Improved Pharmacokinetics of Icariin (ICA) within Formulation of PEG-PLLA/PDLA-PNIPAM Polymeric Micelles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Copolymers.
2.2.1. Synthesis of (poly (L-lactic acid)) (PLLA), (poly (D-lactic acid)) (PDLA) and (poly (D-lactic acid)-poly (N-isopropylacrylamide)) (PDLA-PNIPAAm)
2.2.2. Synthesis of (poly (ethylene glycol)-poly (L-lactic acid)) (PEG-PLLA)
2.2.3. Synthesis of PEG-PLLA/PDLA-PNIPAM
2.3. Preparation of Icariin Mixed Polymer Micelles
2.4. Determination of Particle Size and Zeta Potential
2.5. Determination of Encapsulation Efficiency and Drug Loading
2.6. Investigation of Polymer Micelle Stability
2.7. Drug Release In Vitro
2.8. Cell Viability
2.9. Pharmacokinetics of Icariin PEG-PLLA/PDLA-PNIPAM Micelles
2.9.1. Liquid Phase Conditions
2.9.2. Mass Spectrometry Conditions
2.9.3. Animal Experiments
3. Results
3.1. Determination of Particle Size and Zeta Potential
3.2. Determination of Entrapment Efficiency and Drug Loading
3.3. Stability of Polymeric Micelles
3.4. In Vitro Release
3.5. Cell Viability
3.6. Pharmacokinetics of ICA Loaded Polymeric Micelles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, D.; Yang, J.; Lu, X.; Deng, Y.; Xiong, Z.; Li, F. An integrated plasma and urinary metabonomic study using UHPLC-MS: intervention effects of Epimedium koreanum on ’Kidney-Yang Deficiency syndrome’ rats. J. Pharm. Biomed. Anal. 2013, 76, 200–206. [Google Scholar] [CrossRef]
- Jing, X.; Du, T.; Chen, K.; Guo, J.; Xiang, W.; Yao, X.; Sun, K.; Ye, Y.; Guo, F. Icariin protects against iron overload-induced bone loss via suppressing oxidative stress. J. Cell. Physiol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Chi, L.Q.; Gao, W.Y.; Shu, X.R.; Lu, X. A Natural Flavonoid Glucoside, Icariin, Regulates Th17 and Alleviates Rheumatoid Arthritis in a Murine Model. Mediat. Inflamm. 2014. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Yin, Y.; Wei, J.; Chen, X.; Ouyang, H.; Chang, Y.; Gao, X.; He, J. Development and Validation of a HPLC-MS/MS Method for Simultaneous Determination of Twelve Bioactive Compounds in Epimedium: Application to a Pharmacokinetic Study in Rats. Molecules 2018, 23, 1322. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Kong, L.; Xia, X.; Zhang, W.; Xia, Z.; Jiang, F. Antidepressant-like effect of icariin and its possible mechanism in mice. Pharmacol. Biochem. Behav. 2005, 82, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Q.; Lou, Y.J. Proliferation-stimulating effects of icaritin and desmethylicaritin in MCF-7 cells. Eur. J. Pharmacol. 2004, 504, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Q.; Han, X.F.; Liu, T.; Cheng, M.C.; Xiao, H.B. A cell-based model of bone remodeling for identifying activity of icarrin in the treatment of osteoporosis. Biotechnol. Lett. 2015, 37, 219–226. [Google Scholar] [CrossRef]
- Guo, Y.N.; Wang, X.F.; Gao, J. Simultaneous Preparation and Comparison of the Osteogenic Effects of Epimedins A - C and Icariin from Epimedium brevicornu. Chem. Biodivers. 2018, 15, e1700578. [Google Scholar] [CrossRef]
