Predicted Peptides from Non-Structural Proteins of Porcine Reproductive and Respiratory Syndrome Virus Are Able to Induce IFN-γ and IL-10
Abstract
:1. Introduction
2. Results and Discussion
2.1. Peptide-Induced IFN-γ Producing Cells
Protein | aa position | Predicted sequence | Conservation a |
---|---|---|---|
nsp2 | 589-597 | SLYKLLLEV | No |
nsp2 | 1061-1069 | GRFEFLPKM | No |
nps2 | 1141-1149 | WLFAGVVLL | No |
nsp3 | 1337-1345 | YIWHFLLRL | No |
nsp3 | 1670-1678 | AVRRAALTG | Yes |
nsp5 | 1902-1910 | VQLLCVFFL | Yes |
nsp5 | 1929-1937 | LLNEILPAV | Yes |
nsp5 | 1960-1968 | VLMIRLLTA | No |
nsp5 | 2025-2033 | IIIGGLHTL | No |
nsp5 | 2046-2054 | ILNEVLPAV | Yes |
nsp9 | 3-11 | FKLLAASGL | No |
nsp9 | 142-150 | QLPYKLYPV | Yes |
nsp9 | 143-151 | FVLPGVLRL | Yes |
nsp9 | 246-254 | MAGINGQRF | Yes |
nsp9 | 246-254 | MAGINGNRF | Yes |
nsp9 | 258-266 | VLPGVLRLV | No |
nsp9 | 325-333 | TVTPCTLKK | Yes |
nsp9 | 377-385 | LGKNKFKEL | Yes |
nsp9 | 430-438 | YVLNCCHDL | Yes |
nsp9 | 524-532 | NYHWWVEHL | Yes |
nsp9 | 587-595 | YYASAAAIL | Yes |
nsp9 | 594-602 | ILMDSCACI | Yes |
nsp9 | 1222-1230 | YLPSYVLNC | Yes |
nsp10 | 670-678 | VPYKPPRTV | Yes |
nsp10 | 716-724 | IPYKPPRTV | No |
nsp10 | 718-726 | YKPPRTVIM | Yes |
nsp10 | 974-982 | ITIDSSQGA | Yes |
nsp11 | 1116-1124 | KELAPHWPV | Yes |
nsp11 | 1116-1124 | VELAPHWPV | Yes |
nsp11 | 1166-1174 | GTPGVVSYY | No |
nsp11 | 1222-1230 | YLPDLEAYL | No |
Protein | aa position | Peptide sequence | Group Ia (pig nº) | Group II (pig nº) | Group III (pig nº) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
66 | 67 | 68 | 69 | 70 | 61 | 62 | 63 | 64 | 65 | 71 | 72 | 73 | 74 | |||
nsp2 | 589-597 | SLYKLLLEV | 1 | 14 | 10 | 0 | 9 | 0 | 5 | 9 | 0 | 1 | 0 | 0 | 0 | 0 |
nsp2 | 1061-1069 | GRFEFLPKM | 0 | 3 | 0 | 0 | 0 | 0 | 4 | 7 | 3 | 3 | 0 | 0 | 0 | 0 |
nsp2 | 1141-1149 | WLFAGVVLL | 2 | 10 | 3 | 0 | 11 | 0 | 13 | 7 | 0 | 0 | 0 | 1 | 0 | 0 |
nsp3 | 1337-1345 | YIWHFLLRL | 2 | 5 | 5 | 0 | 3 | 0 | 2 | 5 | 0 | 2 | 0 | 0 | 1 | 0 |
nsp5 | 1929-1937 | LLNEILPAV | 2 | 8 | 0 | 0 | 7 | 0 | 9 | 17 | 0 | 0 | 0 | 0 | 0 | 0 |
nsp5 | 2025-2033 | IIIGGLHTL | 2 | 13 | 5 | 0 | 9 | 0 | 6 | 2 | 0 | 2 | 0 | 0 | 0 | 0 |
nsp5 | 2046-2054 | ILNEVLPAV | 2 | 8 | 1 | 0 | 5 | 0 | 0 | 5 | 0 | 2 | 0 | 0 | 1 | 0 |
nsp9 | 246-254 | MAGINGNRF | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 1 | 0 |
nsp9 | 587-595 | YYASAAAIL | 0 | 6 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
nsp11 | 1116-1124 | VELAPHWPV | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
nsp11 | 1116-1124 | KELAPHWPV | 0 | 10 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
nsp11 | 1166-1174 | GTPGVVSYY | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
nsp11 | 1222-1230 | YLPDLEAYL | 1 | 2 | 31 | 0 | 0 | 0 | 4 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
Genotype 1 whole virus | 42 | 29 | 96 | 0 | 17 | 0 | 10 | 12 | 0 | 2 | 0 | 0 | 0 | 0 | ||
