Development of an Innovative, Carrier-Based Dry Powder Inhalation Formulation Containing Spray-Dried Meloxicam Potassium to Improve the In Vitro and In Silico Aerodynamic Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of the Formulations
2.2.2. Blend Uniformity and Real Drug Content
2.2.3. X-ray Powder Diffraction (XRPD)
2.2.4. Particle Size Distribution
2.2.5. Scanning Electron Microscopy (SEM)
2.2.6. Interparticle Interactions
2.2.7. In Vitro Aerodynamic Investigation
2.2.8. In Silico Assessment
2.2.9. Release Assay
2.2.10. Statistical Analyses
3. Results and Discussion
3.1. Blend Uniformity and Drug Content
3.2. Structural Investigations
3.3. Particle Size Analysis and Scanning Electron Microscopy (SEM)
3.4. Interparticle Interactions
3.5. In Vitro Aerodynamic Assessment
3.6. In Silico Test
3.7. Release Assay Test Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Pomázi, A.; Szabó-Révész, P.; Ambrus, R. Pulmonal administration, aspects of DPI formulation. Gyógyszerészet/Pharmacy 2009, 53, 397–404. [Google Scholar]
- Pomázi, A.; Chvatal, A.; Ambrus, R.; Szabó-Révész, P. Potential formulation methods and pharmaceutical investigations of Dry Powder Inhalers. Gyógyszerészet/Pharmacy 2014, 58, 131–139. [Google Scholar]
- Rashid, M.A.; Elgied, A.A.; Alhamhoom, Y.; Chan, E.; Rintoul, L.; Allahham, A.; Islam, N. Excipient Interactions in Glucagon Dry Powder Inhaler Formulation for Pulmonary Delivery. Pharmaceutics 2019, 11, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borghardt, J.M.; Kloft, C.; Sharma, A. Inhaled Therapy in Respiratory Disease: The Complex Interplay of Pulmonary Kinetic Processes. Can. Respir. J. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Contreras, L.; Ibrahim, M.; Verma, R. Inhalation drug delivery devices: Technology update. Med. Devices Evid. Res. 2015, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benke, E.; Szabó-Révész, P.; Hopp, B.; Ambrus, R. Characterization and development opportunities of carrier-based dry powder inhaler systems. Acta Pharm. Hung. 2017, 87, 59–68. [Google Scholar]
- Benke, E.; Farkas, Á.; Balásházy, I.; Szabó-Révész, P.; Ambrus, R. Stability test of novel combined formulated dry powder inhalation system containing antibiotic: Physical characterization and in vitro—In silico lung deposition results. Drug Dev. Ind. Pharm. 2019, 45, 1369–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demoly, P.; Hagedoorn, P.; De Boer, A.H.; Frijlink, H.W. The clinical relevance of dry powder inhaler performance for drug delivery. Respir. Med. 2014, 108, 1195–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lechanteur, A.; Evrard, B. Influence of Composition and Spray-Drying Process Parameters on Carrier-Free DPI Properties and Behaviors in the Lung: A review. Pharmaceutics 2020, 12, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momin, M.A.M.; Rangnekar, B.; Sinha, S.; Cheung, C.-Y.; Cook, G.M.; Das, S.C. Inhalable Dry Powder of Bedaquiline for Pulmonary Tuberculosis: In Vitro Physicochemical Characterization, Antimicrobial Activity and Safety Studies. Pharmaceutics 2019, 11, 502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Healy, A.M.; Amaro, M.I.; Paluch, K.J.; Tajber, L. Dry powders for oral inhalation free of lactose carrier particles. Adv. Drug Deliv. Rev. 2014, 75, 32–52. [Google Scholar] [CrossRef] [PubMed]
- Kaialy, W.; Martin, G.P.; Ticehurst, M.D.; Royall, P.; Mohammad, M.A.; Murphy, J.; Nokhodchi, A. Characterisation and Deposition Studies of Recrystallised Lactose from Binary Mixtures of Ethanol/Butanol for Improved Drug Delivery from Dry Powder Inhalers. AAPS J. 2011, 13, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Kaialy, W.; Ticehurst, M.D.; Murphy, J.; Nokhodchi, A. Improved Aerosolization Performance of Salbutamol Sulfate Formulated with Lactose Crystallized from Binary Mixtures of Ethanol—Acetone. J. Pharm. Sci. 2011, 100, 2665–2684. [Google Scholar] [CrossRef] [PubMed]
- Nokhodchi, A.; Kaialy, W. Dry Powder Inhalers: Influence of Lactose Physicochemical Properties on Aerosol Performance. Available online: https://www.researchgate.net/publication/222712876_Dry_powder_inhalers_influence_of_lactose_physicochemical_properties_on_aerosol_performance (accessed on 15 April 2020).
