Preclinical and Clinical Development of a YFV 17 D-Based Chimeric Vaccine against West Nile Virus
Abstract
:1. Introduction
Company/Institute (Originator) | Vaccine type | Vaccine | Stage of development |
---|---|---|---|
Sanofi Pasteur (Acambis) | Live, attenuated | Chimeric YF vector, WN prME | Phase II |
National Institutes of Health (USA) | Live, attenuated | Chimeric Den 4 vector, WN prME | Phase I |
Vical | DNA | Plasmid DNA encoding WN prME proteins, no adjuvant | Phase I |
Takeda (Inviragen) | Live, attenuated | Chimeric Den2 vector, WN prME | Preclinical |
Institut Pasteur | Live, attenuated | Measles vector, WN E | Preclinical |
Institut Pasteur | Live, attenuated | Lentivirus vector, WN E | Preclinical |
Johnson & Johnson (Crucell) | Inactivated virus | Formalin inactivated whole virion | Preclinical |
Intercell | Inactivated virus | Formalin inactivated whole virion | Preclinical |
Baxter Biosciences | Inactivated virus | Formalin inactivated whole virion | Preclinical |
Kanonji Institute (Osaka University) | Inactivated virus | Formalin inactivated whole virion | Preclinical |
Hawaii Biotech | Subunit | WN E protein expressed in Drosphila cells | Preclinical |
L2 Diagnostics | Subunit | WN E protein expressed in Sf9 cells | Preclinical |
University of Texas Medical Branch | Replicon | Single cycle WN, capsid deleted | Preclinical |
National Institutes of Health (USA) | Virus like particles | WN CprME coexpressed in baculovirus | Preclinical |
Company | Vaccine | Brand name | Primary immunization |
---|---|---|---|
Intervet (Merck) | Live, attenuated, YF vector, WN prME (wild-type sequence) | PreveNile® | 1 dose |
Merial (Sanofi) | Live canarypox vector, WN prME transgene, adjuvanted | Recombitek® equine WNV vaccine | 2 doses |
Ft. Dodge Zoetis Inc. (formerly Pfizer Animal Health.) | Formalin-inactivated whole virus, adjuvanted | West Nile-Innovator® | 2 doses |
Plasmid DNA | West Nile-Innovator DNA® | 2 doses | |
Boeringer-Ingelheim | Formalin-inactivated whole virus | West Nile-Vetera®) | 2 doses |
Intervet (Merck) | Formalin inactivated YF/WN chimera, adjuvanted | EquiNile® | 2 doses |
2. Chimerivax-WN Construction
3. Pre-Clinical Characterization
4. Clinical Development
4.1. Phase I Clinical Trial
4.1.1. Safety
4.1.2. Viremia
4.1.3. Immunogenicity
Model | Parameter | ChimeriVax-WN01 (veterinary vaccine) | ChimeriVax-WN02, Uncloned P5 vaccine virus | ChimeriVax-WN02, Cloned small plaque (SP) vaccine virus | YF 17D |
---|---|---|---|---|---|
Mouse (CD-1) | Neuroinvasiveness in adult mice after IP inoculation (at doses specified) | Mortality 0% (0.9–6.5 log10 PFU) [20] | 0% mortality (2.8–4.8 log10 PFU) [20] | ||
Neurovirulence in adult mice after IC inoculation (at doses specified) | Mortality 25% (2.2–5.5 log10 PFU) [20] | Mortality 11% (3.6 log10 PFU) a | Mortality 100% (1–3.3 log10 PFU) a | ||
Neurovirulence in 8 day old suckling mice after IC inoculation at doses 1.3–3.3 log10 PFU | Mortality 23% [20,23] | Mortality 13% [20,23] | Mortality 100% [23] | ||
Neurovirulence in 6 day old suckling mice after IC inoculation at doses 1.3–3.3 log10 PFU | Mortality 50% b | Mortality 100% c,b | |||
Immunogenicity in adult mice: geometric mean (GMT) PRNT50 titers 28 days after SC inoculation at doses 3–5 log10 PFU | GMT 197 [20] | GMT 20–37 [20] | |||
