Vertebrate Reservoirs of Arboviruses: Myth, Synonym of Amplifier, or Reality?
Abstract
:1. Introduction
2. Genesis of the Notion of Vertebrate Reservoir
2.1. Historical Perspective
2.2. Early Definition of Vertebrate Reservoir
2.3. Additional Evidence Necessary for Confirming a Vertebrate Reservoir for an Arbovirus and Data Incompatible with the Early Definition
2.3.1. Additional Evidence
2.3.2. Data Incompatible with the Early Definition
3. Problems
3.1. Unresolved Issues
3.2. Concerns Over the Validity
3.3. Conceptual Weakness
3.4. Immunity
3.5. Persistence of Disease Symptoms
3.6. Laboratory Simulation
3.7. Persistent Viral RNA vs. Persistence of Infectious Virus
4. Direct Transmission
5. The Problem of Assumption-Driven Research on Vertebrate Reservoirs and Its Consequences
6. Other Sources that Complicate an Understanding of the Notion
7. Origins of Arboviruses
7.1. Recent Developments
7.2. Vectors as Reservoirs
8. Arguments for and against the Existence of Vertebrate Reservoirs
- The definition of reservoir itself has been a source of disagreement. First, whenever an original definition is found to be unrealistic, a pragmatic definition compatible with reality must be adopted. Furthermore, because arboviruses are a heterogenous group of viruses, it would not be unexpected if the mechanisms of viral maintenance in nature are also heterogenous. Accordingly, the application of a single reservoir definition for all arboviruses is inappropriate.
- Because multiple vectors and/or multiple hosts are involved in the transmission of most arboviruses, identification of vertebrate reservoirs is complicated [33,57]. For example, because of enormous complexity the identification of the natural maintenance mechanism of YFV, probably the most intensively studied arbovirus, the mechanism has remained unknown even in an island of limited land mass (Trinidad) [182]. Also, enzootic foci of most viruses, with some exceptions characterized by well-defined focal distribution, do not remain indefinitely at any fixed location within a vast enzootic zone, rendering establishment of field sites difficult. In reality, most attempts to search for reservoirs have been incomplete in one ecological respect or another. This is a shared problem in all branches of zoonotic and parasitic disease research [183]. Even for ebolaviruses, which are vertebrate viruses, the definitive identities of the reservoirs have remained elusive despite arduous research for many years. However, bats are now suspected because of the detection of viral RNA and high rates of seropositivity [184,185]. Furthermore, the impossibility of colonizing some local vectors and/or suspected wildlife has prevented the completion of laboratory experiments.
- The recent discoveries of new viruses with unexpected viral traits and the host range necessitate redefining many of the basics of arbovirology. Accordingly, it is too early to preclude the existence of vertebrate reservoirs, because such examples might be discovered in the future. In fact, Mokola virus, a member of the Lyssavirus genus (family Rhabdoviridae), is known to replicate in mosquitoes and produces viremia in mice, although the vector-borne mode of transmission for this virus has never been established [186]; nor has its vertebrate reservoir(s) been identified. Also, three bat-associated flaviviruses (Entebbe bat virus, Sokuluk virus, and Yokose virus), which are not vector-borne, replicate in mosquito cells [187,188].
- Identifying vertebrate reservoirs is a difficult task, because persistently infected hosts are presumed to demonstrate little or no sign of illness according to the notion. Viral latency is sometimes confirmed only by applying an immunosuppressant to activate the virus or by blindly co-cultivating tissue samples obtained from asymptomatic animals in a highly sensitive cell culture. But, for arboviruses, such a laborious blind test has rarely been applied routinely to asymptomatic wildlife, except in a small number of experimental studies [24]. Furthermore, the significance of persistent viral RNA without the isolation of the infectious virus in terms of reservoir status is still poorly understood. Thus, vertebrate reservoirs remain yet to be discovered.
9. Current Knowledge of the Roles of Vertebrates and Vectors
- The role of DT by vertebrates in the maintenance of arboviruses is poorly understood.
- No vertebrate host of RNA arboviruses satisfies the required qualities of reservoirs based on the classical definition.
- Vertebrates serve as a source of blood for vectors and as an amplifier for arboviruses, whether the environment in question be sylvan/rural (as in enzootic cycle) or urban/suburban.
- For those arboviruses for which the vector-vertebrate host relationship is well established, vectors serve as reservoir, amplifier, and carrier, whether the environment in question be sylvan/rural or urban/suburban.
- The vertebrate host range of an arbovirus is determined principally by the vectors involved in transmission and the availability of the hosts in a particular ecosystem. Depending on the virus, the range may expand to secondary hosts and/or vectors, as a result of selection pressure on the virus generated either in vectors or in hosts as well as of the degree of promiscuity of host seeking behavior of the vectors involved.
10. Impact of Molecular Virologic Research
- (a)
- Phylogenetic studies to identify the origin of arboviruses and evolutionary direction in the context of the vector/host range shift.
- (b)
- (c)
- Molecular determinants of viruses involved in the vector or host range shift.
- (d)
- If phylogenetic studies can be used to predict the establishment of the endemic urban transmission of CHIKV, ZIKV and YFV in the future.
11. The Impact of Epidemiology/Epizootiology, Disease Prevention/Control, and Zoonoses
11.1. Epidemiology/Epizootiology
- Why YF does not occur in tropical Asia infested by the principal vector, Ae. aegypti [208], a century-old unresolved question and a topic of growing interest in the wake of importation of YF cases to China from Africa [209]. This in spite of the fact that Asian strains of Ae. aegypti mosquitoes are competent in the transmission of this virus [210,211] and some Asian monkeys (such as rhesus monkeys) are susceptible to infection by YFV.
- Why JEV has not spread to Africa and the Middle East where the principal vector, Culex tritaeniorhynchus, has been known to be distributed for a long time. A recent report of detection of JEV RNA in a patient in Angola [212] is of interest.
- Why has dengue endemic transmission not been established in temperate parts of Asia infested by a vector, Ae. albopictus, despite its superior vector competence measured under laboratory conditions [213]? This is explained possibly in part due to its lower dependence on human blood and its less efficient virus dissemination in the body of Ae. albopictus mosquito [214].
- If ASFV is indeed spreading in parts of Africa and Europe only by DT, what is the mechanism involved?
- If CHIKV and ZIKV will establish an enzootic cycle in sylvan/feral areas of the Americas, Australia, or Europe.
- Of the seven viruses (DENV1, DENV2, DENV3, DENV4, CHIKV, YFV, and ZIKV) transmitted by the same vector (Ae. aegypti) in an urban cycle, why is it that only the four serotypes of dengue virus can maintain perpetual urban transmission cycles and the other viruses disappear from a given urban center of considerable population size after less than 5 years of transmission? The answer to the latter question might provide an explanation for the presumed failure of CHIKV to establish endemicity in the 19th century in the Americas, if in fact the controversial retrospective speculation of a chikungunya pandemic in that century [215] is correct. In contrast, WNV readily established endemicity there after the 1999 invasion, most likely because of broad vector and vertebrate host ranges. A similar phenomenon was observed in the global spread of BTV and of Usutu virus spread in Europe.
- Are there two mechanisms used by arboviruses for maintenance, one based on BT and the other largely based on DT? This possibility was raised on the basis of long-term surveillance of VSNJV activity in an island where the number of visitors is limited and human activities are severely-controlled [216], an ideal environment for studying the previously mentioned “basic maintenance mechanism [66]”.
