Virus-Bacteria Interactions: An Emerging Topic in Human Infection
Abstract
:1. Introduction
2. Direct Interactions: Viruses Exploiting Bacteria
3. Indirect Interactions: Bacteria Exploiting Viral Infections
4. Influence of Bacteria and Virus Features on Interactions
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Charlson, E.S.; Bittinger, K.; Haas, A.R.; Fitzgerald, A.S.; Frank, I.; Yadav, A.; Bushman, F.D.; Collman, R.G. Topographical Continuity of Bacterial Populations in the Healthy Human Respiratory Tract. Am. J. Respir. Crit. Care Med. 2011, 184, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Wardwell, L.H.; Huttenhower, C.; Garrett, W.S. Current Concepts of the Intestinal Microbiota and the Pathogenesis of Infection. Curr. Infect. Dis. Rep. 2011, 13, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef]
- Sommer, F.; Bäckhed, F. The gut microbiota—Masters of host development and physiology. Nat. Rev. Microbiol. 2013, 11, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Murphy, T.F.; Bakaletz, L.O.; Smeesters, P.R. Microbial Interactions in the Respiratory Tract. Pediatr. Infect. Dis. J. 2009, 28, S121–S126. [Google Scholar] [CrossRef] [PubMed]
- Bosch, A.A.T.M.; Biesbroek, G.; Trzcinski, K.; Sanders, E.A.M.; Bogaert, D. Viral and Bacterial Interactions in the Upper Respiratory Tract. PLoS Pathog. 2013, 9, e1003057. [Google Scholar] [CrossRef] [PubMed]
- Hendaus, M.; Jomha, F.; Alhammadi, A. Virus-induced secondary bacterial infection: A concise review. Ther. Clin. Risk Manag. 2015, 11, 1265–1271. [Google Scholar] [CrossRef] [PubMed]
- Berkhout, B. With a Little Help from my Enteric Microbial Friends. Front. Med. 2015, 2, 30. [Google Scholar] [CrossRef] [PubMed]
- Karst, S.M. The influence of commensal bacteria on infection with enteric viruses. Nat. Rev. Microbiol. 2016, 14, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Abt, M.C.; Osborne, L.C.; Monticelli, L.A.; Doering, T.A.; Alenghat, T.; Sonnenberg, G.F.; Paley, M.A.; Antenus, M.; Williams, K.L.; Erikson, J.; et al. Commensal Bacteria Calibrate the Activation Threshold of Innate Antiviral Immunity. Immunity 2012, 37, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Al Kassaa, I.; Hober, D.; Hamze, M.; Chihib, N.E.; Drider, D. Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotics Antimicrob. Proteins 2014, 6, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Wilks, J.; Golovkina, T. Influence of microbiota on viral infections. PLoS Pathog. 2012, 8, e1002681. [Google Scholar] [CrossRef]
- Jones, M.K.; Watanabe, M.; Zhu, S.; Graves, C.L.; Keyes, L.R.; Grau, K.R.; Gonzalez-Hernandez, M.B.; Iovine, N.M.; Wobus, C.E.; Vinjé, J.; et al. Enteric bacteria promote human and mouse norovirus infection of B cells. Science 2014, 346, 755–759. [Google Scholar] [CrossRef] [PubMed]
- Miura, T.; Sano, D.; Suenaga, A.; Yoshimura, T.; Fuzawa, M.; Nakagomi, T.; Nakagomi, O.; Okabe, S. Histo-blood group antigen-like substances of human enteric bacteria as specific adsorbents for human noroviruses. J. Virol. 2013, 87, 9441–9451. [Google Scholar] [CrossRef] [PubMed]
- Almand, E.A.; Moore, M.D.; Outlaw, J.; Jaykus, L.-A. Human norovirus binding to select bacteria representative of the human gut microbiota. PLoS ONE 2017, 12, e0173124. [Google Scholar] [CrossRef] [PubMed]
- Rubio-del-Campo, A.; Coll-Marqués, J.M.; Yebra, M.J.; Buesa, J.; Pérez-Martínez, G.; Monedero, V.; Rodriguez-Diaz, J. Noroviral P-Particles as an In Vitro Model to Assess the Interactions of Noroviruses with Probiotics. PLoS ONE 2014, 9, e89586. [Google Scholar] [CrossRef] [PubMed]