Survival (%) after wild-type WN99 challenge (3 log10 PFU IP) vs. 0% survival of mock immunized animals | Survival 100% [20] | Survival 40% (for 3 log10 PFU vaccine dose) to 100% (for 5 log10 PFU vaccine dose) [20] | |||
Hamster | Viremia after SC inoculation at 4–5 log10 PFU doses: % viremic, mean peak titers, duration | 53% viremic, 350 PFU/mL, 1.2 days d,b | 20% viremic, 13 PFU/mL, 0.26 days b | 50% viremic, 33 PFU/mL, 0.5 days b | |
Immunogenicity after SC inoculation at doses 4–5 log10 PFU: % seroconversion, PRNT50 titers (GMT) | 89% seroconversion, GMT 1016 b | 60% seroconversion, GMT 48 b | 100% seroconversion, GMT 15,521 b | ||
Immunogenicity after IM inoculation of 3 or 6 log10 PFU: % seroconversion, PRNT50 titers (GMT) | 100% seroconversion, GMT 299 [25] | ||||
Viremia and survival (%) after WN99 challenge (4 log10 IP) of the above groups vs. 100% viremic and 50% survival for mock animals | 10% viremic, 100% survival [25] | ||||
Monkey | Viremia after IC inoculation of rhesus or cynomolgus monkeys at ~5 log10 PFU dose (in neurovirulence tests): % viremic, mean peak titer, duration | Rhesus [20] | Rhesus [20] | ||
100%, 1.9 log10 PFU/mL, 4.5 days | 100%, 2.65 log10 PFU/mL, 4.5 days | ||||
Cynomolgus | Cynomolgus | Cynomolgus | |||
Study 1: 91%, 2097 PFU/mL, 2.9 days [20],a | Study 1: 91%, 357 PFU/mL, 2.5 days [20],a | ||||
Study 2: 91%, 129 PFU/mL, 3.8 days b | Study 2: 82%, 54 PFU/mL, 1.6 days b | ||||
Neurovirulence tests: combined brain pathology score | Rhesus | Rhesus | |||
0.49 | 0.6 | ||||
Cynomolgus | Cynomolgus | Cynomolgus | |||
Study 1: 0.13 | Study 1: 0.52 (p = 0.0001) e | ||||
Study 2: 0.162 | Study 2: 0.455 (p = 0.005)e | ||||
Viremia after SC inoculation at 3–6 log10 PFU doses: % viremic (shown for cynomolgus monkeys), mean peak titer, duration | Rhesus | Rhesus | |||
1.4 log10 PFU/mL, 4.5 days [20] | 2.4 log10 PFU/mL, 3.5 days [20] | ||||
Cynomolgus | Cynomolgus | Cynomolgus | |||
Study 1 f,[24]: 93% viremic, 474 PFU/mL, 3.7 days | Study 1f,[25]: 47% viremic, 67 PFU/mL, 1.4 days | ||||
Study 2 f,b: 100% viremic, 1925 PFU/mL, 5 days | Study 2 f,b: 100% viremic, 18–90 PFU/mL, 1.5–5.7 days | ||||
Study 3 f,b: 100% viremic, 1320 PFU/mL, 4.2 days | Study 3 f,b: 100% viremic, 102–213 [5] PFU/mL, 3.7–6 days | ||||
Immunogenicity after SC inoculation at 3–6 log10 PFU doses: % seroconversion (shown for cynomolgus monkeys), PRNT50 (GMT) or mean log neutralization index (LNI) at indicated time points | Rhesus | Rhesus | |||
GMT 381 on day 30 [20] | GMT >640 on day 30 [20] | ||||
Cynomolgus | Cynomolgus | Cynomolgus | |||
Study 1 f,[24]: 100% seroconversion on day 14, GMT 2941 | Study 1 f,[24]: 90% seroconversion on day 14, LNI 1.97 | ||||
Study 2 f,b: 100% seroconversion, GMT 3620 on day 31 | Study 2 f,b: 100% seroconversion, GMT 3620-4064 g on day 31 | ||||
Study 3 f,b: 100% seroconversion, GMT 32,510 on day 22 | Study 3 f,b: 100% seroconversion, GMT 11,494–14,482 e on day 22 | ||||
Protection from wild-type WN IC challenge (5.4 log10 PFU) vs. unvaccinated controls 100% dead | Rhesus [20] | Rhesus [20] | |||
No viremia, no illness | 100% viremic, 50% ill, 50% dead |
Mean Cmax (PFU/mL) | Mean AUC (PFU/mL) | Mean Duration (Days) | Percentage of viremic subjects * (%) | |
---|---|---|---|---|
Phase I | ||||
3.0 log10 PFUa (n = 15) | 187 (SD 165) | 312 (SD 259) | 4.7 | 100 |
5.0 log10 PFUa (n = 30) | 97 (SD 159) | 173 (SD 252) | 5.1 | 90 |
Phase II | ||||
WN003 | ||||
Part 1 | ||||