11.2. Disease Prevention/Control
11.3. Zoonoses
12. Options for a Solution
12.1. Revision of the Notion and Redefining Vertebrate Reservoir
12.2. Online Communication in the Context of One Health
13. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Health Organization. Arthropod-Borne and Rodent-Borne Viral Diseases; A report of a WHO scientific group; WHO: Geneva, Switzerland, 1985; pp. 1–116. [Google Scholar]
- Scott, T.W. Vertebrate host ecology. In The Arboviruses: Epidemiology and Ecology; Monath, T.P., Ed.; CRC Press: Boca Raton, FL, USA, 1988; Volume 2, pp. 257–280. [Google Scholar]
- Reisen, W.K. North American mosquito-borne arboviruses: Questions of persistence and amplification. Bull. Soc. Vector Ecol. 1990, 15, 11–21. [Google Scholar]
- Nuttall, P.A.; Labuda, M. Tick-borne encephalitis subgroup. In Ecological Dynamics of Tick-Borne Zoonoses; Sonenshine, D.E., Mather, T.N., Eds.; Oxford University Press: New York, NY, USA, 1994; pp. 351–391. [Google Scholar]
- Kuno, G.; Chang, G.J. Biological transmission of arboviruses: Reexamination and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin. Microbiol. Rev. 2005, 18, 608–637. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.C.; Rutledge, C.R.; Tabachnick, W.J. Relationships between host viremia and vector susceptibility for arboviruses. J. Med. Entomol. 2006, 43, 623–630. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Arboviruses and Human Disease. Report of a WHO Scientific Group; WHO: Geneva, Switzerland, 1967; pp. 5–84. [Google Scholar]
- Boyce, R.W. Mosquito or Man? The Concept of the Tropical World; E.P. Dutton & Co.: New York, NY, USA, 1909; pp. 41–48. [Google Scholar]
- Hardy, A. Animals, disease, and man: Making connections. Perspect. Biol. Med. 2003, 46, 200–215. [Google Scholar] [CrossRef]
- Bugher, J.C. The mammalian host in yellow fever. In Yellow Fever; Strode, G.K., Ed.; McGrow-Hill Book Co.: New York, NY, USA; Toronto, ON, Canada; London, UK, 1951; pp. 299–384. [Google Scholar]
- Honigsbaum, M. Tipping the balance: Karl Friedrich Meyer, latent infection, and the birth of modern idea of disease ecology. J. Hist. Biol. 2016, 49, 261–309. [Google Scholar] [CrossRef] [PubMed]
- Meyer, K.F. The Animal Kingdom, a reservoir of human disease. Ann. Intern. Med. 1948, 29, 326–347. [Google Scholar] [PubMed]
- Meyer, K.F. Virus diseases of animals transmissible to man. Ann. Intern. Med. 1934, 8, 552–569. [Google Scholar]
- Taylor, R.M. Epidemiology. In Yellow Fever; Strode, G.K., Ed.; McGraw-Hill Book Co.: New York, NY, USA; Toronto, ON, Canada; London, UK, 1951; pp. 427–538. [Google Scholar]
- Reeves, W.C. Arbovirologist and Professor, UC Berkeley School of Public Health, an Oral History Conducted in 1990 and 1991 by Sally Smith Hughes; The Bancroft Library, University of California: Berkeley, CA, USA, 1993; p. 193. [Google Scholar]
- Johnson, K.M. Professor William C. Reeves: Scholar, teacher, and friend. Am. J. Trop. Med. Hyg. 1987, 37 (Suppl. 3), S3–S7. [Google Scholar] [CrossRef]
- Huff, C.G. A proposed classification of disease transmission by arthropods. Science 1931, 74, 456–457. [Google Scholar] [CrossRef] [PubMed]
- Maramorosch, K. Biological transmission of plant viruses by animal vectors. Trans. N. Y. Acad. Sci. 1954, 83, 234–240. [Google Scholar]
- Reeves, W.C. Arthropods as vectors and reservoirs of animal pathogenic viruses. In Handbuch der Virusforschung; Hallauer, C., Meyer, K.F., Eds.; Springer: Vienna, Austria, 1958; pp. 177–202. [Google Scholar]
- Thomas, H.W. Yellow fever: Results of inoculation of cases and report of talk to the society. Trans. R. Soc. Trop. Med. Hyg. 1909, 3, 59–62. [Google Scholar] [CrossRef]
- Balfour, A. Wild monkeys as reservoir for virus of yellow fever. Lancet 1914, 1, 1176–1178. [Google Scholar] [CrossRef]
- Reeves, W.C.; Hutson, G.A.; Bellamy, R.E.; Scrivani, R.P. Chronic latent infections of birds with western equine encephalomyelitis virus. Proc. Soc. Exp. Biol. Med. 1958, 97, 733–736. [Google Scholar] [CrossRef] [PubMed]
- Luedke, A.J.; Jones, R.H.; Walton, T.E. Overwintering mechanism for bluetongue virus: Biological recovery of latent virus from a bovine by bites of Culicoides variipennis. Am. J. Trop. Med. Hyg. 1977, 26, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Kuno, G. Persistence of arboviruses and antiviral antibodies in vertebrate hosts: Its occurrence and impacts. Rev. Med. Virol. 2001, 11, 165–190. [Google Scholar] [CrossRef] [PubMed]
- Smith, W. Mechanisms of Virus Infection. General Considerations. In Mechanisms of Virus Infection; Smith, W., Ed.; Academic Press: London, UK; New York, NY, USA, 1963; pp. 1–34. [Google Scholar]
- Semenov, B.F.; Chumikhin, S.P.; Karmysheva, V.; Iakovleva, N.I. Experiments with West Nile, Sindbis, Bhanja, and Sicilian mosquito fever viruses. Vestn. Akad. Med. Nauk USSR 1973, 28, 79–83. [Google Scholar]
- Abdussalam, M. Significance of ecological studies of wild animal reservoirs of zoonoses. Bull. World Health Organ. 1959, 21, 179–186. [Google Scholar] [PubMed]
- Mims, C.A. The meaning of persistent infections in nature. Bull. World Health Organ. 1975, 52, 747–751. [Google Scholar] [PubMed]
- Rodhain, F. The idea of natural reservoir in arbovirology. Bull. Soc. Pathol. Exot. 1998, 91, 279–282. (In French) [Google Scholar]
- Plowright, R.K.; Peel, A.J.; Streicker, D.G.; Gilbert, A.T.; McCallum, H.; Wood, J.; Baker, M.L.; Restif, O. Transmission or within-host dynamics driving pulses of zoonotic viruses in reservoir-host populations. PLoS Negl. Trop. Dis. 2016, 10, e0004796. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.; Morrison, L.A.; Knipe, D.M. Viral persistence. In Viral Pathogens; Nathanson, N., Ahmed, R., Gonzalez-Scarano, F., Griffin, D.E., Holmes, K.V., Murphy, F.A., Robinson, H.L., Eds.; Lippincott-Raven: New York, NY, USA, 1997; pp. 181–205. [Google Scholar]
- Eklund, C.M. The ecology of mosquito borne viruses. Annu. Rev. Microbiol. 1953, 7, 339–360. [Google Scholar] [CrossRef] [PubMed]
- Doherty, R.L. Viruses, mosquitoes, and epidemics. Qld. Health 1964, 1, 1–9. [Google Scholar]
- Andrewes, C.H. Factors in virus evolution. Adv. Virus Res. 1957, 4, 1–24. [Google Scholar] [PubMed]
- Reeves, W.C. Overwintering of arboviruses. In Epidemiology and Control of Mosquito-Borne Arboviruses in California, 1943–1987; Reeves, W.C., Asman, S.M., Hardy, J.L., Milby, M.M., Reisen, W.K., Eds.; California Mosquito Control Association, Inc.: Sacramento, CA, USA, 1990; pp. 357–382. [Google Scholar]
- Huhtamo, E.; Cook, S.; Moureau, G.; Uzcátegui, N.Y.; Sironen, T.; Kuivanen, S.; Putkuri, N.; Kurkela, S.; Harbach, R.E.; Firth, A.E.; et al. Novel flaviviruses from mosquitoes: Mosquito-specific evolutionary lineages within the phylogenetic group of mosquito-borne flaviviruses. Virology 2014, 464–465, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Querido, J.; Echeverria, M.G.; Marti, G.A.; Costa, R.M.; Susevich, M.L.; Rabinovich, J.W.; Copa, A.; Montaño, N.A.; Garcia, L.; Cordova, M.; et al. Seroprevalence of Triatoma virus (Dicistroviridae: Cripaviridae) antibodies in Chagas disease patients. Parasites Vectors 2015, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Scotti, P.D.; Longsworth, J.F. Naturally occurring IgM antibodies to a small RNA insect virus in some mammalian sera in New Zealand. Intervirology 1980, 13, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Masembe, C.; Michuki, G.; Onyando, M.; Rumberic, C.; Norling, M.; Bishop, R.P.; Djikeng, A.; Kemp, S.J.; Orth, A.; Skilton, R.A.; et al. Viral metagenomics demonstrates that domestic pigs are a potential reservoir for Ndumu virus. Virol. J. 2012, 9, 218. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.C.; Nguyen, V.G.; Goode, D.; Park, C.H.; Kim, A.R.; Moon, H.J.; Park, S.J.; Kim, H.K.; Park, B.K. Gouléako and Herbert viruses in pigs, Republic of Korea, 2013. Emerg. Infect. Dis. 2014, 20, 2072–2075. [Google Scholar] [CrossRef] [PubMed]
