Eudragit-Coated Sporopollenin Exine Microcapsules (SEMC) of Phoenix dactylifera L. of 5-Fluorouracil for Colon-Specific Drug Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Pollen Collection
2.2.2. Extraction of Sporopollenin Exine Microcapsules (SEMC)
2.2.3. Encapsulation of 5-FU into SEMC
2.2.4. Formulation of Eudragit® RS-100 (E-RS) Coated SEMC
2.2.5. Morphological Characterization of SEMC and Size Analysis
2.2.6. Porosity Determination of SEMC
2.2.7. FTIR Spectra
2.2.8. Powder X-ray Diffraction
2.2.9. Differential Scanning Calorimetry
2.3. Chromatographic Analysis of 5-FU
2.4. Encapsulation Efficiency (%EE) and Drug Loading (%DL)
2.5. In Vitro Drug Release Study
2.6. Stability of 5-FU-Loaded Uncoated and ERS-Coated SEMC
2.7. In Vivo Study
2.7.1. Animals
2.7.2. Pharmacokinetics and Gastrointestinal Distribution Study
2.8. Statistical Analysis
3. Results and Discussion
3.1. Formulation of 5-FU-Loaded SEMC and Its Coating by ERS
3.2. Structural Morphology and Size Analysis of SEMC
3.3. Porosity and Surface Volume Measurement
3.4. Fourier Transform Infrared (FTIR) Spectroscopy
3.5. Powdered X-ray Diffraction (PXRD)
3.6. Differential Scanning Calorimetry
3.7. Effect of 5-FU Concentration on Encapsulation and Its Loading into SEMC
3.8. In Vitro Release of 5-FU
3.9. Stability of 5-FU Loaded SEMC (Uncoated and ERS-Coated)
3.10. In Vivo Pharmacokinetics
3.11. Tissue Distribution of 5-FU in Stomach and Small Intestine
3.12. Tissue Distribution of 5 FU in Colon Tissues
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Longley, D.B.; Allen, W.L.; McDermott, U.; Wilson, T.R.; Latif, T.; Boyer, J.; Lynch, M.; Johnston, P.G. The Roles of Thymidylate Synthase and p53 in Regulating Fas-Mediated Apoptosis in Response to Antimetabolites. Clin. Cancer Res. 2004, 10, 3562–3571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Yu, J.; Park, B.H.; Kinzler, K.W.; Vogelstein, B. Role of BAX in the Apoptotic Response to Anticancer Agents. Science 2000, 290, 989–992. [Google Scholar] [CrossRef]
- Grothey, A.; Sobrero, A.F.; Shields, A.F.; Yoshino, T.; Paul, J.; Taieb, J.; Souglakos, J.; Shi, Q.; Kerr, R.; Labianca, R.; et al. Duration of Adjuvant Chemotherapy for Stage III Colon Cancer. N. Engl. J. Med. 2018, 378, 1177–1188. [Google Scholar] [CrossRef] [PubMed]
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer 2003, 3, 330–338. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, N.; Li, A.; Zou, W.; Xu, W. Preparation and evaluation of N3-O-toluyl-fluorouracil-loaded liposomes. Int. J. Pharm. 2008, 353, 243–250. [Google Scholar] [CrossRef]
- Wei, Y.; Yang, P.; Cao, S.; Zhao, L. The combination of curcumin and 5-fluorouracil in cancer therapy. Arch. Pharmacal Res. 2017, 41, 1–13. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Chaurasia, D.; Singh, R.; Swarup, A. Development and Characterization of Novel Site Specific Hollow Floating Microspheres Bearing 5-Fu for Stomach Targeting. Sci. World J. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paharia, A.; Yadav, A.; Rai, G.; Jain, S.K.; Pancholi, S.S.; Agrawal, G.P. Eudragit-coated pectin microspheres of 5-fluorouracil for colon targeting. AAPS PharmSciTech 2007, 8, E87–E93. [Google Scholar] [CrossRef] [Green Version]
