Melt-Cast Films Significantly Enhance Triamcinolone Acetonide Delivery to the Deeper Ocular Tissues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Animals and Animal Ocular Tissues
2.3. Preparation of TA-Films
2.4. HPLC Chromatographic Conditions
2.5. Characterization of TA-Films
2.5.1. Differential Scanning Calorimetry (DSC)
2.5.2. Drug Content Uniformity and Assay
2.5.3. In vitro Release Study
2.5.4. In Vitro Tissue Permeation Study
2.5.5. In Vivo Tear Kinetics and Drug Distribution Studies
Sample Extraction from the Ocular Tissues
Bioanalytical Analysis
Statistical Analysis
3. Results and Discussion
3.1. Preparation of TA Polymeric Films
3.2. Drug Uniformity and Assay
3.3. Differential Scanning Calorimetry (DSC)
3.4. In Vitro Release Study
3.5. In vitro Tissue Permeation
3.6. In vivo Tear Kinetics and Ocular Distribution Studies
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Duvvuri, S.; Majumdar, S.; Mitra, A.K. Drug delivery to the retina: Challenges and opportunities. Expert. Opin. Biol. Ther. 2003, 3, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Gaudana, R.; Ananthula, H.K.; Parenky, A.; Mitra, A.K. Ocular Drug Delivery. AAPS J. 2010, 12, 348–360. [Google Scholar] [CrossRef]
- Jermak, C.M.; Dellacroce, J.T.; Heffez, J.; Peyman, G.A. Triamcinolone acetonide in ocular therapeutics. Surv. Ophthalmol. 2007, 52, 503–522. [Google Scholar] [CrossRef] [PubMed]
- Clares, B.; Gallardo, V.; Medina, M.M.; Ruiz, M. Multilamellar liposomes of triamcinolone acetonide: Preparation, stability, and characterization. J. Liposome Res. 2009, 19, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Araújo, J.; Nikolic, S.; Egea, M.A.; Souto, E.B.; Garcia, M.L. Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye. Colloids. Surf. B Biointerface 2011, 88, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Altamirano-Vallejo, J.C.; Navarro-Partida, J.; Gonzalez-Dela, R.A.; Hsiao, J.H.; Olguín-Gutierrez, J.S.; Gonzalez-Villegas, A.C.; et al. Characterization and pharmacokinetics of triamcinolone acetonide-loaded liposomes topical formulations for vitreoretinal drug delivery. J. Ocul. Pharmacol. Ther. 2018, 34, 416–425. [Google Scholar] [CrossRef]
- Morrison, V.L.; Koh, H.J.; Cheng, L.; Bessho, K.; Davidson, M.C.; Freeman, W.R. Intravitreal toxicity of the kenalog vehicle (benzyl alcohol) in rabbits. Retina 2006, 26, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Vasumathy, V.; Ramasamy, K. Intravitreal injection of triamcinolone acetonide for diabetic macular edema: Principles and practice. Ind. J. Opthamol. 2006, 54, 133–137. [Google Scholar]
- Wingate, R.J.; Beaumont, P.E. Intravitreal triamcinolone and elevated intraocular pressure. Aust. N. Z. J. Ophthalmol. 1999, 27, 431–432. [Google Scholar]
- Jonas, J.B.; Kreissig, I.; Söfker, A.; Degenring, R.F. Intravitreal injection of triamcinolone for diffuse diabetic macular edema. Arch. Ophthalmol. 2003, 121, 57–61. [Google Scholar] [CrossRef]
- Janoria, K.G.; Gunda, S.; Boddu, S.H.S.; Mitra, A.K. Novel approaches to retinal drug delivery. Expert Opin. Drug. Deliv. 2007, 4, 371–388. [Google Scholar] [CrossRef]