- Zeng, X.M.; Martin, G.P.; Marriott, C.; Pritchard, J. The use of lactose recrystallised from carbopol gels as a carrier for aerosolised salbutamol sulphate. Eur. J. Pharm. Biopharm. 2001, 51, 55–62. [Google Scholar] [CrossRef]
- Iida, K.; Hayakawa, Y.; Okamoto, H.; Danjo, K.; Leuenberger, H. Preparation of Dry Powder Inhalation by Surface Treatment of Lactose Carrier Particles. Chem. Pharm. Bull. (Tokyo) 2003, 51, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shadbad, M.R.S.; Millen, L.; Momin, M.; Nokhodchi, A. The Effect of Solvent Treatment on the Performance of Various Carriers in Dry Powder Inhalations Containing Salbutamol Sulphate. Iran J. Basic Med. Sci. 2013, 16, 9. [Google Scholar]
- Iida, K.; Todo, H.; Okamoto, H.; Danjo, K.; Leuenberger, H. Preparation of Dry Powder Inhalation with Lactose Carrier Particles Surface-Coated Using a Wurster Fluidized Bed. Chem. Pharm. Bull. (Tokyo) 2005, 53, 431–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeffer, R.; Dave, R.N.; Wei, D.; Ramlakhan, M. Synthesis of engineered particulates with tailored properties using dry particle coating. Powder Technol. 2001, 117, 40–67. [Google Scholar] [CrossRef]
- Zhou, Q.; Morton, D.A.V. Drug–lactose binding aspects in adhesive mixtures: Controlling performance in dry powder inhaler formulations by altering lactose carrier surfaces. Adv. Drug Deliv. Rev. 2012, 64, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Islam, N.; Rashid, A.; Camm, G. Effects of magnesium stearate on the efficient dispersion of salbutamol sulphate from carrier-based dry powder inhaler formulations. In Proceedings of RDD Europe 2011, Berlin, Germany, 3–6 May 2001, Volume II; Dalby, R.N., Byron, P.R., Suman, J.D., Young, P.M., Peart, J.J., Eds.; Respiratory Drug Delivery (RDD) Online/Virginia Commonwealth University: Richmond, VA, USA, 2011; pp. 415–418. ISBN 978-1-933722-51-1. [Google Scholar]
- Cocconi, D.; Dagli Alberi, M.; Busca, A.; Schiaretti, F. Use of Magnesium Stearate in Dry Powder Formulations for Inhalation. U.S. Patent Application No. 13/239,903, 5 April 2012. [Google Scholar]
- National Institute of Pharmacy and Nutrition, Hungary, Drug Database. Available online: https://ogyei.gov.hu/drug_database (accessed on 30 March 2019).