- Kajjari, P.B.; Manjeshwar, L.S.; Aminabhavi, T.M. Novel blend microspheres of cellulose triacetate and bee wax for the controlled release of nateglinide. J. Ind. Eng. Chem. 2013, 20, 397–404. [Google Scholar] [CrossRef]
- Kambayashi, A.; Blume, H.; Dressman, J.B. Predicting the oral pharmacokinetic profiles of multiple-unit (pellet) dosage forms using a modeling and simulation approach coupled with biorelevant dissolution testing: Case example diclofenac sodium. Eur. J. Pharm. Biopharm. 2014, 87, 236–243. [Google Scholar] [CrossRef]
- Zhou, Z.; Cao, D.; Liu, L.; Liu, Q.; Zhao, Y.; Zeng, W.; Yi, Q.; Yang, Z.; Zhou, J. Fabrication and Properties of Gelatin/Chitosan Microspheres Loaded with 5-Fluorouracil. J. Macromol. Sci. Part B 2012, 52, 973–983. [Google Scholar] [CrossRef]
- Alshehri, S.M.; Al-Lohedan, H.A.; Al-Farraj, E.; Alhokbany, N.; Chaudhary, A.A.; Ahamad, T. Macroporous natural capsules extracted from Phoenix dactylifera L. spore and their application in oral drugs delivery. Int. J. Pharm. 2016, 504, 39–47. [Google Scholar] [CrossRef]
- Alshehri, S.M.; Al-Lohedan, H.A.; Chaudhary, A.A.; Al-Farraj, E.; Alhokbany, N.; Issa, Z.; Alhousine, S.; Ahamad, T. Delivery of ibuprofen by natural macroporous sporopollenin exine capsules extracted from Phoenix dactylifera L. Eur. J. Pharm. Sci. 2016, 88, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.S.; Barlow, W.E.; Albain, K.S.; Vandenberg, T.A.; Dakhil, S.R.; Tirumali, N.R.; Lew, D.L.; Hayes, D.F.; Gralow, J.R.; Livingston, R.B.; et al. Combination Anastrozole and Fulvestrant in Metastatic Breast Cancer. N. Engl. J. Med. 2012, 367, 435–444. [Google Scholar] [CrossRef] [Green Version]
- Pouponneau, P.; Leroux, J.-C.; Soulez, G.; Gaboury, L.; Martel, S. Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation. Biomaterials 2011, 32, 3481–3486. [Google Scholar] [CrossRef]
- Yan, J.; Wang, Y.; Zhang, X.; Liu, S.; Tian, C.; Wang, H. Targeted nanomedicine for prostate cancer therapy: Docetaxel and curcumin co-encapsulated lipid–polymer hybrid nanoparticles for the enhanced anti-tumor activityin vitroandin vivo. Drug Deliv. 2014, 23, 1757–1762. [Google Scholar] [CrossRef]
- Gupte, A.; Ciftci, K. Formulation and characterization of Paclitaxel, 5-FU and Paclitaxel + 5-FU microspheres. Int. J. Pharm. 2004, 276, 93–106. [Google Scholar] [CrossRef]
- Khan, F.; Aldhahri, M.; Hussain, M.A.; Gauthaman, K.; Memic, A.; Abuzenadah, A.; Kumosani, T.; Barbour, E.; Alothmany, N.S.; Aldhaheri, R.W. Encapsulation of 5-Flurouracil into PLGA Nanofibers and Enhanced Anticancer Effect in Combination with Ajwa-Dates-Extract (Phoenix dactylifera L.). J. Biomed. Nanotechnol. 2018, 14, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Aqel, A.; Yusuf, K.; Alothman, Z.A.; Badjah-Hadj-Ahmed, A.Y. Sporopollenin Microparticle-Based Monolithic Capillary Columns for Liquid Chromatography. Chromatographia 2015, 78, 481–486. [Google Scholar] [CrossRef]