3.0 log10 PFUa (n = 24) | 47 (95% CI 29, 77) | 156** (95% CI 118, 206) | 4.8 | 92 |
4.0 log10 PFUa (n = 40) | 33 (95% CI 23, 46) | 138** (95% CI 113, 168) | 4.1 | 90 |
5.0 log10 PFUa (n = 31) | 30 (95% CI 19, 48) | 131** (95% CI 99, 173) | 3.9 | 94 |
Part 2 | ||||
5.0 log10 PFU | ||||
1–64 years b (n = 33) | 25 (95% CI 17, 38) | 115** (95% CI 94, 141) | 3.7 | 85 |
≥65 years b (n = 31) | 44 (95% CI 27, 72) | 181** (95% CI 131, 249) | 5.5 | 87 |
WN004 | ||||
3.0 log10 PFU b (n = 80) | 43(95% CI 36, 53) | 251(95% CI 219, 295) | 5.9 *** | 73 |
50–64 years | 41(95% CI 31, 54) | 240(95% CI 195, 295) | 4.3 *** | 57 |
≥65 years | 46(95% CI 35, 60) | 269.2(95% CI 219, 339) | 7 *** | 94 |
4.0 log10 PFU b (n = 82) | 55 (95% CI 43, 69) | 288 (95% CI 240, 347) | 5.2 *** | 74 |
50–64 years | 53 (95% CI 37, 72) | 275 (95% CI 219, 347) | 4.4 *** | 65 |
≥65 years | 58 (95% CI 39, 85) | 309 (95% CI 229, 417) | 6.4 *** | 93 |
5.0 log10 PFU b (n = 73) | 51 (95% CI 41, 65) | 269 (95% CI 234, 309) | 4 *** | 75 |
50–64 years | 41 (95% CI 30, 56) | 234 (95% CI 191, 288) | 5.8 *** | 72 |
≥65 years | 65(95% CI 47, 87) | 309(95% 257, 372) | 3.2 *** | 79 |
n | Percentage of seroconversion (%) | PRNT50 * GMT | |
---|---|---|---|
Phase I | |||
3.0 log10 PFU | 14 | 100 | 1218 (SD 10,671) |
5.0 log10 PFU | 28 | 96 | 1280 (SD 7,895) |
Phase II | |||
WN003 | |||
Part 1 | |||
3.0 log10 PFU | 21 | 100 | 1367 (95% CI 711, 2629) |
4.0 log10 PFU | 37 | 97 | 2331 (95% CI 1193, 4554) |
5.0 log10 PFU | 28 | 96 | 3309 (95% CI 1727, 6342) |
Part 2 | |||
5.0 log10 PFU | |||
41-64 years | 28 | 96 | 883 (95% CI 362, 2153) |
≥ 65 years | 27 | 96 | 965 (95% CI 442, 2106) |
WN004 | |||
3.0 log10 PFU | 114 | 92 | 688 (95% CI 453, 1047) |
50-64 years | 69 | 90 | 585 (95% CI 331, 1033) |
≥ 65 years | 45 | 96 | 884 (95% CI 475, 1648) |
4.0 log10 PFU | 118 | 93 | 600 (95% CI 405, 890) |
50-64 years | 71 | 93 | 564 (95% CI 341, 932) |
≥ 65 years | 47 | 94 | 659 (95% CI 342, 1270) |
5.0 log10 PFU | 108 | 95 | 674 (95% CI 464, 978) |
50-64 years | 59 | 95 | 576 (95% CI 347, 955) |
≥ 65 years | 49 | 96 | 814 (95% CI 462, 1433) |
4.2. Phase II Clinical Trials
4.2.1. WN003 Study
4.2.1.1. Safety
4.2.1.2. Viremia
4.2.1.3. Immunogenicity
4.2.2. WN004 study
4.2.2.1. Safety
4.2.2.2. Viremia
4.2.2.3. Immunogenicity
5. Environmental Risk Assessment
6. Challenges for Late Clinical Development and Licensure of a West Nile Vaccine
7. Conclusions
Acknowledgements
Conflicts of Interest
References and Notes
- Gubler, D.J.; Kuno, G. Markoff Flaviviruses. In Virology, 5th ed.; Knipe, D.M., Howley, P.M., Griffin, D.E., Lamb, R.A., Straus, S.E., Martin, M.A., Roizman, B., Eds.; Lippincott Williams and Wilkins, Wolters Kluwer: Philadelphia, PA, USA, 2007; pp. 1153–1252. [Google Scholar]
- Lanciotti, R.S.; Roehrig, J.T.; Deubel, V.; Smith, J.; Parker, M.; Steele, K.; Crise, B.; Volpe, K.E.; Crabtree, M.B.; Scherret, J.H.; et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 1999, 286, 2333–2337. [Google Scholar]
- May, F.J.; Davis, C.T.; Tesh, R.B.; Barrett, A.D. Phylogeography of West Nile virus: From the cradle of evolution in Africa to Eurasia, Australia, and the Americas. J. Virol. 2011, 85, 2964–2974. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. West Nile Virus. Final annual maps and data for 1999–2012. Available online: http://www.cdc.gov/westnile/statsMaps/finalMapsData/index.html (accessed on 11 July 2013).
