, J.A.; McCormick, J.; Beasley, D.W.; Tesh, R.B.; Fisher-Hoch, S. Persistent infection with West Nile virus years after initial infection. J. Infect. Dis. 2010, 201, 2–4. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Expert consultation on West Nile virus infection. ECDC Meeting Report, Thessaloniki, Greece, 25–26 January 2011. Available online: http://ecdc.europa.eu/en/publications/Publications/1106_MER_WNV_Expert_Consultation.pdf (accessed on 20 September 2013).
- Gyure, K.A. West Nile virus infections. J. Neuropathol. Exp. Neurol. 2009, 68, 1053–1060. [Google Scholar] [CrossRef]
- Morelli, M.C.; Sambri, V.; Grazi, G.L.; Gaibani, P.; Pierro, A.; Cescon, M.; Ercolani, G.; Cavrini, F.; Rossini, G.; Capobianchi, M.R.; et al. Absence of neuroinvasive disease in a liver transplant recipient who acquired West Nile virus (WNV) infection from the organ donor and who received WNV antibodies prophylactically. Clin. Infect. Dis. 2010, 51, e34–e37. [Google Scholar] [CrossRef]
- Inojosa, W.O.; Scotton, P.G.; Fuser, R.; Giobbia, M.; Paolin, A.; Maresca, M.C.; Brunello, A.; Nascimben, E.; Sorbara, C.; Rigoli, R.; et al. West Nile virus transmission through organ transplantation in north-eastern Italy: A case report and implications for pre-procurement screening. Infection 2012, 40, 557–562. [Google Scholar] [CrossRef]
- Costa, A.N.; Capobianchi, M.R.; Ippolito, G.; Palu, G.; Barzon, L.; Piccolo, G.; Andreetta, B.; Filippetti, M.; Fehily, D.; Lombardini, L.; et al. West Nile virus: The Italian national transplant network reaction to an alert in the north-eastern region, Italy 2011. Euro Surveill. 2011, 16, pii: 19991. [Google Scholar]
- Rabel, P.O.; Planitzer, C.B.; Farcet, M.R.; Orlinger, K.K.; Ilk, R.; Barrett, P.N.; Kreil, T.R. Increasing West Nile virus antibody titres in central European plasma donors from 2006 to 2010. Euro Surveill. 2011, 16, pii: 19812. [Google Scholar]
- Stramer, S.L. Reacting to an emerging safety threat: West Nile virus in North America. Dev. Biol. 2007, 127, 43–58. [Google Scholar]
- Grazzini, G.; Liumbruno, G.M.; Pupella, S.; Silvestri, A.R.; Randi, V.; Pascarelli, N.; Zucchelli, P.; Di Caro, A.; Spataro, N.; D'Angelo, E.; et al. West Nile virus in Italy: a further threat to blood safety, a further challenge to the blood system. Blood Transfus. 2008, 6, 235–237. [Google Scholar]
- Pai, A.; Kleinman, S.; Malhotra, K.; Lee-Haynes, L.; Pietrelli, L.; Saldanha, J. Performance characteristics of the Food and Drug Administration-licensed Roche Cobas TaqScreen West Nile virus assay. Transfusion 2008, 48, 2184–2189. [Google Scholar] [CrossRef]
- Ziermann, R.; Sanchez-Guerrero, S.A. PROCLEIX West Nile virus assay based on transcription-mediated amplification. Expert. Rev. Mol. Diagn. 2008, 8, 239–245. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, J.; Li, Y.; Li, F.; Njoo, H. Rapid and accurate in vitro assays for detection of West Nile virus in blood and tissues. Transfus. Med. Rev. 2009, 23, 146–154. [Google Scholar] [CrossRef]
- Lai, L.; Lee, T.H.; Tobler, L.; Wen, L.; Shi, P.; Alexander, J.; Ewing, H.; Busch, M. Relative distribution of West Nile virus RNA in blood compartments: Implications for blood donor nucleic acid amplification technology screening. Transfusion 2012, 52, 447–454. [Google Scholar] [CrossRef]
- Pisani, G.; Pupella, S.; Marino, F.; Gaggioli, A.; Sambri, V.; Rossini, G.; Wirz, M.; Grazzini, G. Interlaboratory study to evaluate the performance of laboratories involved in West Nile virus RNA screening of blood and blood components by nucleic acid amplification testing in Italy. Blood Transfus. 2011, 9, 425–429. [Google Scholar]