- Diego-Taboada, A.; Maillet, L.; Banoub, J.H.; Lorch, M.; Rigby, A.S.; Boa, A.N.; Atkin, S.L.; Mackenzie, G. Protein free microcapsules obtained from plant spores as a model for drug delivery: Ibuprofen encapsulation, release and taste masking. J. Mater. Chem. B 2012, 1, 707–713. [Google Scholar] [CrossRef] [Green Version]
- Dyab, A.K.F. Macroporous Polymer Beads and Monoliths From Pickering Simple, Double, and Triple Emulsions. Macromol. Chem. Phys. 2012, 213, 1815–1832. [Google Scholar] [CrossRef]
- Mundargi, R.C.; Tan, E.-L.; Seo, J.; Cho, N.-J. Encapsulation and controlled release formulations of 5-fluorouracil from natural Lycopodium clavatum spores. J. Ind. Eng. Chem. 2016, 36, 102–108. [Google Scholar] [CrossRef]
- Bezerra, D.; De Castro, F.O.; Alves, A.P.N.N.; Pessoa, C.; De Moraes, M.O.; Silveira, E.R.; Lima, M.A.S.; Elmiro, F.J.M.; De Alencar, N.M.N.; Mesquita, R.O.; et al. In vitro andin vivo antitumor effect of 5-FU combined with piplartine and piperine. J. Appl. Toxicol. 2007, 28, 156–163. [Google Scholar] [CrossRef]
- Bhardwaj, R.K.; Glaeser, H.; Becquemont, L.; Klotz, U.; Gupta, S.K.; Fromm, M.F. Piperine, a Major Constituent of Black Pepper, Inhibits Human P-glycoprotein and CYP3A4. J. Pharmacol. Exp. Ther. 2002, 302, 645–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rather, R.A.; Bhagat, M. Cancer Chemoprevention and Piperine: Molecular Mechanisms and Therapeutic Opportunities. Front. Cell Dev. Biol. 2018, 6, 10. [Google Scholar] [CrossRef]
- Gupta, V.K.; Assmus, M.W.; Beckert, T.E.; Price, J.C. A novel pH- and time-based multi-unit potential colonic drug delivery system. II. Optimization of multiple response variables. Int. J. Pharm. 2001, 213, 93–102. [Google Scholar] [CrossRef]
- Mooter, G.V.D.; Kinget, R. Oral colon-specific drug delivery: A review. Drug Deliv. 1995, 2, 81–93. [Google Scholar] [CrossRef]
- Watts, P.J.; Lllum, L. Colonic Drug Delivery. Drug Dev. Ind. Pharm. 1997, 23, 893–913. [Google Scholar] [CrossRef]
- Ashford, M.; Fell, J. Targeting Drugs to the Colon: Delivery Systems for Oral Administration. J. Drug Target. 1994, 2, 241–257. [Google Scholar] [CrossRef]
- Seremeta, K.P.; Chiappetta, D.A.; Sosnik, A. Poly(epsilon-caprolactone), Eudragit(R) RS 100 and poly(epsilon-caprolactone)/Eudragit(R) RS 100 blend submicron particles for the sustained release of the antiretroviral efavirenz. Colloids Surf. B Biointerfaces 2013, 102, 441–449. [Google Scholar] [CrossRef]
- Khan, M.Z.; Prebeg, Z.; Kurjakovic, N. A pH-dependent colon targeted oral drug delivery system using methacrylic acid copolymers: I. Manipulation of drug release using Eudragit® L100-55 and Eudragit® S100 combinations. J. Controlled Release 1999, 58, 215–222. [Google Scholar] [CrossRef]
- Thakral, S.; Thakral, N.K.; Majumdar, D.K. Eudragit®: A technology evaluation. Exp. Opin. Drug Deliv. 2013, 10, 131–149. [Google Scholar] [CrossRef] [PubMed]
- Barrier, S.; Diego-Taboada, A.; Thomasson, M.J.; Madden, L.; Pointon, J.C.; Wadhawan, J.D.; Beckett, S.T.; Atkin, S.L.; Mackenzie, G. Viability of plant spore exine capsules for microencapsulation. J. Mater. Chem. 2010, 21, 975–981. [Google Scholar] [CrossRef]