- Mullbacher, A.; Lobigs, M.; Lee, E. Immunobiology of mosquito-borne encephalitic flaviviruses. Adv. Virus. Res. 2003, 60, 87–120. [Google Scholar] [CrossRef]
- Cregar-Hernandez, L.; Jiao, G.-W.; Margosiak, S.A. Small molecule pan-dengue and West Nile virus NN3 protease inhibitors. Antiviruse Chem. Chemother. 2011, 21, 209–218. [Google Scholar] [CrossRef]
- Ben-Nathan, D.; Gershoni-Yahalom, O.; Samina, I.; Khinich, Y.; Nur, I.; Laub, O.; Gottreich, A.; Simanov, M.; Porgador, A.; Rager-Zisman, B.; et al. Using high titer West Nile intravenous immunoglobulin from selected Israeli donors for treatment of West Nile virus infection. BMC Infect. Dis. 2009, 9. [Google Scholar] [CrossRef]
- Gnann, J.; Whithley, R. Personal communication, The University of Alabama at Birmingham, AL, USA, 2013.
- Halstead, S.B.; Jacobson, J.; Dubischar-Kastner, K. Japanese encephalitis vaccines. In Vaccines, 6th ed.; Plotkin, S.A., Orenstein, W.A., Offit, P.A., Eds.; Elsevier Saunders: Philadelphia, PA, USA, 2013; pp. 312–351. [Google Scholar]
- Barret, P.N.; Portsmouth, D.; Ehrlich, H.J. Tick-borne encephalitis virus vaccines. In Vaccines, 6th ed.; Plotkin, S.A., Orenstein, W.A., Offit, P.A., Eds.; Elsevier Saunders: Philadelphia, PA, USA, 2013; pp. 773–788. [Google Scholar]
- Monath, T.P.; Gershman, M.; Staples, J.E.; Barret, A.D.T. Yellow fever vaccine. In Vaccines, 6th ed.; Plotkin, S.A., Orenstein, W.A., Offit, P.A., Eds.; Elsevier Saunders: Philadelphia, PA, USA, 2013; pp. 870–968. [Google Scholar]
- Monath, T.P.; Arroyo, J.; Miller, C.; Guirakhoo, F. West Nile viruses vaccine. Curr. Drugs Infect. Dis. 2001, 1, 37–50. [Google Scholar] [CrossRef]
- Seino, K.K.; Long, M.T.; Gibbs, E.P.; Bowen, R.A.; Beachboard, S.E.; Humphrey, P.P.; Dixon, M.A.; Bourgeois, M.A. Comparative efficacies of three commercially available vaccines against West Nile Virus (WNV) in a short-duration challenge trial involving an equine WNV encephalitis model. Clin. Vaccine Immunol. 2007, 4, 1465–1471. [Google Scholar]
- Rice, C.M.; Grakoui, A.; Galler, R.; Chambers, T.J. Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. New Biol. 1989, 1, 285–296. [Google Scholar]
- Bray, M.; Lai, C.J. Construction of intertypic chimeric dengue viruses by substitution of structural protein genes. Proc. Natl. Acad. Sci. USA 1991, 88, 10342–10346. [Google Scholar] [CrossRef]
- Pletnev, A.G.; Bray, M.; Huggins, J.; Lai, C.J. Construction and characterization of chimeric tick-borne encephalitis/dengue type 4 viruses. Proc. Natl. Acad. Sci. USA 1992, 89, 10532–10536. [Google Scholar] [CrossRef]
- Pugachev, K.V.; Guirakhoo, F.; Trent, D.W.; Monath, T.P. New Generation Vaccines, 4th ed.; Levine, M.M., Dougan, G., Good, M.F., Liu, M.A., Nabel, G.J., Nataro, J., Rappuoli, R., Eds.; Informa Healthcare: New York, NY, USA, 2010; pp. 557–569. [Google Scholar]
- Guy, B.; Guirakhoo, F.; Barban, V.; Higgs, S.; Monath, T.P.; Lang, J. Preclinical and clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile and Japanese encephalitis viruses. Vaccine 2010, 28, 632–649. [Google Scholar] [CrossRef]