- Gaibani, P.; Pierro, A.M.; Cavrini, F.; Rossini, G.; Landini, M.P.; Sambri, V. False-positive transcription-mediated amplification assay detection of West Nile virus in blood from a patient with viremia caused by an Usutu virus infection. J. Clin. Microbiol. 2010, 48, 3338–3339. [Google Scholar] [CrossRef]
- Linnen, J.M.; Deras, M.L.; Cline, J.; Wu, W.; Broulik, A.S.; Cory, R.E.; Knight, J.L.; Cass, M.M.; Collins, C.S.; Giachetti, C. Performance evaluation of the PROCLEIX West Nile virus assay on semi-automated and automated systems. J. Med. Virol. 2007, 79, 1422–1430. [Google Scholar] [CrossRef]
- Galel, S.A.; Webster, J.; Roa, L. Feasibility of routine individual donation testing for West Nile virus RNA during epidemic season using the investigational Roche cobas TaqScreen West Nile virus test and cobas s 201 system prototype. Transfusion 2008, 48, 1486–1494. [Google Scholar] [CrossRef]
- Sanchez-Guerrero, S.A.; Romero-Estrella, S.; Rodriguez-Ruiz, A.; Infante-Ramirez, L.; Gomez, A.; Villanueva-Vidales, E.; Garcia-Torres, M.; Dominguez, A.M.; Vazquez, J.A.; Calderon, E.D.; et al. Detection of West Nile virus in the Mexican blood supply. Transfusion 2006, 46, 111–117. [Google Scholar] [CrossRef]
- Lee, D.H.; Mathew, J.; Pfahler, W.; Ma, D.; Valinsky, J.; Prince, A.M.; Andrus, L. Individual donor nucleic acid amplification testing for detection of West Nile virus. J. Clin. Microbiol. 2005, 43, 5111–5116. [Google Scholar] [CrossRef]
- Tilley, P.A.; Fox, J.D.; Lee, B.; Chui, L.; Preiksaitis, J. Screening of organ and tissue donors for West Nile virus by nucleic acid amplification—A three year experience in Alberta. Am. J. Transplant. 2008, 8, 2119–2125. [Google Scholar] [CrossRef]
- Shi, P.Y.; Kauffman, E.B.; Ren, P.; Felton, A.; Tai, J.H.; Dupuis, A.P., 2nd; Jones, S.A.; Ngo, K.A.; Nicholas, D.C.; Maffei, J.; et al. High-throughput detection of West Nile virus RNA. J. Clin. Microbiol. 2001, 39, 1264–1271. [Google Scholar] [CrossRef]
- Scaramozzino, N.; Crance, J.M.; Jouan, A.; DeBriel, D.A.; Stoll, F.; Garin, D. Comparison of flavivirus universal primer pairs and development of a rapid, highly sensitive heminested reverse transcription-PCR assay for detection of flaviviruses targeted to a conserved region of the NS5 gene sequences. J. Clin. Microbiol. 2001, 39, 1922–1927. [Google Scholar] [CrossRef]
- Sanchez-Seco, M.P.; Rosario, D.; Domingo, C.; Hernandez, L.; Valdes, K.; Guzman, M.G.; Tenorio, A. Generic RT-nested-PCR for detection of flaviviruses using degenerated primers and internal control followed by sequencing for specific identification. J. Virol. Methods 2005, 126, 101–109. [Google Scholar] [CrossRef]
- Lanciotti, R.S.; Kerst, A.J.; Nasci, R.S.; Godsey, M.S.; Mitchell, C.J.; Savage, H.M.; Komar, N.; Panella, N.A.; Allen, B.C.; Volpe, K.E.; et al. Rapid detection of west nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J. Clin. Microbiol. 2000, 38, 4066–4071. [Google Scholar]
- Jimenez-Clavero, M.A.; Aguero, M.; Rojo, G.; Gomez-Tejedor, C. A new fluorogenic real-time RT-PCR assay for detection of lineage 1 and lineage 2 West Nile viruses. J. Vet. Diagn. Invest. 2006, 18, 459–462. [Google Scholar] [CrossRef]
- Papin, J.F.; Vahrson, W.; Larson, L.; Dittmer, D.P. Genome-wide real-time PCR for West Nile virus reduces the false-negative rate and facilitates new strain discovery. J. Virol. Methods 169, 103–111.