Genotype 2 whole virus | 0 | 1 | 6 | 0 | 14 | 5 | 7 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
SLA class I | SLA class II | |||||||
---|---|---|---|---|---|---|---|---|
Pig n° | SLA-1 | SLA-2 | SLA-3 | Inferred haplotype | DQA | DQB1 | DRB1 | Inferred haplotype |
61 | 04XX | 04XX | 04XX/hb06 | Lr-04.0 | 04XX+w05XX | 09XX | 09XX/La02 | Lr-0.27 |
11XX (1103) | jh02 | 05XX | Lr-59.0 | 02XX/ka01 | Blank | 06XX | Lr-0.32 | |
62 | 04XX | 01XX | 01XX | Lr-LD-01.0 | 01XX | 07XX | 06XX | Lr-0.12 |
blank | 05XX | 06XX (0601) | Lr-47.0 | 03XX | 07XX | 04XX | Lr-0.19a | |
63 | 04XX | 04XX | 04XX/hb06 | Lr-04.0 | 02XX/ka01 | 04XX | 02XX | Lr-0.04 |
13XX | 10XX | 05XX | Lr-64.0 | 01XX | 06XX/zs12 | 10XX | Lr-0.23 | |
64 | 04XX | 04XX | 04XX/hb06 | Lr-04.0 | 02XX/ka01 | 04XX | 02XX | Lr-0.04 |
04XX | 04XX | 04XX/hb06 | Lr-04.0 | 02XX/ka01 | 04XX | 02XX | Lr-0.04 | |
65 | 04XX | 04XX | 04XX/hb06 | Lr-04.0 | 04XX+w05XX | 09XX | 09XX/La02 | Lr-0.27 |
11XX (1103) | jh02 | 05XX | Lr-59.0 | 02XX/ka01 | Blank | 06XX | Lr-0.32 | |
66 | 09XX | 05XX | 07XX | Lr-28.0 | 01XX | 06XX/zs12 | 10XX | Lr-0.23 |
11XX (1103) | jh02 | 05XX | Lr-59.0 | 04XX+w05XX | 09XX | 09XX/La02 | Lr-0.27 | |
67 | 04XX | 04XX | 04XX/hb06 | Lr-04.0 | 02XX/ka01 | 02XX | 04XX | Lr-0.15a |
11XX (1103) | jh02 | 05XX | Lr-59.0 | 04XX+w05XX | 09XX | 09XX/La02 | Lr-0.27 | |
68 | 04XX | 01XX | 01XX | Lr-LD-01.0 | 01XX | 07XX | 06XX | Lr-0.12 |
blank | 05XX | 04XX/hb06 | Lr-34.0 | 04XX+w05XX | 09XX | 13XX | Lr-0.25 | |
69 | 04XX | 04XX | 04XX/hb06 | Lr-04.0 | 02XX/ka01 | 02XX | 04XX | Lr-0.15a |
04XX | 04XX | 04XX/hb06 | Lr-04.0 | 02XX/ka01 | 02XX | 04XX | Lr-0.15a | |
70 | 01XX | 01XX | 01XX | Lr-01.0 | 01XX | 01XX | 01XX | Lr-0.01 |
11XX (1103) | jh02 | 05XX | Lr-59.0 | 04XX+w05XX | 09XX | 09XX/La02 | Lr-0.27 | |
71 | 04XX | 01XX | 01XX | Lr-LD-01.0 | 01XX | 07XX | 06XX | Lr-0.12 |
blank | 05XX | 04XX/hb06 | Lr-34.0 | 01XX | 07XX | 06XX | Lr-0.12 | |
72 | 04XX | 04XX | 04XX/hb06 | Lr-04.0 | 02XX | 04XX | 11XX | Lr-0.26 |
11XX (1103) | jh02 | 05XX | Lr-59.0 | 04XX+w05XX | 09XX | 09XX/La02 | Lr-0.27 | |
73 | 04XX | 04XX | 04XX/hb06 | Lr-04.0 | 01XX | 06XX/zs12 | 10XX | Lr-0.23 |
11XX (1103) | jh02 | 05XX | Lr-59.0 | 04XX+w05XX | 09XX | 09XX/La02 | Lr-0.27 | |
74 | 04XX | 04XX | 04XX/hb06 | Lr-04.0 | 01XX | 06XX/zs12 | 10XX | Lr-0.23 |
11XX (1103) | jh02 | 05XX | Lr-59.0 | 04XX+w05XX | 09XX | 09XX/La02 | Lr-0.27 |
2.2. Evaluation of Peptide-Induced TGF-β and IL-10 Responses of PBMC
2.3. Inhibition of IFN-γ Responses by Peptides
3. Experimental Section
3.1. Experimental Design
Protein | aa position | Peptide sequence | Pigs of group I | Pigs of group II | Pigs of group III | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
66 | 67 | 68 | 69 | 70 | 61 | 62 | 63 | 64 | 65 | 71 | 72 | 73 | 74 | |||
nsp2 | 589-597 | SLYKLLLEV | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 58 | 0 |
nsp2 | 1061-1069 | GRFEFLPKM | 70 | 0 | 0 | 0 | 37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