- Pugachev, K.V.; Guirakhoo, F.; Mitchell, F.; Ocran, S.W.; Parsons, M.; Johnson, B.W.; Kosoy, O.L.; Lanciotti, R.S.; Roehrig, J.T.; Trent, D.W.; et al. Yellow fever/St. Louis encephalitis chimeric virus as a diagnostic tool and a candidate vaccine. Am. J. Trop. Med. Hyg. 2004, 71, 639–645. [Google Scholar]
- Arroyo, J.; Miller, C.; Catalan, J.; Myers, G.A.; Ratterree, M.; Trent, D.W.; Monath, T.P. ChimeriVax™-West Nile live-attenuated vaccine: Preclinical evaluation of safety, immunogenicity and efficacy. J. Virol. 2004, 78, 12497–12507. [Google Scholar] [CrossRef]
- Arroyo, J.; Guirakhoo, F.; Fenner, S.; Zhang, Z.-X.; Monath, T.P.; Chambers, T.J. Molecular basis for attenuation of neurovirulence of a yellow fever/Japanese encephalitis (ChimeriVax-JE) viral vaccine. J. Virol. 2001, 75, 934–942. [Google Scholar] [CrossRef]
- Arroyo, J.; Miller, C.A.; Catalan, J.; Monath, T.P. Yellow fever vector live-virus vaccines: West Nile vaccine development. Trends Molec. Med. 2001, 7, 329–377. [Google Scholar] [CrossRef]
- Monath, T.P.; Myers, G.A.; Beck, R.A.; Knauber, M.; Scappaticci, K.; Pullano, T.; Archambault, W.T.; Catalan, J.; Miller, C.; Zhang, Z.X.; et al. Safety testing for neurovirulence of novel live, attenuated flavivirus vaccines: Infant mice provide an accurate surrogate for the test in monkeys. Biologicals 2005, 33, 131–144. [Google Scholar] [CrossRef]
- Monath, T.P.; Liu, J.; Kanesa-Thasan, N.; Myers, G.A.; Nichols, R.; Deary, A.; McCarthy, K.; Johnson, C.; Ermak, T.; Sunheang, S. A live, attenuated recombinant West Nile virus vaccine. Proc. Natl. Acad. Sci. USA 2006, 103, 6694–6699. [Google Scholar] [CrossRef]
- Tesh, R.B.; Arroyo, J.; Travassos da Rosa, A.P.; Guzman, H.; Xiao, S.Y.; Monath, T.P. Efficacy of killed virus vaccine, live attenuated chimeric virus vaccine, and passive immunization for prevention of West Nile virus encephalitis in hamster model. Emerg. Infect. Dis. 2002, 8, 1392–1397. [Google Scholar] [CrossRef]
- Biedenbender, R.; Bevilacqua, J.; Gregg, A.M.; Watson, M.; Dayan, G.H. Phase II randomized, double-blind, placebo-controlled, multi-center study to investigate the immunogenicity and safety of a West Nile Vaccine in healthy adults. J. Infect. Dis. 2011, 203, 75–84. [Google Scholar] [CrossRef]
- Dayan, G.H.; Bevilacqua, J.; Coleman, D.; Buldo, A.; Risi, G. Phase II, dose ranging study of the safety and immunogenicity of single dose West Nile vaccine in healthy adults ≥50 years of age. Vaccine 2012, 30, 6656–6664. [Google Scholar] [CrossRef]
- Monath, T.P.; Guirakhoo, F.; Nichols, R.; Yoksan, S.; Schrader, R.; Murphy, C.; Blum, P.; Woodward, S.; McCarthy, K.; Mathis, D.; et al. Chimeric live, attenuated vaccine against Japanese encephalitis (ChimeriVax-JE): Phase II clinical trials for safety and immunogenicity, effect of vaccine dose and schedule, and memory response to challenge with inactivated Japanese encephalitis antigen. J. Infect. Dis. 2003, 188, 1213–1230. [Google Scholar] [CrossRef]