- Papin, J.F.; Vahrson, W.; Dittmer, D.P. SYBR green-based real-time quantitative PCR assay for detection of West Nile Virus circumvents false-negative results due to strain variability. J. Clin. Microbiol. 2004, 42, 1511–1518. [Google Scholar] [CrossRef]
- Rondini, S.; Pingle, M.R.; Das, S.; Tesh, R.; Rundell, M.S.; Hom, J.; Stramer, S.; Turner, K.; Rossmann, S.N.; Lanciotti, R.; et al. Development of multiplex PCR-ligase detection reaction assay for detection of West Nile virus. J. Clin. Microbiol. 2008, 46, 2269–2279. [Google Scholar] [CrossRef]
- Eiden, M.; Vina-Rodriguez, A.; Hoffmann, B.; Ziegler, U.; Groschup, M.H. Two new real-time quantitative reverse transcription polymerase chain reaction assays with unique target sites for the specific and sensitive detection of lineages 1 and 2 West Nile virus strains. J. Vet. Diagn. Invest. 2010, 22, 748–753. [Google Scholar] [CrossRef]
- Cavrini, F.; Gaibani, P.; Pierro, A.M.; Rossini, G.; Landini, M.P.; Sambri, V. Chikungunya: An emerging and spreading arthropod-borne viral disease. J. Infect. Dev. Ctries. 2009, 3, 744–752. [Google Scholar]
- Gould, E.; Gallian, P.; De Lamballerie, X.; Charrel, R. First cases of autochthonous dengue fever and chikungunya fever in France: from bad dream to reality! Clin. Microbiol. Infect. 2010, 16, 1702–1704. [Google Scholar] [CrossRef]
- Schmidt-Chanasit, J.; Haditsch, M.; Schoneberg, I.; Gunther, S.; Stark, K.; Frank, C. Dengue virus infection in a traveller returning from Croatia to Germany. Euro Surveill. 2010, 15, pii: 19677. [Google Scholar]
- Jost, H.; Bialonski, A.; Maus, D.; Sambri, V.; Eiden, M.; Groschup, M.H.; Gunther, S.; Becker, N.; Schmidt-Chanasit, J. Isolation of usutu virus in Germany. Am. J. Trop. Med. Hyg. 2011, 85, 551–553. [Google Scholar] [CrossRef]
- Naze, F.; Le Roux, K.; Schuffenecker, I.; Zeller, H.; Staikowsky, F.; Grivard, P.; Michault, A.; Laurent, P. Simultaneous detection and quantitation of Chikungunya, dengue and West Nile viruses by multiplex RT-PCR assays and dengue virus typing using high resolution melting. J. Virol. Methods 2009, 162, 1–7. [Google Scholar] [CrossRef]
- Yeh, J.Y.; Lee, J.H.; Seo, H.J.; Park, J.Y.; Moon, J.S.; Cho, I.S.; Lee, J.B.; Park, S.Y.; Song, C.S.; Choi, I.S. Fast duplex one-step reverse transcriptase PCR for rapid differential detection of West Nile and Japanese encephalitis viruses. J. Clin. Microbiol. 2010, 48, 4010–4014. [Google Scholar] [CrossRef]
- Bhatnagar, J.; Guarner, J.; Paddock, C.D.; Shieh, W.J.; Lanciotti, R.S.; Marfin, A.A.; Campbell, G.L.; Zaki, S.R. Detection of West Nile virus in formalin-fixed, paraffin-embedded human tissues by RT-PCR: a useful adjunct to conventional tissue-based diagnostic methods. J. Clin. Virol. 2007, 38, 106–111. [Google Scholar] [CrossRef]
- Cantile, C.; Del Piero, F.; Di Guardo, G.; Arispici, M. Pathologic and immunohistochemical findings in naturally occuring West Nile virus infection in horses. Vet. Pathol. 2001, 38, 414–421. [Google Scholar] [CrossRef]
- Jozan, M.; Evans, R.; McLean, R.; Hall, R.; Tangredi, B.; Reed, L.; Scott, J. Detection of West Nile Virus infection in birds in the United States by blocking ELISA and immunohistochemistry. Vector Borne Zoonotic. Dis. 2003, 3, 99–110. [Google Scholar] [CrossRef]
- WHO. The protocol for Dengue PRNT assay could be used as a standard. Available online: http://whqlibdoc.who.int/hq/2007/who_ivb_07.07_eng.pdf (accessed on 20 September 2013).