- Lorch, M.; Thomasson, M.J.; Diego-Taboada, A.; Barrier, S.; Atkin, S.L.; Mackenzie, G.; Archibald, S.J. MRI contrast agent delivery using spore capsules: Controlled release in blood plasma. Chem. Commun. 2009, 6442–6444. [Google Scholar] [CrossRef] [PubMed]
- Kodner, R.B.; Graham, L.E. High-temperature, acid-hydrolyzed remains ofPolytrichum(Musci, Polytrichaceae) resemble enigmatic Silurian-Devonian tubular microfossils. Am. J. Bot. 2001, 88, 462–466. [Google Scholar] [CrossRef]
- Tawfik, E.; Ahamed, M.; Almalik, A.; Alfaqeeh, M.; Alshamsan, A. Prolonged exposure of colon cancer cells to 5-fluorouracil nanoparticles improves its anticancer activity. Saudi Pharm. J. 2016, 25, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Sinha, V.; Kumar, R.; Bhinge, J. A stability-indicating RP-HPLC assay method for 5-fluorouracil. Indian J. Pharm. Sci. 2009, 71, 630–637. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.X.; Dai, M.S.; Lu, H. 5-fluorouracil activation of p53 involves an MDM2-ribosomal protein interaction. J. Biol. Chem. 2007, 282, 8052–8059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nassim, M.A.; Shirazi, F.H.; Cripps, C.M.; Veerasinghan, S.; Molepo, M.J.; Obrocea, M.; Redmond, D.; Bates, S.; Fry, D.; Stewart, D.J.; et al. An HPLC method for the measurement of 5-fluorouracil in human plasma with a low detection limit and a high extraction yield. Int. J. Mol. Med. 2002, 10, 513–516. [Google Scholar] [CrossRef]
- Pi, C.; Wei, Y.; Yang, H.; Zhou, Y.; Fu, J.; Yang, S.; Ye, Y.; Zhao, L. Development of a HPLC method to determine 5-fluorouracil in plasma: Application in pharmacokinetics and steady-state concentration monitoring. Int. J. Clin. Pharmacol. Ther. 2014, 52, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, F.K.; Yassin, A.E.; El-Badry, M.; Mowafy, H.A.; Alsarra, I. Validated High-Performance Liquid Chromatographic Technique for Determination of 5-Fluorouracil: Applications to Stability Studies and Simulated Colonic Media. J. Chromatogr. Sci. 2009, 47, 558–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sampson, D.C.; Fox, R.M.; Tattersall, M.H.N.; Hensley, W.J. A Rapid High-Performance Liquid Chromatographic Method for Quantitation of 5-Fluorouracil in Plasma after Continuous Intravenous Infusion. Ann. Clin. Biochem. Int. J. Lab. Med. 1982, 19, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Kalam, A.; Alshamsan, A. Poly (d, l-lactide-co-glycolide) nanoparticles for sustained release of tacrolimus in rabbit eyes. Biomed. Pharmacother. 2017, 94, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tao, W.; Zhang, D.; Wu, C.; Song, B.; Wang, S.; Wang, T.; Hu, M.; Liu, X.; Wang, Y.; et al. The studies of PLGA nanoparticles loading atorvastatin calcium for oral administration in vitro and in vivo. Asian J. Pharm. Sci. 2016, 12, 285–291. [Google Scholar] [CrossRef]
- Permezel, N.C.; Webling, D.D. The length and mucosal surface area of the small and large gut in young rats. J. Anat. 1971, 108, 295–296. [Google Scholar]