- Adi, H.; Traini, D.; Chan, H.-K.; Young, P.M. The Influence of Drug Morphology on Aerosolisation Efficiency of Dry Powder Inhaler Formulations. J. Pharm. Sci. 2008, 97, 2780–2788. [Google Scholar] [CrossRef] [PubMed]
- Hazare, S.; Menon, M. Improvement of Inhalation Profile of DPI Formulations by Carrier Treatment with Magnesium Stearate. Indian J. Pharm. Sci. 2009, 71, 725–727. [Google Scholar]
- Faulhammer, E.; Zellnitz, S.; Wutscher, T.; Stranzinger, S.; Zimmer, A.; Paudel, A. Performance indicators for carrier-based DPIs: Carrier surface properties for capsule filling and API properties for in vitro aerosolisation. Int. J. Pharm. 2018, 536, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Mönckedieck, M.; Kamplade, J.; Fakner, P.; Urbanetz, N.A.; Walzel, P.; Steckel, H.; Scherließ, R. Dry powder inhaler performance of spray dried mannitol with tailored surface morphologies as carrier and salbutamol sulphate. Int. J. Pharm. 2017, 524, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Benke, E.; Szabó-Révész, P.; Ambrus, R. Development of ciprofloxacin hydrochloride containing dry powder inhalation system with an innovative technology. Acta Pharm. Hung. 2017, 87, 49–58. [Google Scholar]
- Ambrus, R.; Benke, E.; Farkas, Á.; Balásházy, I.; Szabó-Révész, P. Novel dry powder inhaler formulation containing antibiotic using combined technology to improve aerodynamic properties. Eur. J. Pharm. Sci. 2018, 123, 20–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raju, S.V.; Solomon, G.M.; Dransfield, M.T.; Rowe, S.M. Acquired Cystic Fibrosis Transmembrane Conductance Regulator Dysfunction in Chronic Bronchitis and Other Diseases of Mucus Clearance. Clin. Chest Med. 2016, 37, 147–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Angelo, I.; Conte, C.; La Rotonda, M.I.; Miro, A.; Quaglia, F.; Ungaro, F. Improving the efficacy of inhaled drugs in cystic fibrosis: Challenges and emerging drug delivery strategies. Adv. Drug Deliv. Rev. 2014, 75, 92–111. [Google Scholar] [CrossRef] [PubMed]
- Mall, M.A.; Hartl, D. CFTR: Cystic fibrosis and beyond. Eur. Respir. J. 2014, 44, 1042–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montgomery, S.T.; Mall, M.A.; Kicic, A.; Stick, S.M. Hypoxia and sterile inflammation in cystic fibrosis airways: Mechanisms and potential therapies. Eur. Respir. J. 2017, 49, 1600903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pezzulo, A.A.; Tang, X.X.; Hoegger, M.J.; Abou Alaiwa, M.H.; Ramachandran, S.; Moninger, T.O.; Karp, P.H.; Wohlford-Lenane, C.L.; Haagsman, H.P.; van Eijk, M.; et al. Reduced Airway Surface pH Impairs Bacterial Killing in the Porcine Cystic Fibrosis Lung. Nature 2012, 487, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Lubamba, B.; Dhooghe, B.; Noel, S.; Leal, T. Cystic fibrosis: Insight into CFTR pathophysiology and pharmacotherapy. Clin. Biochem. 2012, 45, 1132–1144. [Google Scholar] [CrossRef] [PubMed]
- Bilton, D. Cystic fibrosis. Medicine (Baltimore) 2008, 36, 273–278. [Google Scholar] [CrossRef]
- Szabó-Révész, P. Modifying the physicochemical properties of NSAIDs for nasal and pulmonary administration. Drug Discov. Today Technol. 2018, 27, 87–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambrus, R.; Pomázi, A.; Réti-Nagy, K.; Fenyvesi, F.; Vecsernyés, M.; Szabó-Révész, P. Cytotoxicity testing of carrier-based microcomposites for DPI application. Pharmazie 2011, 66, 549–550. [Google Scholar] [CrossRef] [PubMed]