- Junglen, S.; Marklewitz, M.; Zirkel, F.; Wollny, R.; Meyer, B.; Heidemann, H.; Metzger, S.; Annan, A.; Dei, D.; Leendertz, F.H.; et al. No evidence of Gouléako and Herbert virus infections in pigs, Cộte d’Ivoire and Ghana. Emerg. Infect. Dis. 2015, 21, 2190–2193. [Google Scholar] [CrossRef] [PubMed]
- Marklewitz, M.; Zirkel, F.; Kurth, A.; Drosten, C.; Junglen, S. Evolutionary and phenotypic analysis of live virus isolates suggests arthropod origin of pathogenic RNA virus family. Proc. Natl. Acad. Sci. USA 2015, 112, 7536–7541. [Google Scholar] [CrossRef] [PubMed]
- Hammon, W.M.; Reeves, W.C. Recent advances in the epidemiology of the arthropod-borne virus encephalitides. Am. J. Public Health Nations 1945, 35, 994–1004. [Google Scholar] [CrossRef]
- Lord, J.S.; Gurley, E.S.; Pulliam, J.R.C. Rethinking Japanese encephalitis virus transmission: A framework for implicating host and vector species. PLoS Negl. Trop. Dis. 2015, 9, e0004074. [Google Scholar] [CrossRef] [PubMed]
- Burton, A.N.; McLintock, J.; Rempel, J.G. Western equine encephalitis virus in Saskatchewan garter snakes and leopard frogs. Science 1966, 154, 1029–1031. [Google Scholar] [CrossRef] [PubMed]
- Bowen, G.S. Prolonged western equine encephalitis viremia in the Texas tortoise (Gopherus berlandieri). Am. J. Trop. Med. Hyg. 1977, 26, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Russell, R.C. Ross River virus: Ecology and distribution. Annu. Rev. Entomol. 2002, 47, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Broom, A.K.; Lindsay, M.D.A.; Johansen, C.A.; Wright, A.E.; Mackenzie, J.S. Two possible mechanisms for survival and initiation of Murray Valley encephalitis virus activity in the Kimberley region of Western Australia. Am. J. Trop. Med. Hyg. 1995, 53, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Venter, G.J.; Labuschagne, K.; Majatladi, D.; Boikanyo, S.N.; Lourens, C.; Ebersohn, K.; Venter, E.H. Culicoides species abundance and potential over-wintering of African horse sickness virus in the Onderstepoort area, Gauteng, South Africa. J. S. Afr. Vet. Assoc. 2014, 85, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Nelms, B.M.; Macedo, P.A.; Kothera, L.; Savage, H.M.; Reisen, W.K. Overwintering biology of Culex (Diptera: Culicidae) mosquitoes in the Sacramento Valley of California. J. Med. Entomol. 2013, 50, 773–790. [Google Scholar] [CrossRef] [PubMed]
- Kumm, H.W. Yellow fever transmission experiments with South American bats. Ann. Trop. Med. Parasistol. 1932, 26, 207–213. [Google Scholar] [CrossRef]
- Sulkin, S.E. The bats as a reservoir of viruses in nature. Prog. Med. Virol. 1962, 4, 157–207. [Google Scholar]
- Le Lay-Rogues, G.; Chastel, C. Virus des chiropteres transmis ou non par arthropods. Med. Trop. 1986, 46, 389–395. [Google Scholar]
- Geevarghese, G.; Banerjee, K. Role of bats in the natural cycle of arboviruses. Curr. Sci. 1990, 59, 26–31. [Google Scholar]
- Calisher, C.H.; Childs, J.E.; Field, H.E.; Holmes, K.V.; Schountz, T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 2006, 19, 531–545. [Google Scholar] [CrossRef] [PubMed]
- Gebhardt, L.P.; Stanton, G.J. The role of poikilothermic hosts as virus reservoirs. Jpn. J. Med. Sci. Biol. 1967, 20, 30–34. [Google Scholar] [PubMed]
- Chamberlain, R.W. Epidemiology of arthropod-borne togaviruses: The role of arthropods as hosts and vectors and of vertebrate hosts in natural transmission cycles. In The Togaviruse: Biology, Structure, Replication; Schlesinger, R.W., Ed.; Academic Press: New York, NY, USA; London, UK; Toronto, ON, Canada; Sydney, Australia; San Francisco, CA, USA, 1980; pp. 175–227. [Google Scholar]
- Reeves, W.C. Overwintering of arboviruses. Prog. Med. Virol. 1974, 17, 193–220. [Google Scholar]
- Hardy, J.L.; Reeves, W.C. Experimental studies on infection in vertebrate hosts. In Epidemiology and Control of Mosquito-Borne Arboviruses in California, 1943–1987; Reeves, W.C., Asman, S.M., Hardy, J.L., Milby, M.M., Reisen, W.K., Eds.; Mosquito and Vector Control Association of California Inc.: Sacramento, CA, USA, 1990; pp. 66–127. [Google Scholar]
- Melville, L.F.; Hunt, N.T.; Davis, S.S.; Weir, R.P. Bluetongue virus does not persist in naturally infected cattle. Vet. Ital. 2004, 40, 502–507. [Google Scholar]
- Walton, T.E. The history of bluetongue and a current global overview. Vet. Ital. 2004, 40, 31–38. [Google Scholar] [PubMed]
- Owen, J.C.; Moore, F.R.; Williams, A.J.; Ward, M.P.; Beveroth, T.A.; Miller, E.A.; Wilson, L.C.; Morley, V.J.; Abbey-Lee, R.N.; Veeneman, B.A.; et al. Test of recrudescence hypothesis for overwintering of West Nile virus in gray catbirds. J. Med. Entomol. 2010, 47, 451–457. [Google Scholar] [CrossRef]
- Collins, D.L. Arthropod-borne viral encephalitides. In Diseases Transmitted from Animals to Man; Hull, T.G., Ed.; Charles C. Thomas Publisher: Springfield, IL, USA, 1963; pp. 731–773. [Google Scholar]
- Downs, W.G. Arboviruses: Epidemiological considerations. In Infectious Agents and Host Reactions; Mudd, S, Ed.; W.B. Saunders Co.: Philadelphia, PA, USA, 1970; pp. 538–555. [Google Scholar]
- Reeves, W.C. Mosquitoes and virus diseases. In Biological Transmission of Diseases Agents; Maramorosch, K., Ed.; Academic Press: New York, NY, USA; London, UK, 1962; pp. 75–82. [Google Scholar]
- Chamberlain, R.W. Arbovirology—Then and now. Am. J. Trop. Med. Hyg. 1982, 31, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Johnson, H.N. Foreword. In CRC Handbook Series in Zoonoses. Section B: Viral Zoonoses; Steele, J.H., Beran, G.W., Eds.; CRC Press: Boca Raton, FL, USA, 1981; Volume 1. [Google Scholar]
- World Health Organization. Joint FAO/WHO Expert Committee on Zoonoses; WHO: Geneva, Switzerland, 1967; p. 68. [Google Scholar]
- Muul, I. Mammalian ecology and epidemiology of zoonoses. Science 1970, 175, 1275–1279. [Google Scholar] [CrossRef]
- Meyer, K.F. The Zoonoses in Their Relation to Rural Health; University of California Press: Oakland, CA, USA, 1956; p. 49. [Google Scholar]
- Villarreal, L.P.; Defillippis, V.R.; Gottlieb, K.A. Acute and persistent viral life strategies and their relationship to emerging diseases. Virology 2000, 272, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Geoghegan, J.L.; Senior, A.M.; Di Giallonardo, F.; Holmes, E.C. Virological factors that increases the transmissibility of emerging human viruses. Proc. Natl. Acad. Sci. USA 2016, 113, 4170–4175. [Google Scholar] [CrossRef] [PubMed]
- Gritsun, T.S.; Frolova, T.V.; Zhankov, A.I.; Armesto, M.; Turner, S.L.; Frolova, M.P.; Pogodina, V.V.; Lashkevich, V.A.; Gould, E.A. Characterization of a Siberian virus isolated from a patient with progressive chronic tick-borne encephalitis. J. Virol. 2003, 77, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Dumina, A.L. Experimental study of the extent to which the tick Ixodes persulcatus becomes infected with Russian spring-summer encephalitis virus as a result of sucking the blood of immune animals. Vopr. Virusol. 1958, 3, 166–170. (In Russian) [Google Scholar]
- Nuttall, P.A.; Labuda, M. Dynamics of infection in tick vectors and at the tick-host interface. Adv. Virus Res. 2003, 60, 233–272. [Google Scholar] [PubMed]
- Wheeler, S.S.; Vineyard, M.P.; Barker, C.M.; Reisen, W.K. Importance of recrudescent avian infection in West Nile overwintering: Incomplete antibody neutralization of virus allows infrequent vector infection. J. Med. Entomol. 2012, 49, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Cowled, C.; Melville, L.; Weir, R.; Walsh, S.; Gubala, A.; Davis, S.; Boyle, D. Persistent and recrudescent infection in cattle following natural infection with Middle Point orbivirus. Arch. Virol. 2012, 157, 1161–1165. [Google Scholar] [CrossRef] [PubMed]
- Price, W.H. Chronic disease and virus persistence in mice inoculated with Kyasanur Forest disease virus. Virology 1966, 29, 679–681. [Google Scholar] [CrossRef]
- Gerloff, R.K.; Larson, C.L. Experimental infection of rhesus monkeys with Colorado tick fever virus. Am. J. Pathol. 1959, 35, 1043–1054. [Google Scholar] [PubMed]