- Pierson, T.C.; Diamond, M.S. Molecular mechanisms of antibody-mediated neutralisation of flavivirus infection. Expert. Rev. Mol. Med. 2008, 10, e12. [Google Scholar] [CrossRef]
- Sanchez, M.D.; Pierson, T.C.; McAllister, D.; Hanna, S.L.; Puffer, B.A.; Valentine, L.E.; Murtadha, M.M.; Hoxie, J.A.; Doms, R.W. Characterization of neutralizing antibodies to West Nile virus. Virology 2005, 336, 70–82. [Google Scholar] [CrossRef]
- Lindsey, H.S.; Calisher, C.H.; Mathews, J.H. Serum dilution neutralization test for California group virus identification and serology. J. Clin. Microbiol. 1976, 4, 503–510. [Google Scholar]
- Roehrig, J. WHO Guidelines for Plaque Reduction Neutralization Testing of Human Antibodies to Dengue Viruses; Department of Immunization, Vaccines and Biologicals, World Health Organization: Geneva, Switzerland, 2007; pp. 6–19. Available online: http://whqlibdoc.who.int/hq/2007/who_ivb_07.07_eng.pdf (accessed on 24 September 2013).
- Hofmeister, Y.; Planitzer, C.B.; Farcet, M.R.; Teschner, W.; Butterweck, H.A.; Weber, A.; Holzer, G.W.; Kreil, T.R. Human IgG subclasses: In vitro neutralization of and in vivo protection against West Nile virus. J. Virol. 2011, 85, 1896–1899. [Google Scholar] [CrossRef]
- Weissenbock, H.; Hubalek, Z.; Bakonyi, T.; Nowotny, N. Zoonotic mosquito-borne flaviviruses: worldwide presence of agents with proven pathogenicity and potential candidates of future emerging diseases. Vet. Microbiol. 2010, 140, 271–280. [Google Scholar] [CrossRef]
- Papa, A.; Perperidou, P.; Tzouli, A.; Castilletti, C. West Nile virus--neutralizing antibodies in humans in Greece. Vector Borne Zoonotic. Dis. 2010, 10, 655–658. [Google Scholar] [CrossRef]
- Cavrini, F.; Gaibani, P.; Longo, G.; Pierro, A.M.; Rossini, G.; Bonilauri, P.; Gerundi, G.E.; Di Benedetto, F.; Pasetto, A.; Girardis, M.; et al. Usutu virus infection in a patient who underwent orthotropic liver transplantation, Italy, August–September 2009. Euro Surveill. 2009, 14, pii: 19448. [Google Scholar]
- Pecorari, M.; Longo, G.; Gennari, W.; Grottola, A.; Sabbatini, A.; Tagliazucchi, S.; Savini, G.; Monaco, F.; Simone, M.; Lelli, R.; et al. First human case of Usutu virus neuroinvasive infection, Italy, August-September 2009. Euro Surveill. 2009, 14, pii: 19446. [Google Scholar]
- Misra, U.K.; Kalita, J. Overview: Japanese encephalitis. Prog. Neurobiol. 2010, 91, 108–120. [Google Scholar] [CrossRef]
- Ravanini, P.; Huhtamo, E.; Ilaria, V.; Crobu, M.; Nicosia, A.; Servino, L.; Rivasi, F.; Allegrini, S.; Miglio, U.; Magri, A.; et al. Japanese encephalitis virus RNA detected in Culex pipiens mosquitoes in Italy. Euro Surveill. 2012, 17, pii: 20221. [Google Scholar]
- Platonov, A.; Rossi, G.; Karan, L.; Mironov, K.; Busani, L.; Rezza, G. Does the Japanese encephalitis virus (JEV) represent a threat for human health in Europe? Detection of JEV RNA sequences in birds collected in Italy. Euro Surveill. 2012, 17, pii: 20241. [Google Scholar]
- Gaibani, P.; Finarelli, A.; Cagarelli, R.; Pierro, A.; Rossini, G.; Calzolari, M.; Dottori, M.; Bonilauri, P.; Landini, M.; Sambri, V. Retrospective screening of serum and cerebrospinal fluid samples from patients with acute meningo-encephalitis does not reveal past Japanese encephalitis virus infection, Emilia Romagna, Italy, 2011. Euro Surveill. 2012, 17, pii: 20257. [Google Scholar]
- Petri, E.; Gniel, D.; Zent, O. Tick-borne encephalitis (TBE) trends in epidemiology and current and future management. Travel. Med. Infect. Dis. 2010, 8, 233–245. [Google Scholar] [CrossRef]
- Reiter, P. Yellow fever and dengue: a threat to Europe? Euro Surveill. 2010, 15, pii: 19509. [Google Scholar]