- Baldridge, M.T.; Nice, T.J.; McCune, B.T.; Yokoyama, C.C.; Kambal, A.; Wheadon, M.; Diamond, M.S.; Ivanova, Y.; Artyomov, M.; Virgin, H.W. Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection. Science 2015, 347, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Kuss, S.K.; Best, G.T.; Etheredge, C.A.; Pruijssers, A.J.; Frierson, J.M.; Hooper, L.V.; Dermody, T.S.; Pfeiffer, J.K. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 2011, 334, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.M.; Jesudhasan, P.R.; Pfeiffer, J.K. Bacterial Lipopolysaccharide Binding Enhances Virion Stability and Promotes Environmental Fitness of an Enteric Virus. Cell Host Microbe 2014, 15, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, R.; Chassaing, B.; Zhang, B.; Gewirtz, A.T. Antibiotic treatment suppresses rotavirus infection and enhances specific humoral immunity. J. Infect. Dis. 2014, 210, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, M.; Ciborowski, P.; Klenk, H.D.; Pulverer, G.; Rott, R. Role of Staphylococcus protease in the development of influenza pneumonia. Nature 1987, 325, 536–537. [Google Scholar] [CrossRef] [PubMed]
- Scheiblauer, H.; Reinacher, M.; Tashiro, M.; Rott, R. Interactions between Bacteria and Influenza A Virus in the Development of Influenza Pneumonia. J. Infect. Dis. 1992, 166, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Böttcher Friebertshäuser, E.; Klenk, H.D.; Garten, W. Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium. Pathog. Dis. 2013, 69, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Goletti, D.; Weissman, D.; Jackson, R.W.; Graham, N.M.; Vlahov, D.; Klein, R.S.; Munsiff, S.S.; Ortona, L.; Cauda, R.; Fauci, A.S. Effect of Mycobacterium tuberculosis on HIV replication. Role of immune activation. J. Immunol. 1996, 157, 1271–1278. [Google Scholar] [PubMed]
- Pawlowski, A.; Jansson, M.; Sköld, M.; Rottenberg, M.E.; Källenius, G. Tuberculosis and HIV Co-Infection. PLoS Pathog. 2012, 8, e1002464. [Google Scholar] [CrossRef] [PubMed]
- Kane, M.; Case, L.K.; Kopaskie, K.; Kozlova, A.; MacDearmid, C.; Chervonsky, A.V.; Golovkina, T.V. Successful transmission of a retrovirus depends on the commensal microbiota. Science 2011, 334, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Wilks, J.; Lien, E.; Jacobson, A.N.; Fischbach, M.A.; Qureshi, N.; Chervonsky, A.V.; Golovkina, T.V. Mammalian Lipopolysaccharide Receptors Incorporated into the Retroviral Envelope Augment Virus Transmission. Cell Host Microbe 2015, 18, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Kamma, J.J.; Contreras, A.; Slots, J. Herpes viruses and periodontopathic bacteria in early-onset periodontitis. J. Clin. Periodontol. 2001, 28, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; DeFee, M.R.; Cao, Y.; Wen, J.; Wen, X.; Noverr, M.C.; Qin, Z. Lipoteichoic acid (LTA) and lipopolysaccharides (LPS) from periodontal pathogenic bacteria facilitate oncogenic herpesvirus infection within primary oral cells. PLoS ONE 2014, 9, e101326. [Google Scholar] [CrossRef] [PubMed]
- Hahm, B.; Arbour, N.; Oldstone, M.B.A. Measles virus interacts with human SLAM receptor on dendritic cells to cause immunosuppression. Virology 2004, 323, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Servet-Delprat, C.; Vidalain, P.-O.; Bausinger, H.; Manié, S.; le Deist, F.; Azocar, O.; Hanau, D.; Fischer, A.; Rabourdin-Combe, C. Measles Virus Induces Abnormal Differentiation of CD40 Ligand-Activated Human Dendritic Cells. J. Immunol. 2000, 164, 1753–1760. [Google Scholar] [CrossRef] [PubMed]
- Saxena, D.; Li, Y.; Yang, L.; Pei, Z.; Poles, M.; Abrams, W.R.; Malamud, D. Human Microbiome and HIV/AIDS. Curr. HIV/AIDS Rep. 2012, 9, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Korppi, M.; Leinonen, M.; Mäkelä, P.H.; Launiala, K. Bacterial Involvement in Parainfluenza Virus Infection in Children. J. Infect. 1990, 22, 307–312. [Google Scholar] [CrossRef]