- Smith, H.L.; Monath, T.P.; Pazoles, P.; Rothman, A.L.; Casey, D.M.; Terajima, M.; Ennis, F.A.; Guirakhoo, F.; Green, S. Development of antigen-specific memory CD8+ T cells following live-attenuated chimeric West Nile virus vaccination. Infect. Dis. 2011, 203, 513–522. [Google Scholar] [CrossRef]
- Roukens, A.H.; Soonawala, D.; Joosten, S.A.; de Visser, A.W.; Jiang, X.; Dirksen, K.; de Grujiter, M.; van Dissel, J.T.; Bredenbeek, T.J.; Visser, L.G. Elderly Subjects have a delayed antibody response and prolonged viraemia following yellow fever vaccination: A prospective controlled cohort study. PLoS One 2011, 6, e27753. [Google Scholar] [CrossRef]
- Monath, T.P.; Cetron, M.S.; McCarthy, K.; Nichols, R.A.; Archambault, W.T.; Weld, L.; Bedford, P. Yellow fever 17D vaccine safety and immunogenicity in the elderly. Hum. Vaccin. 2005, 1, 207–214. [Google Scholar] [CrossRef]
- Nasveld, P.E.; Ebringer, A.; Elmes, N.; Bennett, S.; Yoksan, S.; Aaskov, J.; McCarthy, K.; Kanesa-thasan, N.; Meric, C.; Reid, M. Long term immunity to live attenuated Japanese encephalitis chimeric virus vaccine. Randomized, double-blind, 5-year phase II study in healthy adults. Hum. Vaccin. 2010, 6, 1038–1046. [Google Scholar] [CrossRef] [Green Version]
- Morrison, D.; Legg, T.J.; Billings, C.W.; Forrat, R.; Yoksan, S.; Lang, J. A novel tetravalent dengue vaccine is well tolerated and immunogenic against all 4 serotypes in flavivirus-naive adults. J. Infect. Dis. 2010, 201, 370–377. [Google Scholar] [CrossRef]
- Capeding, R.Z.; Luna, I.A.; Bomasang, E.; Lupisan, S.; Lang, J.; Forrat, R.; Wartel, A.; Crevat, D. Live-attenuated, tetravalent dengue vaccine in children, adolescents and adults in a dengue endemic country: Randomized controlled phase I trial in the Philippines. Vaccine 2011, 29, 3863–3872. [Google Scholar]
- Poo, J.L.; Galán Herrera, J.F.; Forrat, R.; Zambrano, B.; Lang, J.; Dayan, G. Live-attenuated tetravalent dengue vaccine in dengue-naive children, adolescents and adults in Mexico city: Randomized controlled phase 1 trial of safety and immunogenicity. Pediatr. Infect. Dis. J. 2010, 30, e9–e17. [Google Scholar]
- Qiao, M.; Shaw, D.; Forrat, R.; Wartel-Tram, A.; Lang, J. Priming effect of dengue and yellow fever vaccination on the immunogenicity, infectivity, and safety of a tetravalent dengue vaccine in humans. Am. J. Trop. Med. Hyg. 2011, 85, 724–731. [Google Scholar] [CrossRef]
- Hacker, U.T.; Jelinek, T.; Erhardt, S.; Eigler, A.; Hartmann, G.; Nothdurft, H.D.; Endres, S. In vivo synthesis of tumor necrosis factor-alpha in healthy humans after live yellow fever vaccination. J. Infect. Dis. 1998, 177, 774–778. [Google Scholar] [CrossRef]
- Lindsey, N.P.; Schroeder, B.A.; Miller, E.R.; Braun, M.M.; Hinckley, A.F.; Marano, N.; Slade, B.A.; Brunette, G.W.; Horan, K.; Staples, J.E.; et al. Adverse event reports following yellow fever vaccination. Vaccine 2008, 26, 6077–6082. [Google Scholar] [CrossRef]
- Hombach, J.; Solomon, T.; Kurane, I.; Jacobson, J.; Wood, D. Report on a WHO consultation on immunological endpoints for evaluation of new Japanese encephalitis vaccines, WHO, Geneva, September 2–3, 2004. Vaccine 2005, 23, 5205–5211. [Google Scholar] [CrossRef]