- Gan, L.; Wang, J.; Jiang, M.; Bartlett, H.; Ouyang, D.; Eperjesi, F.; Liu, J.; Gan, Y. Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug Discov. Today 2013, 18, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Chodankar, R.; Dev, A. Formulation and characterization of triamcinolone acetonide emulgel. World J. Pharm. Pharm. Sci. 2017, 6, 1795–1810. [Google Scholar]
- Kaur, I.P.; Smitha, R. Penetration enhancers and ocular bioadhesives: Two new avenues for ophthalmic drug delivery. Drug Dev. Ind. Pharm. 2002, 28, 353–369. [Google Scholar] [CrossRef]
- Janga, K.Y.; Tatke, A.; Balguri, S.P.; Lamichanne, S.P.; Ibrahim, M.M.; Maria, D.N.; Jablonski, M.M.; Majumdar, S. Ion-sensitive in situ hydrogels of natamycinbilosomes for enhanced and prolonged ocular pharmacotherapy: In vitro permeability, cytotoxicity and in vivo evaluation. Artif. Cells Nanomed. Biotechnol. 2018. [Google Scholar] [CrossRef]
- Mundada, A.S.; Shrikhande, B.K. Design and evaluation of soluble ocular drug insert for controlled release of ciprofloxacin hydrochloride. Drug Dev. Ind. Pharm. 2006, 32, 443–448. [Google Scholar] [CrossRef]
- Furqan, A.M.; Tejal, G.S.; Dinesh, O.S. A review on therapeutic contact lenses for ocular drug delivery. Drug Deliv. 2016, 23, 3017–3026. [Google Scholar]
- Willoughby, C.E.; Batterbury, M.; Kaye, S.B. Collagen Corneal Shields. Surv. Ophthalmol. 2002, 47, 174–182. [Google Scholar] [CrossRef]
- Di Colo, G.; Burgalassi, S.; Chetoni, P.; Fiaschi, M.P.; Zambito, Y.; Saettone, M.F. Gel-forming erodible inserts for ocular controlled delivery of ofloxacin. Int. J. Pharm. 2001, 215, 101–111. [Google Scholar] [CrossRef]
- Saettone, M.F.; Salminen, L. Ocular inserts for topical delivery. Adv. Drug Deliv. Rev. 1995, 16, 95–106. [Google Scholar] [CrossRef]
- Adelli, G.R.; Balguri, S.P.; Bhagav, P.; Raman, V.; Majumdar, S. Diclofenac sodium ion exchange resin complex loaded melt cast films for sustained release ocular delivery. Drug Deliv. 2017, 24, 370–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balguri, S.P.; Adelli, G.R.; Tatke, A.; Janga, K.Y.; Bhagav, P.; Majumdar, S. Melt-Cast noninvasive ocular inserts for posterior segment drug delivery. J. Pharm. Sci. 2017, 106, 3515–3523. [Google Scholar] [CrossRef] [PubMed]
- Goutham, R.A.; Tushar, H.; Punyamurthula, N.; Balguria, S.P.; Majumdarabc, S. Evaluation of topical hesperetin matrix film for back-of-the-eye delivery. Eur. J. Pharma. Biopharm. 2015, 92, 74–82. [Google Scholar]
- Di Colo, G.; Burgalassi, S.; Chetoni, P.; Fiaschi, M.P.; Zambito, Y.; Saettone, M.F. Relevance of polymer molecular weight to the in vitro/in vivo performances of ocular inserts based on poly(ethylene oxide). Int. J. Pharm. 2001, 220, 169–177. [Google Scholar] [CrossRef]
- Anuradha, V.G.; Chetan, P.P.; Richard, S.G.; Melissa, G.; Kristin, P.; Ramakrishnan, S. Ophthalmic compositions comprising polyvinyl capralactam-polyvinyl acetate-polyethylene glycol graft copolymers. U.S. Patent US20130157963A1, 20 June 2013. [Google Scholar]
- Majumdar, S.; Srirangam, R. Solubility, stability, physicochemical characteristics and in vitro ocular tissue permeability of hesperidin: A natural bioflavonoid. Pharm. Res. 2009, 26, 1217–1225. [Google Scholar] [CrossRef]
- Manvi, F.V.; Patil, M.B.; Mastiholimath, V.S.; Rathod, R. Development and evaluation of ocular films of cromolyn sodium. Ind. J. Pharmac. Sci. 2004, 66, 309–312. [Google Scholar]