nsp2 | 1141-1149 | WLFAGVVLL | 55 | 0 | 0 | 0 | 33 | 0 | 0 | 0 | 0 | 0 | 0 | 33 | 0 | 0 |
nsp3 | 1337-1345 | YIWHFLLRL | 0 | 0 | 49 | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 42 | 0 |
nsp5 | 1929-1937 | LLNEILPAV | 82 | 0 | 50 | 0 | 33 | 0 | 0 | 0 | 0 | 0 | 0 | 41 | 34 | 0 |
nsp9 | 258-266 | VLPGVLRLV | 111 | 0 | 55 | 35 | 63 | 34 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
nsp10 | 716-724 | IPYKPPRTV | 0 | 0 | 51 | 0 | 35 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43 | 0 |
nsp10 | 974-982 | ITIDSSQGA | 89 | 0 | 31 | 33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 58 | 0 |
nsp11 | 1116-1124 | KELAPHWPV | 90 | 0 | 0 | 37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43 | 51 | 0 |
nsp11 | 1166-1174 | GTPGVVSYY | 43 | 0 | 0 | 44 | 36 | 0 | 0 | 34 | 0 | 0 | 0 | 0 | 0 | 0 |
ORF5 | 37-56 | SNLQLIYNLTLCELNGTDWL | 63 | 0 | 0 | 0 | 46 | 0 | 0 | 0 | 0 | 0 | 0 | 62 | 40 | 74 |
Genotype 1 whole virus | 218 | 0 | 0 | 50 | 48 | 0 | 0 | 0 | 0 | 0 | 0 | 34 | 72 | 33 | ||
Genotype 2 whole virus | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
PHA | 88 | 117 | 86 | 60 | 52 | 45 | 130 | 137 | 54 | 73 | 375 | 63 | 96 | 40 |
Group I | Group II | Group III | ||||||
Pig no. | 66 | 68 | 61 | 71 | 73 | 74 | ||
PHA only (10 μg/ml) | 52 ± 3 | 49 ± 1 | 27 ± 3 | 73 ± 12 | 40 ± 5 | 50 ± 6 | ||
Protein | aa position | Peptide sequence | PHA (10 μg/mL) plus peptide (10 μg/ml) | |||||
nsp2 | 1061–1069 | GRFEFLPKM | 54 ± 10 | N.D. | N.D. | 71 ± 12 | N.D. | 40 ± 4 |
nsp5 | 1929–1937 | LLNEILPAV | 35 ± 6* | 39 ± 12 | 20 ± 14 | 70 ± 0 | 23 ± 8* | 39 ± 14* |
nsp9 | 258–266 | VLPGVLRLV | 44 ± 3 | N.D. | N.D. | 79 ± 4 | N.D. | 22 ± 4* |
nsp11 | 1166–1174 | GTPGVVSYY | 35 ± 16* | N.D. | N.D. | 83 ± 6 | N.D. | 38 ± 2 |
nsp11 | 1116–1124 | KELAPHWPV | 31 ± 0* | 17 ± 7* | 19 ± 5 | 67 ± 5 | 25 ± 7* | 31 ± 6* |
ORF5 | 37–56 | SNLQLIYNLTLCELNGTDWL | 28 ± 5* | 45 ± 6 | 22 ± 4 | 66 ± 0 | 40 ± 3 | 32 ± 2* |
3.2. Bioinformatic Prediction of Potential T-Cell Epitopes and Peptide Synthesis
3.3. Animals, Swine Leukocyte Antigen (SLA) Haplotyping and Vaccination
3.4. Sampling and PBMC Isolation
3.5. IFN-γ ELISPOT
3.6. Cytokine ELISAs
3.7. Inhibition of IFN-γ Responses by Peptides
3.8. Statistical Analysis
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Neumann, E.J.; Kliebenstein, J.B.; Johnson, C.D.; Mabry, J.W.; Bush, E.J.; Seitzinger, A.H.; Green, A.L.; Zimmerman, J.J. Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. J. Am. Vet. Med. Assoc. 2005, 227, 385–392. [Google Scholar] [CrossRef]
- Cavanagh, D. Nidovirales: A new order comprising Coronaviridae and Arteriviridae. Arch. Virol. 1997, 142, 629–633. [Google Scholar]
- King, A.; Lefkowitz, E.; Adams, M.J.; Eric, B. The Positive Sense Single Stranded RNA Viruses. In Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses; Inc., E.: London, UK, 2012; pp. 783–802. [Google Scholar]