- Oshiro, L.S.; Dondero, D.V.; Emmons, R.W.; Lennette, E.H. The development of Colorado tick fever virus within cells of the haemopoietic system. J. Gen. Virol. 1978, 39, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.K.; Varma, M.G.R. Infection of Aedes aegypti cell line with infectious arbovirus-antibody complexes. Trans. R. Soc. Trop. Med. Hyg. 1976, 70, 230–234. [Google Scholar] [CrossRef]
- Endy, T.P.; Nisalak, A.; Chansuttiwat, S.; Vaughn, D.W.; Green, S.; Ennis, F.A.; Rothman, A.L.; Libraty, D.H. Relationship of pre-existing dengue virus (DV) neutralizing antibody levels to viremia and severity of disease in a protective cohort study of DV infection in Thailand. J. Infect. Dis. 2004, 189, 990–1000. [Google Scholar] [CrossRef] [PubMed]
- Sirichayakul, C.; Sabchaareon, A.; Limkittikul, K.; Yoksan, S. Plaque reduction neutralization antibody test does not accurately predict protection against dengue infection in Ratchaburi cohort, Thailand. Virol. J. 2014, 11, 48. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.R.; Lowe, A.; Higgs, S.; Reid, H.; Gould, E.A. Single amino acid codon change detected in louping ill virus antibody-resistant mutants with reduced neurovirulence. J. Gen. Virol. 1993, 74, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Lok, S.M.; Ng, M.L.; Aaskov, J. Amino acid and phenotypic changes in dengue 2 virus associated with escape from neutralization by IgM antibody. J. Med. Virol. 2001, 65, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Pal, P.; Fox, J.M.; Hawman, D.W.; Huang, Y.J.; Messaoudi, I.; Kreklywich, C.; Denton, M.; Legasse, A.W.; Smith, P.P.; Johnson, S.; et al. Chikungunya viruses that escape monoclonal antibody therapy are clinically attenuated, stable, and not purified in mosquitoes. J. Virol. 2014, 88, 8213–8226. [Google Scholar] [CrossRef] [PubMed]
- Russell, P.K.; McCown, J.M. Comparison of dengue-2 and dengue-3 virus strains by neutralization tests and identification of a subtype of dengue-3. Am. J. Trop. Med. Hyg. 1972, 21, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Leonova, G.N.; Kondratov, I.G.; Maystrovskaya, O.S.; Takashima, I.; Belikov, S.I. Louping ill virus (LIV) in the Far East. Arch. Virol. 2015, 160, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Westaway, E.G. The neutralization of arboviruses: II. Neutralization in heterologous virus-serum mixture with four group B arboviruses. Virology 1965, 26, 528–537. [Google Scholar] [CrossRef]
- Calisher, C.H.; Karabatsos, N.; Lazuick, J.S.; Monath, T.P.; Wolff, K.L. Reevaluationof the Western equine encephalitis antigenic complex of alphaviruses (family Togaviridae) as determined by neutralization tests. Am. J. Trop. Med. Hyg. 1988, 38, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Takamatsu, H.; Mellor, P.S.; Mertens, P.P.C.; Kirkham, P.A.; Burroughs, J.N.; Parkhouse, R.M.E. A possible overwintering mechanism for bluetongue virus in the absence of the insect vector. J. Gen. Virol. 2003, 84, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Melzi, E.; Caporale, M.; Rocchi, M.; Martin, V.; Gamino, V.; di Provido, A.; Marruchella, G.; Entrican, G.; Sevilla, N.; Palmarini, M. Follicular dendritic cell disruption as a novel mechanism of virus- induced immunosuppression. Proc. Natl. Acad. Sci. USA 2016, 113, E6238–E6247. [Google Scholar] [CrossRef] [PubMed]
- Ryzantseva, N.V.; Zhukova, O.B.; Novitskii, V.V.; Pirogova, N.P.; Lepekhin, A.V.; Tokareva, N.V.; Mikhailova, O.V.; Plotnikova, N.N.; Sevost’yanova, N.V. Structural and functional characteristics of lymphocytes in chronic carriers of tick-borne encephalitis virus. Bull. Exp. Biol. Med. 2002, 134, 471–473. [Google Scholar] [CrossRef]
- Goupil, B.A.; Mores, C.N. A review of chikungunya virus-induced arthralgia: Clinical manifestations, therapeutics, and pathogenesis. Open Rheumatol. J. 2016, 10, 129–140. [Google Scholar] [PubMed]
- Journeaux, S.F.; Brown, W.G.; Aaskov, J.G. Prolonged infection of human synovial cells with Ross River virus. J. Gen. Virol. 1987, 68, 3165–3169. [Google Scholar] [CrossRef] [PubMed]
- Soden, M.; Vasudevan, H.; Roberts, B.; Coelen, R.; Hamlin, G.; Vasudevan, S.; La Brody, J. Detection of viral ribonucleic acid and histological analysis of inflamed synovium in Ross River virus infection. Arthritis Rheum. 2000, 43, 365–369. [Google Scholar] [CrossRef]
- Bakonyi, T.; Gajdon, G.K.; Schwing, R.; Vogl, W.; Häbich, A.-C.; Thaller, D.; Weissenböck, H.; Rudolf, I.; Hubálek, Z.; Nowotny, N. Chonic West Nile virus infection in kea (Nestor notabilis). Vet. Microbiol. 2015, 183, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Ravi, V.; Desai, A.S.; Shenoy, P.K.; Satischechandra, P.; Chandramuki, A.; Gourie-Devi, M. Persistence of Japanese encephalitis virus in the human nervous system. J. Med. Virol. 1993, 40, 326–329. [Google Scholar] [CrossRef] [PubMed]
- Zhdanov, V.M. Integration of viral genomes. Nature 1975, 256, 471–473. [Google Scholar] [CrossRef]
- Suhrbier, A.; Jaffar-Bandjee, M.-C.; Gasque, P. Arthritogenic alphaviruses—An overview. Nat. Rev. Rheumatol. 2012, 8, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Katzourakis, A.; Gifford, R.J. Endogenous viral elements in animal genomes. PloS Genet. 2010, 6, e1001191. [Google Scholar] [CrossRef] [PubMed]
- Vögtlin, A.; Hoffmann, M.A.; Nenninger, C.; Renzuello, S.; Steinrigl, A.; Loitsch, A.; Schwermer, H.; Kaufmann, C.; Thür, B. Long-term infection of goats with bluetongue virus serotype 25. Vet. Microbiol. 2013, 166, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.; Walker, C.; Herrington, E.; Lewis, J.A.; McCormick, J.; Beasley, D.W.; Tesh, R.B.; Fisher-Hoch, S. Persistent infection with West Nile virus years after initial infection. J. Infect. Dis. 2010, 201, 2–4. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, S.S.; Langevin, S.A.; Brault, A.C.; Woods, L.; Carroll, B.D.; Reisen, W.K. Detection of persistent West Nile virus RNA in experimentally and naturally infected avian hosts. Am. J. Trop. Med. Hyg. 2012, 87, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Yamanishi, S.; Yamanaka, Y.; Kameyama, T.; Miki, K.; Miyamoto, C.; Takashima, I. Detection of Japanese encephalitis virus genome in mononuclear cells from blood and spleen of swine. J. Jpn. Vet. Med. Assoc. 1997, 50, 731–734. (In Japanese) [Google Scholar] [CrossRef]
- Bakhavalova, V.N.; Potapova, O.F.; Morozova, O.V. Vertical transmission of tick-borne encephalitis virus between generations of adapted reservoir small rodents. Virus Res. 2008, 140, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Gibney, K.B.; Lanciotti, R.S.; Sejvar, J.J.; Nugent, C.T.; Linnen, J.M.; Delory, M.J.; Lehman, J.A.; Boswell, E.N.; Staples, J.E.; Fischer, M. West Nile virus RNA not detected in urine of 40 people tested 6 years after acute West Nile virus. J. Infect. Dis. 2011, 203, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, M.U.; Hoggetts, S.I.; Mackenzie, J.S.; Urosevic, M. Characterization of defective viral RNA produced during persistent infection of vero cells with Murray Valley encephalitis virus. J. Virol. 1998, 72, 2474–2482. [Google Scholar] [PubMed]
- Honda, T.; Tomonaga, K. Endogenous non-retroviral RNA virus elements evidence a novel type of antiviral immunity. Mob. Gen. Elem. 2016, 6, e1165785. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, S.S.; Vineyard, M.P.; Woods, L.W.; Reisen, W.K. Dynamics of West Nile virus persistence in house sparrows (Passer domesticus). PLoS Negl. Trop. Dis. 2012, 6, e1860. [Google Scholar] [CrossRef] [PubMed]
- Nicastri, E.; Castilletti, C.; Liuzzi, G.; Ianetta, M.; Capobianchi, M.R.; Ippolito, G. Persistent detection of Zika virus RNA in semen six months after symptom onset in a traveler returning from Haiti to Italy, February, 2016. Eur. Surveill. 2016, 21, 30314. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, J.; Rabeneck, D.B.; Martines, R.B.; Reagan-Steiner, S.; Ermias, Y.; Estetter, L.B.C.; Suzuki, T.; Ritter, J.; Keating, M.K.; Hale, G.; et al. Zika virus RNA replication and persistence in brain and placental tissue. Emerg. Infect. Dis. 2017, 23, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Driggers, R.W.; Ho, C.-Y.; Korhonen, E.M.; Kuivanen, S.; Jääkeläinen, A.J.; Smura, T.; Rosenberg, A.; Hill, D.A.; DeBiasi, R.L.; Vezina, G.; et al. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N. Engl. J. Med. 2016, 274, 2142–2151. [Google Scholar] [CrossRef] [PubMed]