- Ayakawa, S.; Shibamoto, Y.; Sugie, C.; Ito, M.; Ogino, H.; Tomita, N.; Kumagai, M.; Murakami, H.; Sawa, H. Antitumor effects of a cyclooxygenase-2 inhibitor, meloxicam, alone and in combination with radiation and/or 5-fluorouracil in cultured tumor cells. Mol. Med. Rep. 2009, 2, 621–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, P.N.; Marshall-Batty, K.R.; Smolen, J.A.; Tagaev, J.A.; Chen, Q.; Rodesney, C.A.; Le, H.H.; Gordon, V.D.; Greenberg, D.E.; Cannon, C.L. Antimicrobial Activity of Ibuprofen against Cystic Fibrosis-Associated Gram-Negative Pathogens. Antimicrob. Agents Chemother. 2018, 62, e01574-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haynes, A.; Shaik, M.S.; Chatterjee, A.; Singh, M. Formulation and evaluation of aerosolized celecoxib for the treatment of lung cancer. Pharm. Res. 2005, 22, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Onischuk, A.A.; Tolstikova, T.G.; An’kov, S.V.; Baklanov, A.M.; Valiulin, S.V.; Khvostov, M.V.; Sorokina, I.V.; Dultseva, G.G.; Zhukova, N.A. Ibuprofen, indomethacin and diclofenac sodium nanoaerosol: Generation, inhalation delivery and biological effects in mice and rats. J. Aerosol Sci. 2016, 100, 164–177. [Google Scholar] [CrossRef]
- Chvatal, A.; Farkas, Á.; Balásházy, I.; Szabó-Révész, P.; Ambrus, R. Aerodynamic properties and in silico deposition of meloxicam potassium incorporated in a carrier-free DPI pulmonary system. Int. J. Pharm. 2017, 520, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Chvatal, A.; Ambrus, R.; Party, P.; Katona, G.; Jójárt-Laczkovich, O.; Szabó-Révész, P.; Fattal, E.; Tsapis, N. Formulation and comparison of spray dried non-porous and large porous particles containing meloxicam for pulmonary drug delivery. Int. J. Pharm. 2019, 559, 68–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazdi, A.K.; Smyth, H.D.C. Carrier-free high-dose dry powder inhaler formulation of ibuprofen: Physicochemical characterization and in vitro aerodynamic performance. Int. J. Pharm. 2016, 511, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Irvine, J.; Afrose, A.; Islam, N. Formulation and delivery strategies of ibuprofen: Challenges and opportunities. Drug Dev. Ind. Pharm. 2018, 44, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Horváth, T.; Ambrus, R.; Völgyi, G.; Budai-Szűcs, M.; Márki, Á.; Sipos, P.; Bartos, C.; Seres, A.B.; Sztojkov-Ivanov, A.; Takács-Novák, K.; et al. Effect of solubility enhancement on nasal absorption of meloxicam. Eur. J. Pharm. Sci. 2016, 95, 96–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Process for Preparation of High-Purity Meloxicam and Meloxicam Potassium Salt—Patent US8097616—PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/US8097616 (accessed on 5 December 2019).
- Mezei, T.; Mesterházy, N.; Bakó, T.; Porcs-Makkay, M.; Simig, G.; Volk, B. Manufacture of High-Purity Meloxicam via Its Novel Potassium Salt Monohydrate. Org. Process Res. Dev. 2009, 13, 567–572. [Google Scholar] [CrossRef]
- Pomázi, A.; Ambrus, R.; Szabó-Révész, P. Physicochemical stability and aerosolization performance of mannitol-based microcomposites. J. Drug Deliv. Sci. Technol. 2014, 24, 397–403. [Google Scholar] [CrossRef]
- Buttini, F.; Cuoghi, E.; Miozzi, M.; Rossi, A.; Sonvico, F.; Colombo, P. Insulin Spray-Dried Powder and Smoothed Lactose: A New Formulation Strategy for Nasal and Pulmonary Delivery. Available online: https://www.researchgate.net/publication/284045495_Insulin_spray-dried_powder_and_smoothed_lactose_a_new_formulation_strategy_for_nasal_and_pulmonary_delivery (accessed on 11 April 2018).