- Ruohola, A.; Pettigrew, M.M.; Lindholm, L.; Jalava, J.; Räisänen, K.S.; Vainionpää, R.; Waris, M.; Tähtinen, P.A.; Laine, M.K.; Lahti, E.; et al. Bacterial and viral interactions within the nasopharynx contribute to the risk of acute otitis media. J. Infect. 2013, 66, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Talbot, T.R.; Poehling, K.A.; Hartert, T.V.; Arbogast, P.G.; Halasa, N.B.; Edwards, K.M.; Schaffner, W.; Craig, A.S.; Griffin, M.R. Seasonality of invasive pneumococcal disease: Temporal relation to documented influenza and respiratory syncytial viral circulation. Am. J. Med. 2005, 118, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Van Ewijk, B.E.; Wolfs, T.F.W.; Aerts, P.C.; van Kessel, K.P.M.; Fleer, A.; Kimpen, J.L.L.; van der Ent, C.K. RSV mediates Pseudomonas aeruginosa binding to cystic fibrosis and normal epithelial cells. Pediatr. Res. 2007, 61, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Avadhanula, V.; Wang, Y.; Portner, A.; Adderson, E. Nontypeable Haemophilus influenzae and Streptococcus pneumoniae bind respiratory syncytial virus glycoprotein. J. Med. Microbiol. 2007, 56, 1133–1137. [Google Scholar] [CrossRef] [PubMed]
- McCullers, J.A. Insights into the interaction between influenza virus and pneumococcus. Clin. Microbiol. Rev. 2006, 19, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Kwon, H.J.; Jang, Y.J. Rhinovirus enhances various bacterial adhesions to nasal epithelial cells simultaneously. Laryngoscope 2009, 119, 1406–1411. [Google Scholar] [CrossRef] [PubMed]
- Håkansson, A.; Kidd, A.; Wadell, G.; Sabharwal, H.; Svanborg, C. Adenovirus infection enhances in vitro adherence of Streptococcus pneumoniae. Infect. Immun. 1994, 62, 2707–2714. [Google Scholar] [PubMed]
- Murrah, K.A.; Turner, R.L.; Pang, B.; Perez, A.C.; Reimche, J.L.; King, L.B.; Wren, J.; Gandhi, U.; Swords, W.E.; Ornelles, D.A. Replication of type 5 adenovirus promotes middle ear infection by Streptococcus pneumoniae in the chinchilla model of otitis media. Pathog. Dis. 2015, 73, 1–8. [Google Scholar] [PubMed]
- Karst, S.M.; Wobus, C.E. A working model of how noroviruses infect the intestine. PLoS Pathog. 2015, 11, e1004626. [Google Scholar] [CrossRef] [PubMed]
- Racaniello, V.R. One hundred years of poliovirus pathogenesis. Virology 2006, 344, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Springer, G.F.; Williamson, P.; Brandes, W.C. Blood group activity of gram-negative bacteria. J. Exp. Med. 1961, 113, 1077–1093. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Breiman, A.; le Pendu, J.; Uyttendaele, M. Binding to histo-blood group antigen-expressing bacteria protects human norovirus from acute heat stress. Front. Microbiol. 2015, 6, 659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böhm, R.; Fleming, F.E.; Maggioni, A.; Dang, V.T.; Holloway, G.; Coulson, B.S.; von Itzstein, M.; Haselhorst, T. Revisiting the role of histo-blood group antigens in rotavirus host-cell invasion. Nat. Commun. 2015, 6, 5907. [Google Scholar] [CrossRef] [PubMed]
- Paul, R.W.; Choi, A.H.; Lee, P.W. The alpha-anomeric form of sialic acid is the minimal receptor determinant recognized by reovirus. Virology 1989, 172, 382–385. [Google Scholar] [CrossRef]
- McCullers, J.A. The co-pathogenesis of influenza viruses with bacteria in the lung. Nat. Rev. Microbiol. 2014, 12, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Lillebaek, T.; Dirksen, A.; Vynnycky, E.; Baess, I.; Thomsen, V.Ø.; Andersen, A.B. Stability of DNA patterns and evidence of Mycobacterium tuberculosis reactivation occurring decades after the initial infection. J. Infect. Dis. 2003, 188, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Collins, K.R.; Quiñones-Mateu, M.E.; Toossi, Z.; Arts, E.J. Impact of tuberculosis on HIV-1 replication, diversity, and disease progression. AIDS Rev. 2002, 4, 165–176. [Google Scholar] [PubMed]