- Allende, R.; Lewis, T.L.; Lu, Z.; Rock, D.L.; Kutish, G.F.; Ali, A.; Doster, A.R.; Osorio, F.A. North American and European porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions. J. Gen. Virol. 1999, 80, 307–315. [Google Scholar]
- van Dinten, L.C.; Rensen, S.; Gorbalenya, A.E.; Snijder, E.J. Proteolytic processing of the open reading frame 1b-encoded part of arterivirus replicase is mediated by nsp4 serine protease and is essential for virus replication. J. Virol. 1999, 73, 2027–2037. [Google Scholar]
- Oleksiewicz, M.B.; Botner, A.; Toft, P.; Normann, P.; Storgaard, T. Epitope mapping porcine reproductive and respiratory syndrome virus by phage display: the nsp2 fragment of the replicase polyprotein contains a cluster of B-cell epitopes. J. Virol. 2001, 75, 3277–3290. [Google Scholar] [CrossRef]
- Johnson, C.R.; Yu, W.; Murtaugh, M.P. Cross-reactive antibody responses to nsp1 and nsp2 of Porcine reproductive and respiratory syndrome virus. J. Gen. Virol. 2007, 88, 1184–1195. [Google Scholar] [CrossRef]
- de Lima, M.; Pattnaik, A.K.; Flores, E.F.; Osorio, F.A. Serologic marker candidates identified among B-cell linear epitopes of Nsp2 and structural proteins of a North American strain of porcine reproductive and respiratory syndrome virus. Virology 2006, 353, 410–421. [Google Scholar] [CrossRef]
- Beura, L.K.; Sarkar, S.N.; Kwon, B.; Subramaniam, S.; Jones, C.; Pattnaik, A.K.; Osorio, F.A. Porcine reproductive and respiratory syndrome virus nonstructural protein 1beta modulates host innate immune response by antagonizing IRF3 activation. J. Virol. 2010, 84, 1574–1584. [Google Scholar]
- Chen, Z.; Zhou, X.; Lunney, J.K.; Lawson, S.; Sun, Z.; Brown, E.; Christopher-Hennings, J.; Knudsen, D.; Nelson, E.; Fang, Y. Immunodominant epitopes in nsp2 of porcine reproductive and respiratory syndrome virus are dispensable for replication, but play an important role in modulation of the host immune response. J. Gen. Virol. 2010, 91, 1047–1057. [Google Scholar] [CrossRef]
- Suradhat, S.; Thanawongnuwech, R.; Poovorawan, Y. Upregulation of IL-10 gene expression in porcine peripheral blood mononuclear cells by porcine reproductive and respiratory syndrome virus. J. Gen. Virol. 2003, 84, 453–459. [Google Scholar] [CrossRef]
- Flores-Mendoza, L.; Silva-Campa, E.; Resendiz, M.; Osorio, F.A.; Hernandez, J. Porcine reproductive and respiratory syndrome virus infects mature porcine dendritic cells and up-regulates interleukin-10 production. Clin. Vaccine Immunol. 2008, 15, 720–725. [Google Scholar] [CrossRef]
- Diaz, I.; Darwich, L.; Pappaterra, G.; Pujols, J.; Mateu, E. Immune responses of pigs after experimental infection with a European strain of Porcine reproductive and respiratory syndrome virus. J. Gen. Virol. 2005, 86, 1943–1951. [Google Scholar] [CrossRef]
- Ostrowski, M.; Galeota, J.A.; Jar, A.M.; Platt, K.B.; Osorio, F.A.; Lopez, O.J. Identification of neutralizing and nonneutralizing epitopes in the porcine reproductive and respiratory syndrome virus GP5 ectodomain. J. Virol. 2002, 76, 4241–4250. [Google Scholar] [CrossRef]