- Papa, A.; Karabaxoglou, D.; Kansouzidou, A. Acute West Nile virus neuroinvasive infections: Cross-reactivity with dengue virus and tick-borne encephalitis virus. J. Med. Virol. 2011, 83, 1861–1865. [Google Scholar] [CrossRef]
- Gobbi, F.; Barzon, L.; Capelli, G.; Angheben, A.; Pacenti, M.; Napoletano, G.; Piovesan, C.; Montarsi, F.; Martini, S.; Rigoli, R.; et al. Surveillance for West Nile, dengue, and chikungunya virus infections, Veneto Region, Italy, 2010. Emerg. Infect. Dis. 2012, 18, 671–673. [Google Scholar]
- Pierro, A.; Varani, S.; Rossini, G.; Gaibani, P.; Cavrini, F.; Finarelli, A.C.; Macini, P.; Cagarelli, R.; Mattivi, A.; Angelini, P.; et al. Imported cases of dengue virus infection: Emilia-Romagna, Italy, 2010. Clin. Microbiol. Infect. 2011, 17, 1349–1352. [Google Scholar]
- Hepburn, M.J.; Kortepeter, M.G.; Pittman, P.R.; Boudreau, E.F.; Mangiafico, J.A.; Buck, P.A.; Norris, S.L.; Anderson, E.L. Neutralizing antibody response to booster vaccination with the 17d yellow fever vaccine. Vaccine 2006, 24, 2843–2849. [Google Scholar] [CrossRef]
- Mansfield, K.L.; Horton, D.L.; Johnson, N.; Li, L.; Barrett, A.D.; Smith, D.J.; Galbraith, S.E.; Solomon, T.; Fooks, A.R. Flavivirus-induced antibody cross-reactivity. J. Gen. Virol. 2011, 92, 2821–2829. [Google Scholar] [CrossRef]
- Stiasny, K.; Aberle, J.H.; Chmelik, V.; Karrer, U.; Holzmann, H.; Heinz, F.X. Quantitative determination of IgM antibodies reduces the pitfalls in the serodiagnosis of tick-borne encephalitis. J. Clin. Virol. 2012, 54, 115–120. [Google Scholar] [CrossRef]
- Taketa-Graham, M.; Powell Pereira, J.L.; Baylis, E.; Cossen, C.; Oceguera, L.; Patiris, P.; Chiles, R.; Hanson, C.V.; Forghani, B. High throughput quantitative colorimetric microneutralization assay for the confirmation and differentiation of West Nile Virus and St. Louis encephalitis virus. Am. J. Trop. Med. Hyg. 82, 501–504.
- Nelson, S.; Jost, C.A.; Xu, Q.; Ess, J.; Martin, J.E.; Oliphant, T.; Whitehead, S.S.; Durbin, A.P.; Graham, B.S.; Diamond, M.S.; et al. Maturation of West Nile virus modulates sensitivity to antibody-mediated neutralization. PLoS Pathog. 2008, 4, e1000060. [Google Scholar] [CrossRef]
- Qureshi, A.A.; Trent, D.W. Group B arbovirus structural and nonstructural antigens. 3. Serological specificity of solubilized intracellular viral proteins. Infect. Immun. 1973, 8, 993–999. [Google Scholar]
- Kapoor, H.; Signs, K.; Somsel, P.; Downes, F.P.; Clark, P.A.; Massey, J.P. Persistence of West Nile Virus (WNV) IgM antibodies in cerebrospinal fluid from patients with CNS disease. J. Clin. Virol. 2004, 31, 289–291. [Google Scholar] [CrossRef]
- Prince, H.E.; Tobler, L.H.; Yeh, C.; Gefter, N.; Custer, B.; Busch, M.P. Persistence of West Nile virus-specific antibodies in viremic blood donors. Clin. Vaccine Immunol. 2007, 14, 1228–1230. [Google Scholar] [CrossRef]
- Martin, D.A.; Biggerstaff, B.J.; Allen, B.; Johnson, A.J.; Lanciotti, R.S.; Roehrig, J.T. Use of immunoglobulin m cross-reactions in differential diagnosis of human flaviviral encephalitis infections in the United States. Clin. Diagn. Lab. Immunol. 2002, 9, 544–549. [Google Scholar]
- Long, M.T.; Jeter, W.; Hernandez, J.; Sellon, D.C.; Gosche, D.; Gillis, K.; Bille, E.; Gibbs, E.P. Diagnostic performance of the equine IgM capture ELISA for serodiagnosis of West Nile virus infection. J. Vet. Intern. Med. 2006, 20, 608–613. [Google Scholar] [CrossRef]
- Welch, R.J.; Anderson, B.L.; Litwin, C.M. Evaluation of a new commercial enzyme immunoassay for the detection of IgM antibodies to West Nile virus using a ratio method to eliminate nonspecific reactivity. J. Clin. Lab. Anal. 2008, 22, 362–366. [Google Scholar] [CrossRef]