- Duggal, N.K.; Ritter, J.M.; Pestorius, S.E.; Zaki, S.R.; Davis, B.S.; Chang, G.J.; Bowen, R.A.; Brault, A.C. Frequent Zika virus sexual transmission and prolonged viral RNA shedding in an immunodeficient mouse model. Cell Rep. 2017, 18, 1751–1760. [Google Scholar] [CrossRef] [PubMed]
- Kuno, G. Transmission of arboviruses without involvement of arthropod vectors. Acta Virol. 2001, 45, 139–150. [Google Scholar] [PubMed]
- Gilbert, L.; Jones, L.D.; Laurenson, M.K.; Gould, E.A.; Reid, H.W.; Hudson, P.J. Ticks need not bite their red grouse hosts to infect them with louping ill virus. Proc. R. Soc. Lond. B (Suppl.) 2004, 271, S202–S205. [Google Scholar] [CrossRef] [PubMed]
- Benda, R. The common tick, Ixodes ricinus L., as a reservoir and vector of tick-borne encephalitis. II. Experimental transmission of tick-borne encephalitis to laboratory animals by ticks of different stages. Hyg. Epidemiol. Microbiol. Immunol. 1958, 2, 331–344. [Google Scholar]
- Jenny, B.W.; Erickson, G.A.; Snyder, M.L. Vesicular stomatitis outbreaks and surveillance in the United States. January 1980 through May 1984. Proc. U. S. Anim. Health Assoc. 1984, 88, 337–345. [Google Scholar]
- Hanson, R.P. The natural history of vesicular stomatitis. Bacteriol. Rev. 1952, 16, 179–203. [Google Scholar]
- Huyvaert, K.P.; Moore, A.T.; Panella, N.A.; Edwards, E.A.; Brown, M.B.; Komar, N.; Brown, C.R. Experimental inoculation of house sparrows (Passer domesticus) with Buggy Creek virus. J. Wildlife Dis. 2008, 44, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Reisen, W.K.; Fang, Y.; Lothrop, H.D.; Martinez, V.M.; Wilson, J.; Occonor, P.; Carney, R.; Cahoon-Young, B.; Shafli, M.; Brault, A.C. Overwintering of West Nile virus in southern California. J. Med. Entomol. 2006, 43, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Dawson, J.R.; Stone, W.B.; Ebel, G.D.; Young, D.S.; Galinski, D.S.; Pensabene, J.P.; Franke, M.A.; Eidson, M.; Kramer, L.D. Crow deaths caused by West Nile virus during winter. Emerg. Infect. Dis. 2007, 13, 1912–1914. [Google Scholar] [CrossRef] [PubMed]
- Ricklin, M.E.; García-Nicolás, O.; Brechbühl, D.; Python, S.; Zumkehr, B.; Nougairede, A.; Charrel, R.N.; Posthaus, H.; Ceverann, A.; Summerfiled, A. Vector-free transmission and persistence of Japanese encephalitis virus in pigs. Nat. Commun. 2016, 7, 10832. [Google Scholar] [CrossRef] [PubMed]
- Van Vuuren, M.; Penzhom, B.L. Geographic range of vector-borne infections and their vectors: the role of African wildlife. Rev. Sci. Tech. 2015, 34, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Vizcaino, J.M.; Mur, L.; Bastos, A.D.; Penrith, M.L. New insights into the role of ticks in African swine fever epidemiology. Rev. Sci. Tech. 2015, 34, 503–511. [Google Scholar] [CrossRef] [PubMed]
- DeFoliart, G.R.; Grimstad, P.R.; Watts, D.M. Advances in mosquito-borne arbovirus vector research. Ann. Rev. Entomol. 1987, 32, 479–506. [Google Scholar] [CrossRef] [PubMed]
- Spielman, A. Research approaches in the development of interventions against vector-borne infection. J. Exp. Biol. 2006, 206, 3727–3734. [Google Scholar] [CrossRef]
- Gubler, D.J. The president’s address. Prevention and control of tropical diseases in the 20th century: Back to the field. Am. J. Trop. Med. Hyg. 2001, 65, v–xi. [Google Scholar] [CrossRef] [PubMed]
- Carver, S.; Bestall, A.; Jardine, A.; Ostfeld, R.S. Influence of hosts on the ecology of arboviral transmission. Potential mechanisms influencing dengue, Murray Valley encephalitis, and Ross River virus in Australia. Vector-Borne Zoonotic Dis. 2009, 9, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Süss, J. Epidemiology and ecology of TBE relevant to the production of effective vaccine. Vaccine 2003, 21, S19–S35. [Google Scholar] [CrossRef]
- Komar, N. West Nile virus: Epidemiology and ecology in North America. Adv. Virus Res. 2003, 61, 185–234. [Google Scholar] [PubMed]
- Go, Y.Y.; Balasuriya, U.B.R.; Lee, C.-K. Zoonotic encephalitides cuased by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses. Clin. Exp. Vaccine Res. 2014, 3, 58–77. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, J.S.; McKinnon, M.; Jeggo, M. One Health: From concept to practice. In Confronting Emerging Zoonoses: The One Health Paradigm; Yamada, A., Kahn, L.H., Kaplan, B., Monath, T.P., Woodall, J., Conti, L.A., Eds.; Springer: Tokyo, Japan, 2014; pp. 163–189. [Google Scholar]
- Clements, A.N. Transmission of viruses and interactions with bacteria. In The Biology of Mosquitoes; CABI: Wallingford, UK, 2012; Volume 3, pp. 105–106. [Google Scholar]
- Diaz, L.A.; Nemeth, N.M.; Bowen, R.A.; Almiron, W.R.; Contigiani, M.S. Comparison of Argentinean Saint Louis encephalitis virus non-epidemic and epidemic strain infections in an avian model. PLoS Negl. Trop. Dis. 2011, 5, e1177. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.Y.X.; de Boer, W.F.; van Langevelde, F.; Olson, V.; Blackburn, T.M.; Prins, H.H.T. Species’ life-history traits explain interspecific variation in reservoir competence: A possible mechanism underlying the dilution effect. PLoS ONE 2013, 8, e54341. [Google Scholar]
- Althouse, B.A.; Guerbois, M.; Cummings, D.A.T.; Diop, O.M.; Faye, O.; Faye, A.; Diallo, D.; Sadio, B.D.; Sow, A.; Faye, O.; et al. Monkey in the middle: Monkeys serve as amplification hosts but not reservoir hosts of sylvatic Chikungunya virus. bioRxiv 2016. [Google Scholar] [CrossRef]
- Steele, J.H. CRC Handbook Series in Zoonoses. Section B: Viral Zoonoses; Steele, J.H., Beran, G.W., Eds.; CRC Press: Boca Raton, FL, USA, 1981; Volume 2. [Google Scholar]
- Parrish, C.R.; Holmes, E.C.; Morens, D.M.; Pack, E.-C.; Burke, D.S.; Calisher, C.H.; Laughlin, C.A.; Saif, L.J.; Daszak, P. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol. Mol. Biol. Rev. 2008, 72, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Theiler, M.; Downs, W.G. The Arthropod-Borne Viruses of Vertebrates; Yale University Press: New Haven, CT, USA; London, UK, 1973; p. 578. [Google Scholar]
- Huff, C.G. Studies on the evolution of some disease-producing organisms. Q. Rev. Biol. 1938, 13, 196–206. [Google Scholar] [CrossRef]
- Baker, A.C. The typical epidemic series. Am. J. Trop. Med. 1943, 23, 559–566. [Google Scholar] [CrossRef]
- Schlesinger, R.W. New opportunities in biological research offered by arthropod cell culture. 1. Some speculations on the possible role of arthropods in the evolution of arboviruses. Curr. Top. Microbiol. 1971, 55, 241–245. [Google Scholar]
- Porterfield, J.S. Antigenic characteristics and classification of Togaviridae. In The Togaviruses—Biology, Structure, Replication; Schlesinger, R.W., Ed.; Academic Press: New York, NY, USA; London, UK, 1980; pp. 13–46. [Google Scholar]
- Koblet, H. Viral evolution and insects as a possible virologic turning table. In Vitro Cell. Dev. Biol. 1993, 29A, 274–283. [Google Scholar] [CrossRef]
- Reeves, W.C.; Emmons, R.W.; Hardy, J.L. Historical perspectives on California encephalitis virus in California. Prog. Clin. Biol. Res. 1983, 123, 19–29. [Google Scholar] [PubMed]
- Beaty, B.J.; Trent, D.W.; Roehrig, J.T. Virus variation and evolution: mechanisms and epidemiological significance. In The Arboviruses: Edpiemiology and Ecology; Monath, T.P., Ed.; CRC Press: Boca Raton, FL, USA, 1988; Volume 1, pp. 59–85. [Google Scholar]
- Bolling, R.G.; Weaver, S.C.; Tesh, R.B.; Vasilakis, N. Insect-specific virus discovery: significance for the arbovirus community. Viruses 2015, 7, 4911–4928. [Google Scholar] [CrossRef] [PubMed]