- Sardelis, M.R.; Turrell, M.J.; Dohm, D.J.; Guinne, M.L. Vector competence of selected North American Culex and Coquillettidia mosquitoes for West Nile virus. Emerg. Infect. Dis. 2001, 7, 1018–1022. [Google Scholar] [CrossRef]
- Whitman, L. Failure of Aedes aegypti to transmit yellow fever cultured virus (17D). Am. J. Trop. Med. 1939, 19, 19–26. [Google Scholar]
- Bhatt, T.R.; Crabtree, M.B.; Guirakhoo, F.; Monath, T.P.; Miller, B.R. Growth characteristics of the chimeric Japanese encephalitis virus vaccine candidate, ChimeriVax-JE (YF/JE SA14–14–2), in Culex tritaeniorhynchus, Aedes albopictus, and Aedes aegypti mosquitoes. Am. J. Trop. Med. Hyg. 2000, 62, 480–484. [Google Scholar]
- Johnson, B.W.; Chambers, T.V.; Crabtree, M.B.; Arroyo, J.; Monath, T.P.; Miller, B.R. Growth characteristics of the veterinary vaccine candidate ChimeriVax-West Nile (WN) virus in Aedes and Culex mosquitoes. Med. Vet. Entomol. 2003, 17, 235–243. [Google Scholar] [CrossRef]
- Langevin, S.A.; Arroyo, J.; Monath, T.P.; Komar, N. Host-range restriction of chimeric yellow fever-West Nile vaccine in fish crows (Corvus ossifragus). Am. J. Trop. Med. Hyg. 2003, 69, 78–80. [Google Scholar]
- Domingo, C.; Yactayo, S.; Agbenu, E.; Demanou, M.; Schulz, A.R.; Daskalow, K.; Niedrig, M. Detection of yellow feveryellow fever 17D genome in urine. J. Clin. Microbiol. 2011, 49, 760–762. [Google Scholar] [CrossRef]
- Nolan, M.S.; Podoll, A.S.; Hause, A.M.; Akers, K.M.; Finkel, K.W.; Murray, K.O. Prevalence of chronic kidney disease and progression of disease over time among patients enrolled in the houston West Nile virus cohort. PLoS One 2012, 7, e40374. [Google Scholar]
- Gibney, K.B.; Lanciotti, R.S.; Sevjar, J.J.; Nugent, C.T.; Linnen, J.M.; Delorey, M.J.; Lehman, J.A.; Boswell, E.N.; Staples, J.E.; Fischer, M. West Nile Virus RNA not detected in urine of 40 people tested 6 years after acute West Nile virus disease. J. Infect. Dis. 2011, 203, 344–347. [Google Scholar] [CrossRef]
- Tesh, R.B.; Siirin, M.; Guzman, H.; Travassos da Rosa, A.P.; Wu, X.; Duan, T.; Lei, H.; Nunes, M.R.; Xiao, S.Y. Persistent West Nile virus infection in the golden hamster: Studies on Its Mechanism and Possible Implications for Other Flavivirus Infections. J. Infect. Dis. 2005, 192, 287–295. [Google Scholar] [CrossRef]
- Pugachev, K.V.; Guirakhoo, F.; Ocran, S.W.; Mitchell, F.; Parsons, M.; Penal, C.; Girakhoo, S.; Pougatcheva, S.O.; Arroyo, J.; Trent, D.W.; et al. High fidelity of yellow fever virus RNA polymerase. J. Virol. 2004, 78, 1032–1038. [Google Scholar] [CrossRef]
- Monath, T.P.; Kanesa-Thasan, N.; Guirakhoo, F.; Pugachev, K.; Almond, J.; Lang, J.; Quentin-Millet, M.J.; Barrett, A.D.; Brinton, M.A.; Cetron, M.S.; et al. Recombination and flavivirus vaccines: A commentary. Vaccine 2005, 23, 2956–2958. [Google Scholar] [CrossRef]
- De Silva, A.; Messer, W. Arguments for live flavivirus vaccines. Lancet 2004, 364, 499–500. [Google Scholar] [CrossRef]