- Liu, Y.; Zuo, H.J.; Liu, X.W.; Xiong, J.Y.; Pei, X.F. The antiosteoporosis effect of icariin in ovariectomized rats: a systematic review and meta-analysis. Cell. Mol. Biol. 2017, 63, 124–131. [Google Scholar] [CrossRef]
- Tang, Y.Y.; Xie, M.; Jiang, N.; Huang, F.F.; Zhang, X.; Li, R.S.; Lu, J.J.; Liao, S.J.; Liu, Y. Icarisid II inhibits the proliferation of human osteosarcoma cells by inducing apoptosis and cell cycle arrest. Tumor Biol. 2017, 39. [Google Scholar] [CrossRef]
- Liu, H.; Li, W.; Luo, B.; Chen, X.; Wen, W.; Zhou, C. Icariin immobilized electrospinning poly(l-lactide) fibrous membranes via polydopamine adhesive coating with enhanced cytocompatibility and osteogenic activity. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 79, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Xu, C.; Wu, X.; Liu, F.; Du, Y.; Sun, J.; Tao, J.; Dong, J. Icariin exerts an antidepressant effect in an unpredictable chronic mild stress model of depression in rats and is associated with the regulation of hippocampal neuroinflammation. Neuroscience 2015, 294, 193–205. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Yang, Q.T. The testosterone mimetic properties of Icariin. Asian J. Androl. 2006, 8, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Wang, M.; Hong, M.; Diao, S.; Liu, A.; Huang, Y.; Yu, Q.; Peng, Z. Icariin exerts estrogen-like activity in ameliorating EAE via mediating estrogen receptor beta, modulating HPA function and glucocorticoid receptor expression. Am. J. Transl. Res. 2016, 8, 1910–1918. [Google Scholar]
- Liu, P.; Jin, X.; Lv, H.; Li, J.; Xu, W.; Qian, H.H.; Yin, Z. Icaritin ameliorates carbon tetrachloride-induced acute liver injury mainly because of the antioxidative function through estrogen-like effects. In Vitro Cell Dev. Biol. Anim. 2014, 50, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xiong, Y.; Zhu, X.; Gao, H.; Yin, S.; Wang, J.; Chen, G.; Wang, C.; Xiang, L.; Wang, P.; Fang, J.; Zhang, R.; Yang, L. Icariin improves osteoporosis, inhibits the expression of PPARgamma, C/EBPalpha, FABP4 mRNA, N1ICD and jagged1 proteins, and increases Notch2 mRNA in ovariectomized rats. Exp. Ther. Med. 2017, 13, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Sze, S.C.; Tong, Y.; Ng, T.B.; Cheng, C.L.; Cheung, H.P. Herba Epimedii: anti-oxidative properties and its medical implications. Molecules 2010, 15, 7861–7870. [Google Scholar] [CrossRef]
- Zhang, H.F.; Zhang, X.; Yang, X.H.; Qiu, N.X.; Wang, Y.; Wang, Z.Z. Microwave assisted extraction of flavonoids from cultivated Epimedium sagittatum: Extraction yield and mechanism, antioxidant activity and chemical composition. Ind. Crops Prod. 2013, 50, 857–865. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Y.H.; Jia, X.B.; Hu, M. Intestinal absorption mechanisms of prenylated flavonoids present in the heat-processed Epimedium koreanum Nakai (Yin Yanghuo). Pharm. Res. 2008, 25, 2190–2199. [Google Scholar] [CrossRef]