- Junglen, S.; Drosten, C. Virus diversity and recent insights into virus diversity in arthropods. Curr. Opin. Microbiol. 2013, 16, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Junglen, S. Evolutionary origin of pathogenic arthropod-borne viruses—A case study in the family Bunyaviridae. Curr. Opin. Insect Sci. 2016, 16, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Lin, X.-D.; Tian, J.-H.; Chen, L.-J.; Chen, X.; Li, C.-X.; Qin, X.-C.; Li, J.; Cao, J.-P.; Eden, J.-S.; et al. Redefining the invertebrate RNA virus sphere. Nature 2016, 540, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Bichaud, L.; de Lamballerie, X.; Alkan, C.; Izri, A.; Gould, E.A.; Charrel, R.N. Arthropods as a source of RNA viruses. Microb. Pathog. 2014, 77, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, R.; Brown, D.T.; Paredes, A. Structural differences observed in arboviruses of the Alphavirus and Flavivirus genera. Adv. Virol. 2014, 2014, 259382. [Google Scholar] [CrossRef] [PubMed]
- Ballinger, M.; Buenn, J.A.; Hay, J.; Czechowski, D.; Taylor, D.J. Discovery and evolution of bunyavirids in arctic phantom midges and ancient bunyavirid-like sequences in insect genomes. J. Virol. 2014, 88, 8783–8794. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-X.; Shi, M.; Tian, J.-H.; Lin, X.-D.; Kang, Y.-J.; Chen, L.-J.; Qin, X.-C.; Xu, J.; Holmes, E.C.; Zhang, Y.-Z. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. Elife 2015, 4. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ren, J.; Gao, Q.; Hu, Z.; Sun, Y.; Li, X.; Rowlands, D.J.; Yin, W.; Wang, J.; Stuart, D.I.; et al. Hepatitis A virus and the origins of picornaviruses. Nature 2015, 517, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Dudas, G.; Obbard, D.J. Are arthropods at the heart of virus evolution? Elife 2015, 4, E06837. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.J.; Warrilow, D.; McLean, B.J.; Watterson, D.; O’Brien, C.A.; Colmant, A.M.; Johansen, C.A.; Barnard, R.T.; Hall-Mendelin, S.; Davis, S.S.; et al. A new orbivirus isolated from mosquitoes in North-Western Australia shows antigenic and genetic similarity to Corriparta virus but does not replicate in vertebrate cells. Viruses 2016, 88, 141. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Lin, X.-D.; Vasilakis, N.; Tian, J.-H.; Li, C.-X.; Chen, L.-J.; Eastwood, G.; Diao, X.-N.; Chen, M.-H.; Xiao, C.; et al. Divergent viruses discovered in arthropods and vertebrates revise the evolutionary history of the Flaviviridae and related viruses. J. Virol. 2015, 90, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Gaunt, M.W.; Sall, A.A.; de Lamballerie, X.; Falconar, A.K.I.; Dzhivanian, T.I.; Gould, E.A. Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J. Gen. Virol. 2001, 82, 1867–1876. [Google Scholar] [CrossRef] [PubMed]
- Honig, J.E.; Osborne, J.C.; Nichol, S.T. The high genetic variation of viruses of the genus Nairovirus reflects the diversity of their predominant tick hosts. Virology 2004, 318, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Belaganahalli, M.N.; Maan, S.; Maan, N.S.; Tesh, R.B.; Attoui, H.; Meertens, P.P.C. Umatilla virus genome sequencing and phylogenetic analysis: Identification of Stretch Lagoon orbivirus as a new member of the Umatilla virus group. PLoS ONE 2011, 6, e23605. [Google Scholar] [CrossRef] [PubMed]
- Gubala, A.; Davis, S.; Weir, S.; Melville, L.; Cowled, C.; Boyle, D. Tibrogargan and Coastal Plain rhabdoviruses: Genomic characterization, evolution of novel genes and seroprevalence in Australian livestock. J. Gen. Virol. 2011, 92, 2160–2170. [Google Scholar] [CrossRef] [PubMed]
- Palacios, G.; Sarji, N.; Travassos da Rosa, A.; Guzman, H.; Yu, X.; Desai, A.; Rosen, G.E.; Hutchison, S.; Lipkin, W.I.; Tesh, R. Characterization of the Uukuniemi virus group (Phlebovirus: Bunyaviridae): Evidence for seven distinct species. J. Virol. 2013, 87, 3187–3195. [Google Scholar] [CrossRef] [PubMed]
- Mohd Jaafar, F.; Belhouchet, M.; Belaganahalli, M.; Tesh, R.B.; Mertens, P.P.; Attoui, H. Full-genome characterization of Orungo, Lebombo, and Changuinola viruses provides evidence for co-evolution of orbiviruses with their arthropod vectors. PLoS ONE 2014, 9, e86392. [Google Scholar] [CrossRef] [PubMed]
- Walker, P.J.; Firth, C.; Widen, S.G.; Blasdell, K.R.; Guzman, H.; Wood, T.G.; Paradkar, P.N.; Holmes, E.C.; Tesh, R.B.; Vasilakis, N. Evolution of genome size and complexity in the Rhabdoviridae. PLoS Pathog. 2015, 11, e1004664. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.; Rambaut, A.; Pybus, O.G. Correlating viral phenotypes with phylogeny: Accounting for phylogenetic uncertainty. Infect. Genet. Evol. 2008, 8, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Plyusnin, A.; Sironen, T. Evaluation of hantaviruses: Co-speciation with reservoir hosts for more than 100 MYR. Virus Res. 2014, 187, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Castel, G.; Tordo, N.; Plyusnin, A. Estimation of main diversification time-points of hantaviruses using phylogenetic analyses of complete genomes. Virus Res. 2017, 233, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Kuno, G. The boundaries of arboviruses: Complexities revealed in their host ranges, virus–host interactions and evolutionary relationships. In Arbovirues-Molecular Biology, Evolution and Control; Vasilakis, N., Gubler, D.J., Eds.; Caister Academic Press: Norfolk, UK, 2016; pp. 219–268. [Google Scholar]
- Forrester, N.L.; Palacios, R.B.; Tesh, R.B.; Savji, N.; Guzman, H.; Sherman, M.; Weaver, S.C.; Lipkin, W.I. Genome-scale phylogeny of Alphavirus genus suggests a marine origin. J. Virol. 2012, 86, 2729–2738. [Google Scholar] [CrossRef] [PubMed]
- Fontenille, D.; Diallo, M.; Mondo, M.; Ndiaye, M.; Thonnon, J. First evidence of natural vertical transmission of yellow fever virus in Ae. aegypti, its epidemic vector. Trans. R. Soc. Trop. Med. 1997, 91, 533–538. [Google Scholar] [CrossRef]
- Mondet, B.; Vasconcelos, P.F.C.; Travassos da Rosa, A.P.A.; Travassos da Rosa, E.S.; Rodrigues, S.G.; Travassos da Rosa, J.F.S.; Bicout, D.J. Isolation of yellow fever virus from nulliparous Haemagogus (Haemagogus) janthinomys in eastern Amazonia. Vector-Borne Zoonotic Dis. 2002, 2, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Philip, C.R.; Burgdorferer, W. Arthropod vectors as reservoirs of microbial disease agents. Annu. Rev. Entomol. 1961, 6, 391–412. [Google Scholar] [CrossRef] [PubMed]
- L’vov, D.K.; Shechelkanov, M.Y.; Alkhovsky, P.G.; Deryabin, P.G. Zoonotic Viruses of Northern Eurasia- Taxonomy and Ecology; Academic Press: Amsterdam, The Netherlands; Boston, MA, USA; Heidellberg, Germany; London, UK; New York, NY, USA; Oxford, UK; Paris, France; San Diego/San Francisco, CA, USA; Singapore; Sydney, Australia; Tokyo, Japan, 2015; p. 274. [Google Scholar]
- Tesh, R.B.; Calisher, C.H. Arbovirology: Back to the future. In Arboviruses: Molecular Biology, Evolution and Control; Vasilakis, N., Gubler, D.J., Eds.; Caister Academic Press: Norfolk, UK, 2016; pp. 385–390. [Google Scholar]
- Turell, M.J. Experimental transfer of Karshi (mammalian tick-borne flavivirus group) virus by Ornithodoros ticks >2,900 days after initial virus exposure supports the role of soft ticks as a long-term maintenance mechanism for certain flaviviruses. PLoS Negl. Trop. Dis. 2015, 9, e0004012. [Google Scholar] [CrossRef] [PubMed]
- Endris, R.G.; Hess, W.R. Experimental transmission of African swine fever virus by the soft tick Ornithodoros (Parlovskyella) macrocanus (Acari: Ixodoidea: Argasidae). J. Med. Entomol. 1992, 29, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.R.; Moore, A.T.; Young, G.R.; Komar, N. Persistence of Buggy Creek virus (Togaviridae, Alphavirus) for two years in unfed swallow bugs (Hemiptera: Cimicidae: Oeciacus vicarious). J. Med. Enomol. 2010, 47, 436–441. [Google Scholar]
- Naq, D.K.; Brecher, M.; Kramer, L.D. DNA forms of arboviral RNA genomes are generated following infection in mosquito cell cultures. Virology 2016, 498, 164–171. [Google Scholar]