- Plastira, M. The Influence of Magnesium Stearate and Carrier Surface on the Deposition Performace of Carrier Based Dry Powder Inhaler Formulations. Ph.D. Thesis, University of Bath, Bath, UK, 2008. [Google Scholar]
- Lau, M.; Young, P.M.; Traini, D. Co-milled API-lactose systems for inhalation therapy: Impact of magnesium stearate on physico-chemical stability and aerosolization performance. Drug Dev. Ind. Pharm. 2017, 43, 980–988. [Google Scholar] [CrossRef] [PubMed]
- Hickey, A.J.; da Rocha, S.R.P. (Eds.) Pharmaceutical Inhalation Aerosol Technology, 3th ed.; Drugs and the Pharmaceutical Sciences; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2019; ISBN 978-1-138-06307-5. [Google Scholar]
- Kaialy, W.; Nokhodchi, A. Engineered Mannitol Ternary Additives Improve Dispersion of Lactose–Salbutamol Sulphate Dry Powder Inhalations. AAPS J. 2013, 15, 728–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, J.M.; Schvezov, C.E.; Rosenberger, M.R. Analysis of the Results of Surface Free Energy Measurement of Ti6Al4V by Different Methods. Procedia Mater. Sci. 2015, 8, 732–741. [Google Scholar] [CrossRef] [Green Version]
- Farkas, B.; Révész, P. Kristályosítástól a Tablettázásig; Universitas Szeged: Szeged, Hungary, 2007; ISBN 9630619141. [Google Scholar]
- Tüske, Z. Influence of the Surface Free Energy on the Parameters of Pellets. Ph.D. Thesis, University of Szeged, Szeged, Hungary, 2005. [Google Scholar]
- Brochures-Copley Scientific. Available online: https://www.copleyscientific.com/downloads/brochures (accessed on 17 November 2019).
- Cunha, L.; Rodrigues, S.; Rosa da Costa, A.; Faleiro, M.; Buttini, F.; Grenha, A. Inhalable Fucoidan Microparticles Combining Two Antitubercular Drugs with Potential Application in Pulmonary Tuberculosis Therapy. Polymers 2018, 10, 636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parlati, C. Respirable Microparticles of Aminoglycoside Antibiotics for Pulmonary Administration. Ph.D. Thesis, University of Parma, Parma, Italy, 2008. [Google Scholar]
- Colombo, P.; Traini, D.; Buttini, F. (Eds.) Inhalation Drug Delivery: Techniques and Products; John Wiley & Sons, Ltd.: Chichester, UK, 2013; ISBN 978-1-118-39714-5. [Google Scholar]
- Koblinger, L.; Hofmann, W. Monte Carlo modeling of aerosol deposition in human lungs. Part I: Simulation of particle transport in a stochastic lung structure. J. Aerosol Sci. 1990, 21, 661–674. [Google Scholar] [CrossRef]
- Cheng, Y.S. Aerosol deposition in the extrathoracic region. Aerosol Sci. Technol. 2003, 37, 659–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raabe, O.G.; Yeh, H.; Schum, G.M.; Phalen, R.F. Tracheobronchial Geometry: Human, Dog, Rat, Hamster-A Compilation of Selected Data from the Project Respiratory Tract Deposition Models; US Gov. Print. Off.: Washington, DC, USA, 1976; Available online: https://digital.library.unt.edu/ark:/67531/metadc100754/ (accessed on 6 April 2020).
- Haefeli-Bleuer, B.; Weibel, E.R. Morphometry of the human pulmonary acinus. Anat. Rec. 1988, 220, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Colthorpe, P.; Voshaar, T.; Kieckbusch, T.; Cuoghi, E.; Jauernig, J. Delivery characteristics of a low-resistance dry-powder inhaler used to deliver the long-acting muscarinic antagonist glycopyrronium. J. Drug Assess. 2013, 2, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Raula, J.; Rahikkala, A.; Halkola, T.; Pessi, J.; Peltonen, L.; Hirvonen, J.; Järvinen, K.; Laaksonen, T.; Kauppinen, E.I. Coated particle assemblies for the concomitant pulmonary administration of budesonide and salbutamol sulphate. Int. J. Pharm. 2013, 441, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Social Science Statistic Online. Available online: https://www.socscistatistics.com/tests/studentttest/default2.aspx (accessed on 6 April 2020).