- Rahman, Z.; Kohli, K.; Zhang, S.-Q.; Khar, R.K.; Ali, M.; Charoo, N.A.; Tauseef, M.; Shamsher, A.A.A.; Mohammed, N.N.; Repka, M.A. In-vivo evaluation in rats of colon-specific microspheres containing 5-fluorouracil. J. Pharm. Pharmacol. 2008, 60, 615–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Huo, M.; Zhou, J.; Xie, S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Prog. Biomed. 2010, 99, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Diego-Taboada, A.; Beckett, S.T.; Atkin, S.L.; MacKenzie, G. Hollow Pollen Shells to Enhance Drug Delivery. Pharmaceutics 2014, 6, 80–96. [Google Scholar] [CrossRef] [Green Version]
- Gârea, S.; Mihai, A.; Ghebaur, A.; Nistor, C.L.; Sârbu, A. Porous clay heterostructures: A new inorganic host for 5-fluorouracil encapsulation. Int. J. Pharm. 2015, 491, 299–309. [Google Scholar] [CrossRef]
- Barrier, S.; Löbbert, A.; Boasman, A.J.; Boa, A.N.; Lorch, M.; Atkin, S.L.; Mackenzie, G. Access to a primary aminosporopollenin solid support from plant spores. Green Chem. 2009, 12, 234–240. [Google Scholar] [CrossRef]
- Wittborn, J.; El-Ghazaly, G.; Rao, K.V.; Rowley, J.R. Nanoscale Similarities in the Substructure of the Exines ofFagusPollen Grains andLycopodiumSpores. Ann. Bot. 1998, 82, 141–145. [Google Scholar] [CrossRef] [Green Version]
- Mujtaba, M.; Sargin, I.; Akyuz, L.; Ceter, T.; Kaya, M. Newly isolated sporopollenin microcages from Platanus orientalis pollens as a vehicle for controlled drug delivery. Mater. Sci. Eng. C 2017, 77, 263–270. [Google Scholar] [CrossRef]
- Mohammadi, M.; Shadizadeh, S.R.; Manshad, A.K.; Mohammadi, A.H. Experimental study of the relationship between porosity and surface area of carbonate reservoir rocks. J. Pet. Explor. Prod. Technol. 2020, 10, 1817–1834. [Google Scholar] [CrossRef] [Green Version]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar] [CrossRef]
- Sing, K. The use of nitrogen adsorption for the characterisation of porous materials. Colloids Surfaces A Physicochem. Eng. Asp. 2001, 187-188, 3–9. [Google Scholar] [CrossRef]
- Smith, T.; Affram, K.; Bulumko, E.; Agyare, E. Evaluation of in-vitro cytotoxic effect of 5-FU loaded-chitosan nanoparticles against spheroid models. South Pac. J. Nat. Appl. Sci. 2018, 4. [Google Scholar]
- Deepashree, D.; Komal, K.; Prasad, A.; Devi, M.; Shubha, G.C.L. Ftir Spectroscopic Studies on Cleome Gynandra—Comparative Analysis of Functional Group before and after Extraction. Romanian J. Biophys. 2013, 22, 137–143. [Google Scholar]
- Prabhakara, P.; Koland, M.; Vijaynarayana, K.; Harish, N.; Shankar, G.; Ahmed, M.; Narayana, C.; Satyanarayana, D. Preparation and evaluation of Transdermal patches of Papaverine hydrochloride. Int. J. Res. Pharm. Sci. 2010, 1, 259–266. [Google Scholar]
- Domínguez, E.; Mercado, J.A.; Quesada, M.A.; Heredia, A. Pollen sporopollenin: Degradation and structural elucidation. Sex. Plant Reprod. 1999, 12, 171–178. [Google Scholar] [CrossRef]
- Sargın, I.; Arslan, G. Chitosan/sporopollenin microcapsules: Preparation, characterisation and application in heavy metal removal. Int. J. Biol. Macromol. 2015, 75, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Ashour, A.E.; Badran, M.; Kumar, A.; Hussain, T.; Alsarra, I.A.; Yassin, A.E.B. Physical PEGylation Enhances The Cytotoxicity Of 5-Fluorouracil-Loaded PLGA And PCL Nanoparticles. Int. J. Nanomed. 2019, 14, 9259–9273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samy, M.; El-Alim, S.H.A.; Rabia, A.E.G.; Amin, A.; Ayoub, M.M. Formulation, characterization and in vitro release study of 5-fluorouracil loaded chitosan nanoparticles. Int. J. Biol. Macromol. 2020, 156, 783–791. [Google Scholar] [CrossRef]