- Beasley, D.W.; Holbrook, M.R.; Travassos Da Rosa, A.P.; Coffey, L.; Carrara, A.S.; Phillippi-Falkenstein, K.; Bohm, R.P., Jr.; Ratterree, M.S.; Lillibridge, K.M.; Ludwig, G.V.; et al. Use of a recombinant envelope protein subunit antigen for specific serological diagnosis of West Nile virus infection. J. Clin. Microbiol. 2004, 42, 2759–2765. [Google Scholar] [CrossRef]
- Alonso-Padilla, J.; Jimenez de Oya, N.; Blazquez, A.B.; Loza-Rubio, E.; Escribano, J.M.; Saiz, J.C.; Escribano-Romero, E. Evaluation of an enzyme-linked immunosorbent assay for detection of West Nile virus infection based on a recombinant envelope protein produced in Trichoplusia ni larvae. J. Virol. Methods 2010, 166, 37–41. [Google Scholar] [CrossRef]
- Hogrefe, W.R.; Moore, R.; Lape-Nixon, M.; Wagner, M.; Prince, H.E. Performance of immunoglobulin G (IgG) and IgM enzyme-linked immunosorbent assays using a West Nile virus recombinant antigen (preM/E) for detection of West Nile virus- and other flavivirus-specific antibodies. J. Clin. Microbiol. 2004, 42, 4641–4648. [Google Scholar] [CrossRef]
- Holmes, D.A.; Purdy, D.E.; Chao, D.Y.; Noga, A.J.; Chang, G.J. Comparative analysis of immunoglobulin M (IgM) capture enzyme-linked immunosorbent assay using virus-like particles or virus-infected mouse brain antigens to detect IgM antibody in sera from patients with evident flaviviral infections. J. Clin. Microbiol. 2005, 43, 3227–3236. [Google Scholar] [CrossRef]
- Hukkanen, R.R.; Liggitt, H.D.; Kelley, S.T.; Grant, R.; Anderson, D.; Beaty, B.J.; Marlenee, N.L.; Hall, R.A.; Bielefeldt-Ohmann, H. Comparison of commercially available and novel West Nile virus immunoassays for detection of seroconversion in pig-tailed macaques (Macaca nemestrina). Comp. Med. 2006, 56, 46–54. [Google Scholar]
- Wong, S.J.; Boyle, R.H.; Demarest, V.L.; Woodmansee, A.N.; Kramer, L.D.; Li, H.; Drebot, M.; Koski, R.A.; Fikrig, E.; Martin, D.A.; et al. Immunoassay targeting nonstructural protein 5 to differentiate West Nile virus infection from dengue and St. Louis encephalitis virus infections and from flavivirus vaccination. J. Clin. Microbiol. 2003, 41, 4217–4223. [Google Scholar] [CrossRef]
- Marfin, A.A.; Gubler, D.J. West Nile encephalitis: an emerging disease in the United States. Clin. Infect. Dis. 2001, 33, 1713–1719. [Google Scholar] [CrossRef]
- Tardei, G.; Ruta, S.; Chitu, V.; Rossi, C.; Tsai, T.F.; Cernescu, C. Evaluation of immunoglobulin M (IgM) and IgG enzyme immunoassays in serologic diagnosis of West Nile Virus infection. J. Clin. Microbiol. 2000, 38, 2232–2239. [Google Scholar]
- Neitzel, D.F.; Kemperman, M.M.; Semple, S.; Wong, S.; Feist, M.A.; Miller, T.K.; Chung, W.M.; Hojvat, S.; Lanciotti, R.S.; Panella, A.J.; et al. False-positive results with a commercially available West Nile virus immunoglobulin M assay—United States, 2008. Morb. Mortal. Wkly. Rep. 2009, 58, 458–460. [Google Scholar]
- Prince, H.E.; Calma, J.; Pham, T.; Seaton, B.L. Frequency of missed cases of probable acute West Nile virus (WNV) infection when testing for WNV RNA alone or WNV immunoglobulin M alone. Clin. Vaccine Immunol. 2009, 16, 587–588. [Google Scholar] [CrossRef]
- Koepsell, S.A.; Freifeld, A.G.; Sambol, A.R.; McComb, R.D.; Kazmi, S.A. Seronegative naturally acquired West Nile virus encephalitis in a renal and pancreas transplant recipient. Transpl. Infect. Dis. 2010, 12, 459–464. [Google Scholar] [CrossRef]
- Gaibani, P.; Pierro, A.; Alicino, R.; Rossini, G.; Cavrini, F.; Landini, M.P.; Sambri, V. Detection of Usutu-virus-specific IgG in blood donors from northern Italy. Vector Borne Zoonotic. Dis. 2012, 12, 431–433. [Google Scholar] [CrossRef]