- Sreenivas, S.A.; Hiremath, S.P.; Godbole, A.M. Ofloxacin ocular inserts: Design, formulation and evaluation. Iran. J. Pharmacol. Ther. 2006, 5, 159–162. [Google Scholar]
- Mona, H.A.; Azza, A.M. Biodegradable ocular inserts for sustained delivery of brimonidine tartarate: Preparation and in vitro/in vivo evaluation. AAPS PharmSciTech 2011, 12, 1335–1347. [Google Scholar]
- Marwa, S. Formulation, in vitro and in vivo evaluation of lidocaine HCl ocular inserts for topical ocular anesthesia. Arch. Pharm. Res. 2014, 37, 882–889. [Google Scholar]
- Akshaya, T.; Narendar, D.; Karthik, Y.J.; Sai, P.B.; Bharathi, A.; Monica, M.J.; Soumyajit, M. In situ gel of triamcinolone acetonide-loaded solid lipid nanoparticles for improved topical ocular delivery: Tear kinetics and ocular disposition studies. Nanomaterials 2019, 9, 33. [Google Scholar] [CrossRef]
Formulation | Time (Days) | Assay | Drug Content Uniformity |
---|---|---|---|
TP10 | 1 | 92.40 ± 0.26 | 95.39 ± 7.54 |
30 | 92.03 ± 0.64 | 92.59 ± 0.60 | |
60 | 92.31 ± 1.18 | 89.45 ± 3.94 | |
TP20 | 1 | 93.94 ± 3.07 | 102.54 ± 5.21 |
30 | 92.29 ± 3.55 | 94.15 ± 1.83 | |
60 | 92.40 ± 1.06 | 93.87 ± 0.21 | |
TS10 | 1 | 72.56 ± 0.10 | 102.01 ± 11.45 |
30 | 72.14 ± 2.43 | 90.70 ± 1.38 | |
60 | 70.76 ± 1.83 | 88.90 ± 3.87 | |
TS20 | 1 | 78.82 ± 0.10 | 92.42 ± 9.09 |
30 | 77.03 ± 1.85 | 90.05 ± 0.80 | |
60 | 75.87 ± 2.65 | 89.09 ± 2.48 |
Formulation | Concentration of Triamcinolone Acetonide in Tear at Different Time Points (µg/mL) | AUC (µg•h/mL) | T1/2 (h) | |||||
---|---|---|---|---|---|---|---|---|
0 h | 1 h | 2 h | 3 h | 4 h | 6 h | |||
TA-C | 0 | 42.77 ± 19.29 | 5.90 ± 3.53 | 5.09 ± 0.58 | 1.35 ± 0.22 | 1.03 ± 0.17 | 26.51 ± 8.04 | 1.72 ± 0.3 |
10% PEO film | 0 | 10.70 ± 1.85 | 15.18 ± 2.60 * | 21.99 ± 6.15* | 17.33 ± 4.64 * | 12.05 ± 2.51 * | 86.84 ± 12.41 * | 3.77 ± 2.6* |
20% PEO film | 0 | 12.76 ± 2.51 | 21.97 ± 6.86 * | 38.14 ± 15.19 *, # | 32.02 ± 7.51 *, # | 28.12 ± 5.45 *, # | 148.68 ± 13.76 *, # | 7.28 ± 1.19 *, # |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tatke, A.; Dudhipala, N.; Janga, K.Y.; Soneta, B.; Avula, B.; Majumdar, S. Melt-Cast Films Significantly Enhance Triamcinolone Acetonide Delivery to the Deeper Ocular Tissues. Pharmaceutics 2019, 11, 158. https://doi.org/10.3390/pharmaceutics11040158
Tatke A, Dudhipala N, Janga KY, Soneta B, Avula B, Majumdar S. Melt-Cast Films Significantly Enhance Triamcinolone Acetonide Delivery to the Deeper Ocular Tissues. Pharmaceutics. 2019; 11(4):158. https://doi.org/10.3390/pharmaceutics11040158
Chicago/Turabian StyleTatke, Akshaya, Narendar Dudhipala, Karthik Yadav Janga, Bhavik Soneta, Bharathi Avula, and Soumyajit Majumdar. 2019. "Melt-Cast Films Significantly Enhance Triamcinolone Acetonide Delivery to the Deeper Ocular Tissues" Pharmaceutics 11, no. 4: 158. https://doi.org/10.3390/pharmaceutics11040158
APA StyleTatke, A., Dudhipala, N., Janga, K. Y., Soneta, B., Avula, B., & Majumdar, S. (2019). Melt-Cast Films Significantly Enhance Triamcinolone Acetonide Delivery to the Deeper Ocular Tissues. Pharmaceutics, 11(4), 158. https://doi.org/10.3390/pharmaceutics11040158