- Costers, S.; Vanhee, M.; van Breedam, W.; van Doorsselaere, J.; Geldhof, M.; Nauwynck, H.J. GP4-specific neutralizing antibodies might be a driving force in PRRSV evolution. Virus Res. 2010, 154, 104–113. [Google Scholar] [CrossRef]
- Vanhee, M.; Costers, S.; van Breedam, W.; Geldhof, M.F.; van Doorsselaere, J.; Nauwynck, H.J. A variable region in GP4 of European-type porcine reproductive and respiratory syndrome virus induces neutralizing antibodies against homologous but not heterologous virus strains. Viral. Immunol. 2010, 23, 403–413. [Google Scholar] [CrossRef]
- Mengeling, W.L.; Lager, K.M.; Vorwald, A.C.; Koehler, K.J. Strain specificity of the immune response of pigs following vaccination with various strains of porcine reproductive and respiratory syndrome virus. Vet. Microbiol. 2003, 93, 13–24. [Google Scholar] [CrossRef]
- Prieto, C.; Alvarez, E.; Martinez-Lobo, F.J.; Simarro, I.; Castro, J.M. Similarity of European porcine reproductive and respiratory syndrome virus strains to vaccine strain is not necessarily predictive of the degree of protective immunity conferred. Vet. J. 2008, 175, 356–363. [Google Scholar] [CrossRef]
- Diaz, I.; Gimeno, M.; Darwich, L.; Navarro, N.; Kuzemtseva, L.; Lopez, S.; Galindo, I.; Segales, J.; Martin, M.; Pujols, J.; et al. Characterization of homologous and heterologous adaptive immune responses in porcine reproductive and respiratory syndrome virus infection. Vet. Res. 2012, 43, 30. [Google Scholar] [CrossRef]
- Diaz, I.; Darwich, L.; Pappaterra, G.; Pujols, J.; Mateu, E. Different European-type vaccines against porcine reproductive and respiratory syndrome virus have different immunological properties and confer different protection to pigs. Virology 2006, 351, 249–259. [Google Scholar] [CrossRef]
- Mateu, E.; Diaz, I. The challenge of PRRS immunology. Vet. J. 2008, 177, 345–351. [Google Scholar] [CrossRef]
- Vashisht, K.; Goldberg, T.L.; Husmann, R.J.; Schnitzlein, W.; Zuckermann, F.A. Identification of immunodominant T-cell epitopes present in glycoprotein 5 of the North American genotype of porcine reproductive and respiratory syndrome virus. Vaccine 2008, 26, 4747–4753. [Google Scholar] [CrossRef]
- Diaz, I.; Pujols, J.; Ganges, L.; Gimeno, M.; Darwich, L.; Domingo, M.; Mateu, E. In silico prediction and ex vivo evaluation of potential T-cell epitopes in glycoproteins 4 and 5 and nucleocapsid protein of genotype-I (European) of porcine reproductive and respiratory syndrome virus. Vaccine 2009, 27, 5603–5611. [Google Scholar] [CrossRef]
- Wang, Y.X.; Zhou, Y.J.; Li, G.X.; Zhang, S.R.; Jiang, Y.F.; Xu, A.T.; Yu, H.; Wang, M.M.; Yan, L.P.; Tong, G.Z. Identification of immunodominant T-cell epitopes in membrane protein of highly pathogenic porcine reproductive and respiratory syndrome virus. Virus. Res. 2011, 158, 108–115. [Google Scholar] [CrossRef]