- Pierro, A.; Gaibani, P.; Manisera, C.; Dirani, G.; Rossini, G.; Cavrini, F.; Ghinelli, F.; Ghinelli, P.; Finarelli, A.C.; Mattivi, A.; et al. Seroprevalence of West Nile virus-specific antibodies in a cohort of blood donors in northeastern Italy. Vector Borne Zoonotic. Dis. 2011, 11, 1605–1607. [Google Scholar] [CrossRef]
- Capobianchi, M.R.; Sambri, V.; Castilletti, C.; Pierro, A.M.; Rossini, G.; Gaibani, P.; Cavrini, F.; Selleri, M.; Meschi, S.; Lapa, D.; et al. Retrospective screening of solid organ donors in Italy, 2009, reveals unpredicted circulation of West Nile virus. Euro Surveill. 2010, 15, pii: 19648. [Google Scholar]
- Hunsperger, E.; Beltran, M.; Acosta, L.N.; Jordan-Munoz, J.; Torres, J.; Luce, R.; Tomashek, K.M. Serological evaluation of suspected West Nile virus human cases following its introduction during a dengue outbreak in Puerto Rico in 2007. Clin. Vaccine Immunol. 2011, 18, 978–983. [Google Scholar] [CrossRef]
- Charrel, R.N.; de Lamballerie, X.; Durand, J.P.; Gallian, P.; Attoui, H.; Biagini, P.; De Micco, P. Prevalence of antibody against West Nile virus in volunteer blood donors living in southeastern France. Transfusion 2001, 41, 1320–1321. [Google Scholar] [CrossRef]
- Niedrig, M.; Sonnenberg, K.; Steinhagen, K.; Paweska, J.T. Comparison of ELISA and immunoassays for measurement of IgG and IgM antibody to West Nile virus in human sera against virus neutralisation. J. Virol. Methods 2007, 139, 103–105. [Google Scholar] [CrossRef]
- Niedrig, M.; Donoso Mantke, O.; Altmann, D.; Zeller, H. First international diagnostic accuracy study for the serological detection of West Nile virus infection. BMC Infect. Dis. 2007, 7, 72. [Google Scholar] [CrossRef]
- Fox, J.L.; Hazell, S.L.; Tobler, L.H.; Busch, M.P. Immunoglobulin G avidity in differentiation between early and late antibody responses to West Nile virus. Clin. Vaccine Immunol. 2006, 13, 33–36. [Google Scholar] [CrossRef]
- Levett, P.N.; Sonnenberg, K.; Sidaway, F.; Shead, S.; Niedrig, M.; Steinhagen, K.; Horsman, G.B.; Drebot, M.A. Use of immunoglobulin G avidity assays for differentiation of primary from previous infections with West Nile virus. J. Clin. Microbiol. 2005, 43, 5873–5875. [Google Scholar] [CrossRef]
- Schmitz, H.; Gabriel, M.; Emmerich, P. Specific detection of antibodies to different flaviviruses using a new immune complex ELISA. Med. Microbiol. Immunol. 2011, 200, 233–239. [Google Scholar] [CrossRef]
- Blitvich, B.J.; Bowen, R.A.; Marlenee, N.L.; Hall, R.A.; Bunning, M.L.; Beaty, B.J. Epitope-blocking enzyme-linked immunosorbent assays for detection of west nile virus antibodies in domestic mammals. J. Clin. Microbiol. 2003, 41, 2676–2679. [Google Scholar] [CrossRef]
- Lorono-Pino, M.A.; Farfan-Ale, J.A.; Blitvich, B.J.; Beebe, J.L.; Jarman, R.G.; Beaty, B.J. Evaluation of an epitope-blocking enzyme-linked immunosorbent assay for the diagnosis of West Nile virus infections in humans. Clin. Vaccine Immunol. 2009, 16, 749–755. [Google Scholar] [CrossRef]
- Malan, A.K.; Stipanovich, P.J.; Martins, T.B.; Hill, H.R.; Litwin, C.M. Detection of IgG and IgM to West Nile virus. Development of an immunofluorescence assay. Am. J. Clin. Pathol. 2003, 119, 508–515. [Google Scholar] [CrossRef]
- Koraka, P.; Zeller, H.; Niedrig, M.; Osterhaus, A.D.; Groen, J. Reactivity of serum samples from patients with a flavivirus infection measured by immunofluorescence assay and ELISA. Microbes Infect 2002, 4, 1209–1215. [Google Scholar] [CrossRef]
- European Network for the Diagnostics of “Imported” Viral Diseases (ENIVD). Available online: http://www.enivd.org (accessed on 23 September 2013).