- Goic, B.; Stapleford, K.A.; Frangeul, L.; Doucet, A.J.; Gausson, V.; Blanc, H.; Schemmel- Jofre, N.; Cristofari, G.; Lambrechts, L.; Vignuzzi, M.; Saleh, M.C. Virus-derived DNA drives mosquito vector tolerance to arboviral infection. Nat. Commun. 2016, 7, 12410. [Google Scholar] [CrossRef] [PubMed]
- Auguste, A.J.; Lemey, P.; Pybus, O.G.; Suchard, M.A.; Salas, R.A.; Adesiyun, A.A.; Barrett, A.D.; Tesh, R.B.; Weaver, S.C.; Carrington, C.V.F. Yellow fever virus maintenance in Trinidad and dispersal thoughout the Americas. J. Virol. 2010, 84, 9967–9977. [Google Scholar] [CrossRef] [PubMed]
- Viana, M.; Mancy, R.; Biek, R.; Cleaveland, S.; Cross, P.C.; Lloyd-Smith, J.O.; Haydon, D.T. Assembling evidence for identifying reservoirs of infection. Trends Ecol. Evol. 2014, 29, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Swanepoel, R.; Leman, P.A.; Burt, F.J.; Zachariades, N.A.; Branck, L.E.; Ksiazek, T. G.; Rollin, P.E.; Zaki, S.R.; Peters, C.J. Experimental inoculation of plants and animals with Ebola virus. Emerg. Infect. Dis. 1996, 2, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Leendertz, S.A.J. Testing new hypotheses regarding Ebola virus reservoirs. Viruses 2016, 8, 30. [Google Scholar] [CrossRef]
- Aitken, T.H.; Kowalski, R.W.; Beaty, B.J.; Buckley, S.M.; Wright, J.D.; Shope, R.E.; Miller, B.R. Arthropod studies with rabies-related Mokola virus. Am. J. Trop. Med. Hyg. 1984, 33, 945–952. [Google Scholar] [CrossRef] [PubMed]
- Varelas-Wesley, I.; Calisher, C.H. Antigenic relationships of flaviviruses with undetermined arthropod-borne status. Am. J. Trop. Med. Hyg. 1982, 31, 1273–1284. [Google Scholar] [CrossRef] [PubMed]
- Kuno, G. Host range specificity of flaviviruses: Correlation with in vitro replication. J. Med. Entomol. 2007, 44, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Coggins, L. African swine fever virus. Pathogenesis. Prog. Med. Vriol. 1974, 18, 48–63. [Google Scholar]
- Viñuela, E. African swine fever virus. Curr. Top. Microbiol. Immunol. 1985, 116, 151–170. [Google Scholar] [PubMed]
- Wolfe, N.D.; Kilbourn, A.M.; Karesh, W.B.; Rahman, H.A.; Bosi, E.J.; Cropp, B.C.; Andau, M.; Spielman, A.; Gubler, D.J. Sylvatic transmission of arboviruses among Bornean orangutans. Am. J. Trop. Med. Hyg. 2001, 64, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Holmes, E.C.; Twiddy, S.S. The origin, emergence and evolutionary genetics of dengue virus. Infect. Genet. Evol. 2003, 3, 19–28. [Google Scholar] [CrossRef]
- Gubler, D.J. Dengue and dengue hemorrhagic fever: its history and resurgence as a global public health problem. In Dengue and Dengue Hemorrhagic Fever; Gubler, D.J., Kuno, G., Eds.; CABI International: Wallingford, UK, 1997; pp. 1–22. [Google Scholar]
- Weaver, S.C.; Vasilakis, N. Molecular evolution of dengue viruses: contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral diseases. Infect. Genet. Evol. 2009, 9, 523–540. [Google Scholar] [CrossRef] [PubMed]
- Rupprecht, C.; Kuzmin, I.; Meslin, F. Lyssaviruses and rabies: Current conundrums, concerns, contradictions and controversies. F1000 Res. 2017, 6, 184. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.K.; Hitchens, P.L.; Evans, T.S.; Goldstein, T.; Thomas, K.; Clements, A.; Joly, D.O.; Wolfe, N.D.; Daszak, P.; Karesh, W.B.; et al. Spillover and pandemic properties of zoonotic viruses with high host plasticity. Sci. Rep. 2015, 5, 14830. [Google Scholar] [CrossRef] [PubMed]
- Lobo, F.P.; Mota, B.E.F.; Pena, S.D.J.; Azevedo, V.; Macedo, A.M.; Tauch, A.; Machado, C.R.; Franco, G.R. Virus-host coevolution: Common patterns of nucleotide motif usage in Flaviviridae and their hosts. PLoS ONE 2009, 4, e6282. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, S.; Zhang, B.; Wei, W. Analysis of synonymous codon usage bias of Zika virus and its adaption to the hosts. PLoS ONE 2016, 11, e0166260. [Google Scholar] [CrossRef] [PubMed]
- Kitchen, A.; Shackelton, L.A.; Holmes, E.C. Family level phylogenies reveal modes of macroevolution in RNA viruses. Proc. Natl. Acad. Sci. USA 2011, 108, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Brault, A.C.; Powers, A.M.; Weaver, S.C. Vector infection determinants of Venezuelan equine encephalitis virus reside within the E2 envelope glycoprotein. J. Virol. 2002, 76, 6387–6392. [Google Scholar] [CrossRef] [PubMed]
- Tsetsarkin, K.A.; Weaver, S.C. Sequential adaptive mutations enhance efficient vector switching by chikungunya virus and its epidemic emergence. PLoS ONE 2011, 7, e1002412. [Google Scholar] [CrossRef] [PubMed]
- Duggal, N.K.; Bosco-Lauth, A.; Bowen, R.A.; Wheeler, S.S.; Reisen, W.K.; Felix, T.A.; Mann, B.R.; Romo, H.; Swetnam, D.M.; Barrett, D.T.; et al. Evidence for co-evolution of West Nile virus and house sparrows in North America. PLoS Negl. Trop. Dis. 2014, 8, e3262. [Google Scholar] [CrossRef] [PubMed]
- Vazeille, M.; Zouache, K.; Vega-Rúa, A.; Thiberge, J.-M.; Caro, V.; Yébakima, A.; Mousson, L.; Piorkowski, G.; Dauga, C.; Vaney, M.-C.; et al. Importance of mosquito “quasi species” in selecting an epidemic arthropod- borne virus. Sci. Rep. 2016, 6, 29564. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.R.; Moore, A.T.; O’Brien, V.A.; Padhi, A.; Knutie, S.A.; Young, G.R.; Komar, N. Natural infection of vertebrate hosts by different lineages of Buggy Creek virus (family Togaviridae, genus Alphavirus). Arch. Virol. 2010, 155, 745–749. [Google Scholar] [CrossRef] [PubMed]
- Rico-Hesse, R. Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology 1990, 174, 479–493. [Google Scholar] [CrossRef]
- Holmes, E.C. The phylogeography of human viruses. Mol. Ecol. 2004, 13, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Vasilakis, N.; Cardosa, J.; Diallo, M.; Holmes, E.C.; Hanley, K.A.; Weaver, S.C. Letter to the editor. Sylvatic dengue viruses share the pathogenic potential of urban/endemic dengue viruses. J. Virol. 2010, 84, 3726–3727. [Google Scholar] [CrossRef] [PubMed]
- Dudley, S.F. Can yellow fever spread to Asia? An essay on the ecology of mosquito borne disease. J. Trop. Med. Hyg. 1934, 37, 273–278. [Google Scholar]
- Wasserman, S.; Tambyah, P.A.; Lim, P.L. Yellow fever cases in Asia: Primed for an epidemic. Int. J. Infect. Dis. 2016, 48, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Hindle, E. Experimental study of yellow fever. Trans. R. Soc. Trop. Med. Hyg. 1929, 12, 405–434. [Google Scholar] [CrossRef]
- Gubler, D.J.; Novak, R.; Mitchell, C.J. Arthropod vector competence-epidemiological, genetic, and biological considerations. In Recent Development in the Genetics of Insect Disease Vectors; Steiner, M.W.M., Tabachnick, W.J., Rai, K.J., Narang, S., Eds.; Stipes Publishing Co.: Champaingn, IL, USA, 1982; pp. 343–378. [Google Scholar]
- Simon-Loriene, E.; Faye, C.; Prot, M.; Fall, G.; Kipela, J.-M.; Fall, I.S.; Holmes, E.C. Authchthonous Japanese encephalitis with yellow fever coinfection in Africa. N. Engl. J. Med. 2017, 376, 1483–1485. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Higa, Y.; Bertuso, A.G.; Isawa, H.; Takasaki, T.; Minakawa, N.; Sawabe, K. Susceptibility of indigenous and transplanted mosquito spp. to dengue virus in Japan. Jpn. J. Infect. Dis. 2015, 68, 425–427. [Google Scholar] [CrossRef] [PubMed]
- Lambrechts, L.; Scott, T.W.; Gubler, D.J. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl. Trop. Dis. 2010, 4, e646. [Google Scholar] [CrossRef] [PubMed]
- Carey, D.E. Chikungunya and dengue: A case of mistaken identity? J. Hist. Med. 1971, 26, 243–262. [Google Scholar] [CrossRef]
- Stallknecht, D.E. VSV-NJ on Ossabaw Island, Georgia. The truth is out there. Ann. N. Y. Acad. Sci. 2009, 916, 431–436. [Google Scholar] [CrossRef]
- Gaudreault, N.N.; Indran, S.V.; Bryant, P.K.; Richt, J.A.; Wilson, W.C. Comparison of Rift Valley fever virus replication in North American livestock and wildlife cell lines. Front. Microbiol. 2015, 6, 664. [Google Scholar] [CrossRef] [PubMed]
- Harrison, A.; Newey, S.; Gilbert, L.; Haydon, D.T.; Thirgood, S. Culling wildlife hosts to control disease: Mountain hares, red grouse and louping ill virus. J. Appl. Ecol. 2010, 47, 926–930. [Google Scholar] [CrossRef]