- Pugachev, K.V.; Schwaiger, J.; Brown, N.; Zhang, Z.X.; Catalan, J.; Mitchell, F.S.; Ocran, S.W.; Rumyantsev, A.A.; Kromyk, A.A.; Monath, T.P.; et al. Construction and biological characterization of artificial recombinants between a wild type flavivirus (Kunjin) and a live chimeric flavivirus vaccine (ChimeriVax-JE). Vaccine 2007, 25, 6661–6671. [Google Scholar] [CrossRef]
- McGee, C.E.; Lewis, M.G.; Claire, M.S.; Wagner, W.; Lang, J.; Guy, B.; Tsetsarkin, K.; Higgs, S.; Decelle, T. Recombinant chimeric virus with wild-type dengue 4 virus premembrane and envelope and virulent yellow fever virus Asibi backbone sequences is dramatically attenuated in nonhuman primates. J. Infect. Dis. 2008, 197, 693–697. [Google Scholar] [CrossRef]
- McGee, C.E.; Tsetsarkin, K.; Vanlandingham, D.L.; McElroy, K.L.; Lang, J.; Guy, B.; Decelle, T.; Higgs, S. Substitution of wild-type yellow fever Asibi sequences for 17D vaccine sequences in ChimeriVax-dengue 4 does not enhance infection of Aedes aegypti mosquitoes. J. Infect. Dis. 2008, 197, 686–962. [Google Scholar] [CrossRef]
- Sabchareon, A.; Wallace, D.; Sirivichayakul, C.; Limkittikul, K.; Chanthavanich, P.; Suvannadabba, S.; Jiwariyavej, V.; Dulyachai, W.; Pengsaa, K.; Wartel, T.A.; et al. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: A randomised, controlled phase 2b trial. Lancet 2012, 380, 1559–1567. [Google Scholar] [CrossRef]
- Julander, J.G.; Trent, D.W.; Monath, T.P. Immune correlates of protection against yellow fever determined by passive immunization and challenge in the hamster model. Vaccine 2011, 29, 6008–6016. [Google Scholar] [CrossRef]
- Libraty, D.H.; Acosta, L.P.; Tallo, V.; Segubre-Mercado, E.; Bautista, A.; Potts, J.A.; Jarman, R.G.; Yoon, I.K.; Gibbons, R.V.; Brion, J.D.; et al. A prospective nested case-control study of Dengue in infants: Rethinking and refining the antibody-dependent enhancement dengue hemorrhagic fever model. PLoS Med. 2009, 6, e1000171. [Google Scholar] [CrossRef]
- Federal Drug Administration. Science Research. Available online: http://www.fda.gov/ScienceResearch/SpecialTopics/RegulatoryScience/default.html (accessed 26 October 2013).
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Dayan, G.H.; Pugachev, K.; Bevilacqua, J.; Lang, J.; Monath, T.P. Preclinical and Clinical Development of a YFV 17 D-Based Chimeric Vaccine against West Nile Virus. Viruses 2013, 5, 3048-3070. https://doi.org/10.3390/v5123048
Dayan GH, Pugachev K, Bevilacqua J, Lang J, Monath TP. Preclinical and Clinical Development of a YFV 17 D-Based Chimeric Vaccine against West Nile Virus. Viruses. 2013; 5(12):3048-3070. https://doi.org/10.3390/v5123048
Chicago/Turabian StyleDayan, Gustavo H., Konstantin Pugachev, Joan Bevilacqua, Jean Lang, and Thomas P. Monath. 2013. "Preclinical and Clinical Development of a YFV 17 D-Based Chimeric Vaccine against West Nile Virus" Viruses 5, no. 12: 3048-3070. https://doi.org/10.3390/v5123048
APA StyleDayan, G. H., Pugachev, K., Bevilacqua, J., Lang, J., & Monath, T. P. (2013). Preclinical and Clinical Development of a YFV 17 D-Based Chimeric Vaccine against West Nile Virus. Viruses, 5(12), 3048-3070. https://doi.org/10.3390/v5123048