- Niedrig, M.; Linke, S.; Zeller, H.; Drosten, C. First international proficiency study on West Nile virus molecular detection. Clin. Chem. 2006, 52, 1851–1854. [Google Scholar] [CrossRef]
- Linke, S.; Mackay, W.G.; Scott, C.; Wallace, P.; Niedrig, M. Second external quality assessment of the molecular diagnostic of West Nile virus: are there improvements towards the detection of WNV? J. Clin. Virol. 2011, 52, 257–260. [Google Scholar] [CrossRef]
- Sanchini, A.; Donoso-Mantke, O.; Papa, A.; Sambri, V.; Teichmann, A.; Niedrig, M. Second international diagnostic accuracy study for the serological detection of West Nile Virus infection. PLoS Negl.Trop. Dis. 2013, 7, e2184. [Google Scholar] [CrossRef]
- Niedrig, M.; Schmitz, H.; Becker, S.; Gunther, S.; ter Meulen, J.; Meyer, H.; Ellerbrok, H.; Nitsche, A.; Gelderblom, H.R.; Drosten, C. First international quality assurance study on the rapid detection of viral agents of bioterrorism. J. Clin. Microbiol. 2004, 42, 1753–1755. [Google Scholar] [CrossRef]
- Drosten, C.; Doerr, H.W.; Lim, W.; Stohr, K.; Niedrig, M. SARS molecular detection external quality assurance. Emerg. Infect. Dis. 2004, 10, 2200–2203. [Google Scholar] [CrossRef]
- Donoso Mantke, O.; Schmitz, H.; Zeller, H.; Heyman, P.; Papa, A.; Niedrig, M. Quality assurance for the diagnostics of viral diseases to enhance the emergency preparedness in Europe. Euro Surveill. 2005, 10, 102–106. [Google Scholar]
- Donoso Mantke, O.; Lemmer, K.; Biel, S.S.; Groen, J.; Schmitz, H.; Durand, J.P.; Zeller, H.; Niedrig, M. Quality control assessment for the serological diagnosis of dengue virus infections. J. Clin. Virol. 2004, 29, 105–112. [Google Scholar] [CrossRef]
- See the EU case definition. pp. 43–44. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:159:0046:0090:EN:PDF (accessed on 20 September 2013).
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sambri, V.; Capobianchi, M.R.; Cavrini, F.; Charrel, R.; Donoso-Mantke, O.; Escadafal, C.; Franco, L.; Gaibani, P.; Gould, E.A.; Niedrig, M.; et al. Diagnosis of West Nile Virus Human Infections: Overview and Proposal of Diagnostic Protocols Considering the Results of External Quality Assessment Studies. Viruses 2013, 5, 2329-2348. https://doi.org/10.3390/v5102329
Sambri V, Capobianchi MR, Cavrini F, Charrel R, Donoso-Mantke O, Escadafal C, Franco L, Gaibani P, Gould EA, Niedrig M, et al. Diagnosis of West Nile Virus Human Infections: Overview and Proposal of Diagnostic Protocols Considering the Results of External Quality Assessment Studies. Viruses. 2013; 5(10):2329-2348. https://doi.org/10.3390/v5102329
Chicago/Turabian StyleSambri, Vittorio, Maria R. Capobianchi, Francesca Cavrini, Rémi Charrel, Olivier Donoso-Mantke, Camille Escadafal, Leticia Franco, Paolo Gaibani, Ernest A. Gould, Matthias Niedrig, and et al. 2013. "Diagnosis of West Nile Virus Human Infections: Overview and Proposal of Diagnostic Protocols Considering the Results of External Quality Assessment Studies" Viruses 5, no. 10: 2329-2348. https://doi.org/10.3390/v5102329
APA StyleSambri, V., Capobianchi, M. R., Cavrini, F., Charrel, R., Donoso-Mantke, O., Escadafal, C., Franco, L., Gaibani, P., Gould, E. A., Niedrig, M., Papa, A., Pierro, A., Rossini, G., Sanchini, A., Tenorio, A., Varani, S., Vázquez, A., Vocale, C., & Zeller, H. (2013). Diagnosis of West Nile Virus Human Infections: Overview and Proposal of Diagnostic Protocols Considering the Results of External Quality Assessment Studies. Viruses, 5(10), 2329-2348. https://doi.org/10.3390/v5102329