- Yang, W.; Yu, X.C.; Chen, X.Y.; Zhang, L.; Lu, C.T.; Zhao, Y.Z. Pharmacokinetics and tissue distribution profile of icariin propylene glycol-liposome intraperitoneal injection in mice. J. Pharm. Pharmacol. 2012, 64, 190–198. [Google Scholar] [CrossRef]
- Trivedi, R.; Kompella, U.B. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine 2010, 5, 485–505. [Google Scholar] [CrossRef] [PubMed]
- Vadlapudi, A.D.; Mitra, A.K. Nanomicelles: an emerging platform for drug delivery to the eye. Ther. Deliv. 2013, 4, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Kwon, G.S.; Kataoka, K. Block copolymer micelles as long-circulating drug vehicles. Adv. Drug Deliv. Rev. 2012, 64, 237–245. [Google Scholar] [CrossRef]
- Shi, Y.; Lammers, T.; Storm, G.; Hennink, W.E. Physico-Chemical Strategies to Enhance Stability and Drug Retention of Polymeric Micelles for Tumor-Targeted Drug Delivery. Macromol. Biosci. 2017, 17. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yuan, D.; Jin, G.; Tan, B.H.; He, C. Facile Layer-by-Layer Self-Assembly toward Enantiomeric Poly(lactide) Stereocomplex Coated Magnetite Nanocarrier for Highly Tunable Drug Deliveries. ACS Appl. Mater. Interfaces 2016, 8, 1842–1853. [Google Scholar] [CrossRef] [PubMed]
Polymer Micelles | PDI | Particle Size (nm) | Zeta Electric |
---|---|---|---|
F127 | 0.28 ± 0.01 | 177.76 ± 3.23 | −3.26 ± 0.67 |
PEG-PLLA/PDLA-PNIPAM | 0.196 ± 0.02 | 128.53 ± 4.89 | −3.50 ± 0.57 |
Polymer Micelles | Encapsulation Efficiency (%) | Drug Loading (%) |
---|---|---|
F127 | 70.86 ± 2.19 | 6.45 ± 1.78 |
PEG-PLLA/PDLA-PNIPAM | 85.76 ± 1.90 | 7.74 ± 0.17 |
Polymeric Micelle | AUC (0–t) (μg/L * h) 676.9→368.9 | Cmax (μg/L) 676.9→368.9 | AUC (0–t) (μg/L * h) 720.9→368.9 | Cmax (μg/L) 720.9→368.9 | AUC (0–t) (μg/L * h) 544.9→368.9 | Cmax (μg/L) 544.9→368.9 |
---|---|---|---|---|---|---|
ICA | 35.78 | 1.76 | 235.18 | 25.09 | 20.90 | 1.83 |
F127-ICA | 69.26 | 6.01 | 271.60 | 22.71 | 18.81 | 1.14 |
PEG-PLLA/PDLA-PNIPAM-ICA | 179.03 | 10.67 | 133.75 | 6.29 | 17.45 | 1.09 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.-Y.; Wu, Y.-L.; Zhu, C.-Y.; Wu, C.-S.; Yang, C.-R. Improved Pharmacokinetics of Icariin (ICA) within Formulation of PEG-PLLA/PDLA-PNIPAM Polymeric Micelles. Pharmaceutics 2019, 11, 51. https://doi.org/10.3390/pharmaceutics11020051
Han L-Y, Wu Y-L, Zhu C-Y, Wu C-S, Yang C-R. Improved Pharmacokinetics of Icariin (ICA) within Formulation of PEG-PLLA/PDLA-PNIPAM Polymeric Micelles. Pharmaceutics. 2019; 11(2):51. https://doi.org/10.3390/pharmaceutics11020051
Chicago/Turabian StyleHan, Lu-Ying, Yun-Long Wu, Chun-Yan Zhu, Cai-Sheng Wu, and Chun-Rong Yang. 2019. "Improved Pharmacokinetics of Icariin (ICA) within Formulation of PEG-PLLA/PDLA-PNIPAM Polymeric Micelles" Pharmaceutics 11, no. 2: 51. https://doi.org/10.3390/pharmaceutics11020051
APA StyleHan, L. -Y., Wu, Y. -L., Zhu, C. -Y., Wu, C. -S., & Yang, C. -R. (2019). Improved Pharmacokinetics of Icariin (ICA) within Formulation of PEG-PLLA/PDLA-PNIPAM Polymeric Micelles. Pharmaceutics, 11(2), 51. https://doi.org/10.3390/pharmaceutics11020051