- Gilbert, L. Louping ill virus in the UK: A review of the hosts, transmission and ecological consequences of control. Exp. Appl. Acarol. 2016, 68, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Hubálek, Z. Emerging human infectious diseases: Anthroponoses, zoonoses, and sapronoses. Emerg. Infect. Dis. 2003, 9, 403–404. [Google Scholar] [CrossRef] [PubMed]
- Weissenböck, H.; Hubálek, Z.; Bakonyi, T.; Nowotny, N. Zoonotic mosquito-borne flaviviruses: Worldwide presence of agents with proven pathogenicity and potential candidates of future emerging diseases. Vet. Microbiol. 2008, 140, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A.; Pirofski, L.-A. Host–pathogen interaction: Basic concepts of microbial communication, colonization, infection, and disease. Infect. Immun. 2000, 68, 6511–6518. [Google Scholar] [CrossRef] [PubMed]
- Labadie, K.; Larcher, T.; Joubert, C.; Mannioui, A.; Delache, B.; Brochard, P.; Guigand, L.; Dureil, L.; Lebon, P.; Verrier, B.; et al. Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J. Clin. Investig. 2010, 120, 894–906. [Google Scholar] [CrossRef] [PubMed]
- Spielman, A.; Pollack, R.J.; Kiszewski, A.E.; Telford, S.R. Issues in public health entomology. Vector-Borne Zoonotic Dis. 2001, 1, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Haydon, D.T.; Cleaveland, S.; Taylor, L.H.; Laurenson, M.K. Identifying reservoirs of infection: A conceptual and practical challenge. Emerg. Infect. Dis. 2002, 8, 1468–1473. [Google Scholar] [PubMed]
- Mackenzie, J.S.; Drury, P.; Arthur, R.R.; Ryan, M.J.; Grein, T.; Slattery, R.; Suri, S.; Domingo, C.T.; Bejtullahu, A. The global outbreak alert and response network. Glob. Public Health 2014, 9, 1023–1039. [Google Scholar] [CrossRef] [PubMed]
- Moreira-Soto, A.; Soto-Garita, C.; Corrales-Aquilar, E. Neotropical primary bat cell lines show restricted dengue virus replication. Comp. Immunol. Microbiol. Infect. Dis. 2017, 50, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Favoretto, S.; Araújo, D.; Oliveira, D.; Duarte, N.; Mesquita, F.; Zanotto, P.; Durigon, E. First detection of Zika virus in neotropical primates in Brazil: A possible new reservoir. bioRxiv 2016. [Google Scholar] [CrossRef]
- Kock, R.A. Vertebrate reservoirs and secondary epidemiological cycles of vector-borne diseases. Rev. Sci. Tech. Off. Int. Epizoot. 2015, 34, 151–163. [Google Scholar] [CrossRef]
- Althouse, B.M.; Vasilakis, N.; Sall, A.A.; Diallo, M.; Weaver, S.C.; Hanley, K.A. Potential for Zika virus to establish a sylvatic transmission cycle in the Americas. PLoS Negl. Trop. Dis. 2016, 10, e00055. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, J.S.; Jeggo, M. Reservoirs and vectors of emerging viruses. Curr. Opin. Virol. 2013, 3, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.N.; Hasbun, R.; Murray, K.O. Persistence of West Nile virus. Microbes Infect. 2015, 17, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Bueno, M.G.; Martinez, N.; Abdalla, L.; Duarte dos Santos, C.N.; Chame, M. Animals in the Zika virus life cycle: What to expect from megadiverse Latin American countries. PLoS Negl. Trop. Dis. 2016. [Google Scholar] [CrossRef] [PubMed]
- Bewick, S.; Agusto, F.; Calabree, J.M.; Muturi, E.J.; Fagan, W.F. Epidemiology of La Crosse virus emergence, Appalachian Region, United States. Emerg. Infect. Dis. 2016, 22, 1921–1929. [Google Scholar] [CrossRef] [PubMed]
- Vasilakis, N.; Weaver, S.C. Flavivirus transmission focusing on Zika. Curr. Opin. Virol. 2017, 22, 30–35. [Google Scholar] [CrossRef] [PubMed]
- González-Salazar, C.; Stephens, C.R.; Sánchez-Cordero, V. Predicting the potential role of non-human hosts in Zika virus maintenance. EcoHealth 2017. [Google Scholar] [CrossRef]
- Koolhof, I.S.; Carver, S. Epidemic host community contribution to mosquito-borne disease transmission: Ross River virus. Epidemiol. Infect. 2017, 145, 656–666. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M.K.; Morrison, T.E. Persistent RNA virus infections: Do PAM PS drive chronic disease? Curr. Opin. Virol. 2017, 23, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Cardona Maya, W.D.; Du Plessis, S.S.; Velilla, P.A. Semen as virus reservoir? J. Assist. Reprod. Genet. 2016, 33, 1255–1256. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.J.; Morgan, E.R.; Booth, M.; Norman, R.; Perkins, S.E.; Hauffe, H.C.; Mideo, N.; Antonovics, J.; McCallum, H.; Fenton, A. What is a vector? Philos. Trans. R. Soc. B 2017, 372, 20160085. [Google Scholar] [CrossRef] [PubMed]
- Reeves, W.C. Perspectives and predictions following the St. Louis encephalitis outbreak in Southern California. Proc. Pap. 53rd Ann. Calif. Mosq. Vector Control Assoc. 1986, 53, 30–31. [Google Scholar]
Virus Family | Virus (Abbreviation) | Vector(s) | Major Vertebrate Host(s) |
---|---|---|---|
Asfarviridae | African swine fever virus (ASFV) | ticks | pig; warthog; bushpig |
Bunyaviridae | California encephalitis virus (CEV) | mosquitoes | ? |
La Crosse virus (LACV) | mosquitoes | rodents | |
Rift Valley fever virus (RVFV) | mosquitoes | bovine; goat; sheep; ruminants | |
Toscana virus (TOSV) | sandflies | sheep; human? | |
Flaviviridae | Bagaza virus (BAGV) | mosquitoes; midges | birds |
Dengue virus serotypes (DENV1, DENV2, DENV3, DENV4) | mosquitoes | primates (monkeys and humans) | |
Entebbe bat virus (ENTV) | - | bats | |
Japanese encephalitis virus (JEV) | mosquitoes | birds; pig; horse | |
Kyasanur Forest disease virus (KFDV) | ticks | rodents; monkey | |
Langat virus (LGTV) | ticks | rodents | |
Louping ill virus (LIV) | ticks | grouse; sheep | |
Murray Valley encephalitis virus (MVEV) | mosquitoes | ardeid water birds | |
Sokuluk virus (SOKV) | - | bats | |
St. Louis encephalitis virus (SLEV) | mosquitoes | birds | |
Tamana bat virus (TABV) | - | bats | |
Tick-borne encephalitis virus (TBEV) | ticks | rodents | |
West Nile virus (WNV) | mosquitoes | birds; horse | |
Yellow fever virus (YFV) | mosquitoes | primates | |
Yokose virus (YOKV) | - | bats | |
Zika virus (ZIKV) | mosquitoes | primates | |
Reoviridae | African horse sickness virus (AHSV) | midges | horse; donkey; mule |
Bluetongue virus (BTV) | midges | ruminants | |
Colorado tick fever virus (CTFV) | ticks | rodents | |
Middle Point orbivirus (MPOV) | mosquitoes? | cattle | |
Rhabdoviridae | Bovine ephemeral fever virus (BEFV) | midges; mosquitoes | bovine |
Vesicular stomatitis virus—New Jersey serotype (VSNJV) | sandflies; blackflies; midges | bovine; swine; equine | |
Vesicular stomatitis virus—Indiana serotype (VSIV) | sandflies; blackflies; midges | cattle; swine; equine | |
Togaviridae | Buggy Creek virus (BCRV) | cimicid bugs | cliff swallow; house sparrow |
Chikungunya virus (CHIKV) | mosquitoes | primates | |
Ndumu virus (NDUV) | mosquitoes | cattle | |
Ross River virus (RRV) | mosquitoes | marsupials; horses | |
Venezuelan equine encephalitis virus (VEEV) | mosquitoes | rodents | |
Western equine encephalitis virus (WEEV) | mosquitoes | birds; equine |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuno, G.; Mackenzie, J.S.; Junglen, S.; Hubálek, Z.; Plyusnin, A.; Gubler, D.J. Vertebrate Reservoirs of Arboviruses: Myth, Synonym of Amplifier, or Reality? Viruses 2017, 9, 185. https://doi.org/10.3390/v9070185
Kuno G, Mackenzie JS, Junglen S, Hubálek Z, Plyusnin A, Gubler DJ. Vertebrate Reservoirs of Arboviruses: Myth, Synonym of Amplifier, or Reality? Viruses. 2017; 9(7):185. https://doi.org/10.3390/v9070185
Chicago/Turabian StyleKuno, Goro, John S. Mackenzie, Sandra Junglen, Zdeněk Hubálek, Alexander Plyusnin, and Duane J. Gubler. 2017. "Vertebrate Reservoirs of Arboviruses: Myth, Synonym of Amplifier, or Reality?" Viruses 9, no. 7: 185. https://doi.org/10.3390/v9070185
APA StyleKuno, G., Mackenzie, J. S., Junglen, S., Hubálek, Z., Plyusnin, A., & Gubler, D. J. (2017). Vertebrate Reservoirs of Arboviruses: Myth, Synonym of Amplifier, or Reality? Viruses, 9(7), 185. https://doi.org/10.3390/v9070185