- Khosravi, A.; Mazmanian, S.K. Disruption of the gut microbiome as a risk factor for microbial infections. Curr. Opin. Microbiol. 2013, 16, 221–227. [Google Scholar] [CrossRef] [PubMed]
- McCullers, J.A.; Bartmess, K.C. Role of Neuraminidase in Lethal Synergism between Influenza Virus and Streptococcus pneumoniae. J. Infect. Dis. 2003, 187, 1000–1009. [Google Scholar] [CrossRef] [PubMed]
- Hament, J.M.; Kimpen, J.L.; Fleer, A.; Wolfs, T.F. Respiratory viral infection predisposing for bacterial disease: A concise review. FEMS Immunol. Med. Microbiol. 1999, 26, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Ghoneim, H.E.; Thomas, P.G.; McCullers, J.A. Depletion of alveolar macrophages during influenza infection facilitates bacterial superinfections. J. Immunol. 2013, 191, 1250–1259. [Google Scholar] [CrossRef] [PubMed]
- Blevins, L.K.; Wren, J.T.; Holbrook, B.C.; Hayward, S.L.; Swords, W.E.; Parks, G.D.; Alexander-Miller, M.A. Coinfection with Streptococcus pneumoniae negatively modulates the size and composition of the ongoing influenza-specific CD8+ T cell response. J. Immunol. 2014, 193, 5076–5087. [Google Scholar] [CrossRef] [PubMed]
- Mehta, D.; Petes, C.; Gee, K.; Basta, S. The Role of Virus Infection in Deregulating the Cytokine Response to Secondary Bacterial Infection. J. Interferon Cytokine Res. 2015, 35, 925–934. [Google Scholar] [CrossRef] [PubMed]
- Podsiad, A.; Standiford, T.J.; Ballinger, M.N.; Eakin, R.; Park, P.; Kunkel, S.L.; Moore, B.B.; Bhan, U. MicroRNA-155 regulates host immune response to postviral bacterial pneumonia via IL-23/IL-17 pathway. Am. J. Physiol. Lung Cell Mol. Physiol. 2016, 310, L465–L475. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.W.; Shi, W.; Huang, G.T.J.; Haake, S.K.; Park, N.-H.; Kuramitsu, H.; Genco, R.J. Interactions between Periodontal Bacteria and Human Oral Epithelial Cells: Fusobacterium nucleatum Adheres to and Invades Epithelial Cells. Infect. Immun. 2000, 68, 3140–3146. [Google Scholar] [CrossRef] [PubMed]
- Contreras, A.; Slots, J. Herpesviruses in human periodontal disease. J. Periodontal Res. 2000, 35, 3–16. [Google Scholar] [CrossRef] [PubMed]
- De Rodrigues, P.M.S.; Teixeira, A.L.; Kustner, E.C.; Medeiros, R. Are herpes virus associated to aggressive periodontitis? A review of literature. J. Oral Maxillofac. Pathol. 2015, 19, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Chun, T.W.; Engel, D.; Berrey, M.M.; Shea, T.; Corey, L.; Fauci, A.S. Early establishment of a pool of latently infected, resting CD4(+) T cells during primary HIV-1 infection. Proc. Natl. Acad. Sci. USA 1998, 95, 8869–8873. [Google Scholar] [CrossRef] [PubMed]
- Zar, H.J. Chronic lung disease in human immunodeficiency virus (HIV) infected children. Pediatr. Pulmonol. 2008, 43, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Slifka, M.K.; Homann, D.; Tishon, A.; Pagarigan, R.; Oldstone, M.B.A. Measles virus infection results in suppression of both innate and adaptive immune responses to secondary bacterial infection. J. Clin. Investig. 2003, 111, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Taube, S.; Jiang, M.; Wobus, C.E. Glycosphingolipids as receptors for non-enveloped viruses. Viruses 2010, 2, 1011–1049. [Google Scholar] [CrossRef] [PubMed]
- Moon, C.; Stappenbeck, T.S. Viral interactions with the host and microbiota in the intestine. Curr. Opin. Immunol. 2012, 24, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Ichinohe, T.; Pang, I.K.; Kumamoto, Y.; Peaper, D.R.; Ho, J.H.; Murray, T.S.; Iwasaki, A. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. USA 2011, 108, 5354–5359. [Google Scholar] [CrossRef] [PubMed]