- Della Bella, A.; Müller, M.; Danani, A.; Soldati, L.; Bettini, R. Effect of Lactose Pseudopolymorphic Transition on the Aerosolization Performance of Drug/Carrier Mixtures. Pharmaceutics 2019, 11, 576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, D.; Rouse, T.; Singh, D.; Edge, S. Defining the ‘Dose’ for Dry Powder Inhalers: The Challenge of Correlating In-Vitro Dose Delivery Results with Clinical Efficacy. Available online: https://www.americanpharmaceuticalreview.com/Featured-Articles/337338-Defining-the-Dose-for-Dry-Powder-Inhalers-The-Challenge-of-Correlating-In-Vitro-Dose-Delivery-Results-with-Clinical-Efficacy/ (accessed on 12 July 2018).
- Arpagaus, C.; Schafroth, N.; Meur, M. Laboratory Scale Spray Drying of Lactose: A Review. Available online: https://www.buchi.com/en/content/laboratory-scale-spray-drying-lactose-review (accessed on 13 July 2018).
- Brunaugh, A.D.; Wu, T.; Kanapuram, S.R.; Smyth, H.D.C. Effect of Particle Formation Process on Characteristics and Aerosol Performance of Respirable Protein Powders. Mol. Pharm. 2019, 16, 4165–4180. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Leung, S.S.Y.; Gengenbach, T.; Yu, J.; Gao, G.; Tang, P.; Zhou, Q.; Chan, H.-K. Investigation of L-leucine in reducing the moisture-induced deterioration of spray-dried salbutamol sulfate power for inhalation. Int. J. Pharm. 2017, 530, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Papastefanou, C. Radioactive Aerosol Analysis. In Handbook of Radioactivity Analysis; Elsevier: Amsterdam, The Netherlands, 2012; pp. 727–767. ISBN 978-0-12-384873-4. [Google Scholar]
- MMAD and GSD Calculator for Andersen Cascade Impactors. Available online: http://www.mmadcalculator.com/andersen-impactor-mmad.html (accessed on 10 May 2020).
- Simon, A.; Amaro, M.I.; Cabral, L.M.; Healy, A.M.; de Sousa, V.P. Development of a novel dry powder inhalation formulation for the delivery of rivastigmine hydrogen tartrate. Int. J. Pharm. 2016, 501, 124–138. [Google Scholar] [CrossRef] [PubMed]
- Ceschan, N.E.; Bucalá, V.; Mateos, M.V.; Smyth, H.D.C.; Ramírez-Rigo, M.V. Carrier free indomethacin microparticles for dry powder inhalation. Int. J. Pharm. 2018, 549, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Murayama, N.; Asai, K.; Murayama, K.; Doi, S.; Kameda, M. Dry Powder and Budesonide Inhalation Suspension Deposition Rates in Asthmatic Airway-Obstruction Regions. J. Drug Deliv. 2019, 2019, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Ma, Y.; Zhang, L.; Zhu, J.; Jin, F. The development of a novel dry powder inhaler. Int. J. Pharm. 2012, 431, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, C.; Mitchell, J. Analysis of Cascade Impactor Mass Distributions. J. Aerosol Med. 2005, 18, 439–451. [Google Scholar] [CrossRef] [PubMed]
Samples | µMXP | MXPspd | IH70 | MgSt |
---|---|---|---|---|
µMXP | X | - | - | - |
µMXP + IH70 | 0.2 g | - | 2.0 g | - |
µMXP + IH70_MgSt | 0.2 g | - | 1.956 g | 0.044 g |
MXPspd | - | X | - | - |
MXPspd + IH70 | - | 0.2 g | 2.0 g | - |