- Parida, R.; Choi, I.S.; Peterson, D.A.; Pattnaik, A.K.; Laegreid, W.; Zuckermann, F.A.; Osorio, F.A. Location of T-cell epitopes in nonstructural proteins 9 and 10 of type-II porcine reproductive and respiratory syndrome virus. Virus Res. 2012, 169, 13–21. [Google Scholar] [CrossRef]
- MacDonald, A.J.; Duffy, M.; Brady, M.T.; McKiernan, S.; Hall, W.; Hegarty, J.; Curry, M.; Mills, K.H. CD4 T helper type 1 and regulatory T cells induced against the same epitopes on the core protein in hepatitis C virus-infected persons. J. Infect. Dis. 2002, 185, 720–727. [Google Scholar] [CrossRef]
- Todd, M.; Cecere, T.; LeRoith, T. Identification of Porcine Reproductive and Respiratory Syndrome Virus Structural Protein Epitopes that induce CD4+CD25+FoxP3+ Regulatory T Cells in vitro. In Proceedings of the International PRRS Symposium, Chicago, IL, USA, 2010; p. 57.
- Rammensee, H.; Bachmann, J.; Emmerich, N.P.; Bachor, O.A.; Stevanovic, S. SYFPEITHI: Database for MHC ligands and peptide motifs. Immunogenetics 1999, 50, 213–219. [Google Scholar] [CrossRef]
- Singh, H.; Raghava, G.P. ProPred: prediction of HLA-DR binding sites. Bioinformatics 2001, 17, 1236–1237. [Google Scholar] [CrossRef]
- Bui, H.H.; Sidney, J.; Peters, B.; Sathiamurthy, M.; Sinichi, A.; Purton, K.A.; Mothe, B.R.; Chisari, F.V.; Watkins, D.I.; Sette, A. Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics 2005, 57, 304–314. [Google Scholar] [CrossRef]
- Essler, S.E.; Ertl, W.; Deutsch, J.; Ruetgen, B.C.; Groiss, S.; Stadler, M.; Wysoudil, B.; Gerner, W.; Ho, C.S.; Saalmueller, A. Molecular characterization of swine leukocyte antigen gene diversity in purebred Pietrain pigs. Anim Genet. 2012. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Burgara-Estrella, A.; Díaz, I.; Rodríguez-Gómez, I.M.; Essler, S.E.; Hernández, J.; Mateu, E. Predicted Peptides from Non-Structural Proteins of Porcine Reproductive and Respiratory Syndrome Virus Are Able to Induce IFN-γ and IL-10. Viruses 2013, 5, 663-677. https://doi.org/10.3390/v5020663
Burgara-Estrella A, Díaz I, Rodríguez-Gómez IM, Essler SE, Hernández J, Mateu E. Predicted Peptides from Non-Structural Proteins of Porcine Reproductive and Respiratory Syndrome Virus Are Able to Induce IFN-γ and IL-10. Viruses. 2013; 5(2):663-677. https://doi.org/10.3390/v5020663
Chicago/Turabian StyleBurgara-Estrella, Alexel, Ivan Díaz, Irene M. Rodríguez-Gómez, Sabine E. Essler, Jesús Hernández, and Enric Mateu. 2013. "Predicted Peptides from Non-Structural Proteins of Porcine Reproductive and Respiratory Syndrome Virus Are Able to Induce IFN-γ and IL-10" Viruses 5, no. 2: 663-677. https://doi.org/10.3390/v5020663
APA StyleBurgara-Estrella, A., Díaz, I., Rodríguez-Gómez, I. M., Essler, S. E., Hernández, J., & Mateu, E. (2013). Predicted Peptides from Non-Structural Proteins of Porcine Reproductive and Respiratory Syndrome Virus Are Able to Induce IFN-γ and IL-10. Viruses, 5(2), 663-677. https://doi.org/10.3390/v5020663