Virus | Bacteria | Significance | Reference |
---|---|---|---|
Direct Interaction | |||
Human norovirus | Enterobacter cloacae | Histo-blood group antigen (HBGA)-like moieties serve as co-factor during infection | [13,14,15,16] |
Murine norovirus | E. cloacae, enteric bacteria | HBGA-like moieties serve as co-factor during infection; evidence of the presence of intestinal microbiota aid establishment of persistent viral infection | [13,17] |
Poliovirus | N-acetyl glucosamine containing polysaccharides (lipopolysaccharide, peptidoglycan) | Enhanced cell association and viral replication; increased capsid stability and transmission | [18,19] |
Reovirus T3SA+ | Enteric bacteria; Escherichia coli, Ochrobactrum intermedium, Bacillus cereus, Enterococcus faecalis (LPS) | Enhanced viral replication; enhanced virus binding/entry | [18] |
Rotavirus | Enteric bacteria | Enhanced viral replication; enhanced virus binding/entry; less effective host antibody response | [20] |
Influenza virus | Staphylococcus aureus; Aerococcus viridans | Protease cleaves the hemagglutinin (HA) into HA1 and HA2, making the particles infectious | [21,22,23] |
Human immunodeficiency virus (HIV) | Mycobacterium tuberculosis | Increases HIV long terminal repeat-driven transcription and HIV production | [24,25] |
Mouse mammary tumor virus (MMTV) | Enteric bacteria, Escherichia coli EH100, E. coli O26, E. coli O55:B5, Bacillus thetaiotaomicron, Rhodobacter sphaeroides, extracted bacterial lipopolysaccharides (LPS) | Virus contains factors on outer membrane that bind bacterial LPS; Uses LPS to promote a Toll-like receptor 4 (TLR4) response that helps it evade host immune system. | [26,27] |
Indirect Interaction | |||
Herpesviruses | Porphyromonas gingivalis; Dialister pneumosintes | Promotes immunosuppression leading to bacterial colonization | [28,29] |
Measles virus | M. tuberculosis; S. aureus; Listeria monocytogenes | Promotes a generalized state of immunosuppression leading to bacterial co-infection | [30,31] |
HIV | Oral, gastrointestinal, lung, penile, vaginal bacteria | Immune system deterioration and increased bacterial translocation | [32] |
Parainfluenza virus | Nasopharyngeal bacteria | Increased bacterial binding to the lower respiratory tract | [33,34] |
Respiratory syncytial virus | Streptococcus pneumonia, Pseudomonas aeruginosa, Haemophilus influenzae | Increased bacterial invasiveness; increased host cell adhesion molecules | [35,36,37] |
Influenza virus | Streptococcus pneumoniae; S. aureus; H. influenza; respiratory commensals | Viral neuraminidase cleaves epithelial cell sialic acid exposing bacterial receptors; damages epithelial cells | [6,21,38] |
Rhinovirus | S. pneumoniae; S. aureus; H. influenzae | Increases host cell adhesion molecules | [39] |
Adenovirus | S. pneumoniae | Increases host cell adhesion molecules | [40,41] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almand, E.A.; Moore, M.D.; Jaykus, L.-A. Virus-Bacteria Interactions: An Emerging Topic in Human Infection. Viruses 2017, 9, 58. https://doi.org/10.3390/v9030058
Almand EA, Moore MD, Jaykus L-A. Virus-Bacteria Interactions: An Emerging Topic in Human Infection. Viruses. 2017; 9(3):58. https://doi.org/10.3390/v9030058
Chicago/Turabian StyleAlmand, Erin A., Matthew D. Moore, and Lee-Ann Jaykus. 2017. "Virus-Bacteria Interactions: An Emerging Topic in Human Infection" Viruses 9, no. 3: 58. https://doi.org/10.3390/v9030058
APA StyleAlmand, E. A., Moore, M. D., & Jaykus, L. -A. (2017). Virus-Bacteria Interactions: An Emerging Topic in Human Infection. Viruses, 9(3), 58. https://doi.org/10.3390/v9030058