MXPspd + IH70_MgSt | - | 0.2 g | 1.956 g | 0.044 g |
Samples | MXP Raw | µMXP | MXPspd | IH70 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SEM pictures | ||||||||||||
Particle size distribution | D (0.1) (µm) | D (0.5) (µm) | D (0.9) (µm) | D (0.1) (µm) | D (0.5) (µm) | D (0.9) (µm) | D (0.1) (µm) | D (0.5) (µm) | D (0.9) (µm) | D (0.1) (µm) | D (0.5) (µm) | D (0.9) (µm) |
3.149 | 52.268 | 933.754 | 1.377 | 3.602 | 8.660 | 1.121 | 2.109 | 3.932 | 135.02 | 215.00 | 305.34 |
Materials | Θwater (°) | Θdiiodomethane (°) | (mN/m) | (mN/m) | (mN/m) | Polarity (%) | Wc (mN/m) |
---|---|---|---|---|---|---|---|
µMXP | 25.13 | 23.53 | 42.07 | 33.18 | 75.25 | 44.09 | 150.50 |
MXPspd | 26.40 | 29.90 | 39.93 | 33.44 | 73.37 | 45.58 | 146.74 |
IH70 | 3.30 | 6.00 | 45.58 | 36.88 | 82.46 | 44.72 | 164.92 |
IH70_MgSt | 64.60 | 62.00 | 26.07 | 19.22 | 45.29 | 42.44 | – |
MgSt | 102.63 | 68.64 | 24.33 | 2.64 | 26.96 | 9.79 | 53.92 |
Products | Wadh (mN/m) | Fadh (mN) | S21 |
---|---|---|---|
µMXP + IH70 | 104.98 | 1.168 × 10−3 | 6.87 |
µMXP + IH70_MgSt | 76.55 | 0.849 × 10−3 | −37.44 |
MXPspd + IH70 | 102.67 | 0.674 × 10−3 | 8.55 |
MXPspd + IH70_MgSt | 76.80 | 0.493 × 10−3 | −34.83 |
Samples | FPF (%) < 5 μm | FPF (%) < 3 μm | MMAD (μm) | EF (%) |
---|---|---|---|---|
µMXP | 27.71 ± 1.32 | 15.52 ± 0.66 | 6.54 ± 0.15 | 90.65 ± 1.43 |
µMXP + IH70 | 24.99 ± 0.89 | 14.71 ± 0.27 | 7.18 ± 0.06 | 92.30 ± 0.76 |
µMXP + IH70_MgSt | 31.50 ± 1.08 | 19.17 ± 0.45 | 7.43 ± 0.11 | 72.06 ± 0.99 |
MXPspd | 59.47 ± 1.33 | 37.66 ± 0.36 | 3.41 ± 0.18 | 70.74 ± 1.14 |
MXPspd + IH70 | 59.60 ± 0.65 | 35.68 ± 0.21 | 3.82 ± 0.16 | 86.40 ± 0.21 |
MXPspd + IH70_MgSt | 72.32 ± 0.74 | 46.05 ± 0.41 | 3.11 ± 0.09 | 86.93 ± 0.78 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benke, E.; Farkas, Á.; Szabó-Révész, P.; Ambrus, R. Development of an Innovative, Carrier-Based Dry Powder Inhalation Formulation Containing Spray-Dried Meloxicam Potassium to Improve the In Vitro and In Silico Aerodynamic Properties. Pharmaceutics 2020, 12, 535. https://doi.org/10.3390/pharmaceutics12060535
Benke E, Farkas Á, Szabó-Révész P, Ambrus R. Development of an Innovative, Carrier-Based Dry Powder Inhalation Formulation Containing Spray-Dried Meloxicam Potassium to Improve the In Vitro and In Silico Aerodynamic Properties. Pharmaceutics. 2020; 12(6):535. https://doi.org/10.3390/pharmaceutics12060535
Chicago/Turabian StyleBenke, Edit, Árpád Farkas, Piroska Szabó-Révész, and Rita Ambrus. 2020. "Development of an Innovative, Carrier-Based Dry Powder Inhalation Formulation Containing Spray-Dried Meloxicam Potassium to Improve the In Vitro and In Silico Aerodynamic Properties" Pharmaceutics 12, no. 6: 535. https://doi.org/10.3390/pharmaceutics12060535
APA StyleBenke, E., Farkas, Á., Szabó-Révész, P., & Ambrus, R. (2020). Development of an Innovative, Carrier-Based Dry Powder Inhalation Formulation Containing Spray-Dried Meloxicam Potassium to Improve the In Vitro and In Silico Aerodynamic Properties. Pharmaceutics, 12(6), 535. https://doi.org/10.3390/pharmaceutics12060535