- Tummala, S.; Kumar, M.S.; Prakash, A. Formulation and characterization of 5-Fluorouracil enteric coated nanoparticles for sustained and localized release in treating colorectal cancer. Saudi Pharm. J. 2014, 23, 308–314. [Google Scholar] [CrossRef] [Green Version]
- Devrim, B.; Canefe, K. Preparation and evaluation of modified release ibuprofen microspheres with acrylic polymers (Eudragit) by quasiemulsion solvent diffusion method: Effect of variables. Acta Pol. Pharm.-Drug Res. 2007, 63, 521–534. [Google Scholar]
- Gupta, A.; Tiwari, G.; Tiwari, R.; Srivastava, R. Factorial designed 5-fluorouracil-loaded microsponges and calcium pectinate beads plugged in hydroxypropyl methylcellulose capsules for colorectal cancer. Int. J. Pharm. Investig. 2015, 5, 234–246. [Google Scholar] [CrossRef] [Green Version]
- Castelli, F.; Messina, C.; Sarpietro, M.G.; Pignatello, R.; Puglisi, G. Flurbiprofen release from eudragit RS and RL aqueous nanosuspensions: A kinetic study by DSC and dialysis experiments. AAPS PharmSciTech 2002, 3, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Lopez, E.; Egea, M.A.; Cano, A.; Espina, M.; Calpena, A.C.; Ettcheto, M.; Camins, A.; Souto, E.B.; Silva, A.M.; Garcia, M.L. PEGylated PLGA nanospheres optimized by design of experiments for ocular administration of dexibuprofen-in vitro, ex vivo and in vivo characterization. Colloids Surf. B Biointerfaces 2016, 145, 241–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, G.; Zhang, C.; Zhang, L.; Sun, H.; Song, C.; Wang, C.; Kong, D. Doxorubicin-loaded micelles based on multiarm star-shaped PLGA–PEG block copolymers: Influence of arm numbers on drug delivery. J. Mat. Sci. Mat. Med. 2015, 27, 17. [Google Scholar] [CrossRef]
- Sogias, I.A.; Williams, A.; Khutoryanskiy, V. Chitosan-based mucoadhesive tablets for oral delivery of ibuprofen. Int. J. Pharm. 2012, 436, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Beckert, T.E.; Price, J.C. A novel pH- and time-based multi-unit potential colonic drug delivery system. I. Development. Int. J. Pharm. 2001, 213, 83–91. [Google Scholar] [CrossRef]
- Piao, Z.-Z.; Lee, K.-H.; Kim, N.-J.; Lee, H.-G.; Lee, J.; Oh, K.T.; Lee, B.-J. Comparison of Release-Controlling Efficiency of Polymeric Coating Materials Using Matrix-type Casted Films and Diffusion-Controlled Coated Tablet. AAPS PharmSciTech 2010, 11, 630–636. [Google Scholar] [CrossRef] [Green Version]
- Iravani, S.; Varma, R.S. Plant Pollen Grains: A Move Towards Green Drug and Vaccine Delivery Systems. Nano-Micro Lett. 2021, 13, 1–13. [Google Scholar] [CrossRef]
- Jeong, K.Y.; Yuk, J.E.; Lee, J.; Jang, S.W.; Park, K.H.; Lee, J.-H.; Park, J.-W. Stability of extracts from pollens of allergenic importance in Korea. Korean J. Intern. Med. 2020, 35, 222–230. [Google Scholar] [CrossRef]
- Lale, S.V.; Gill, H.S. Pollen grains as a novel microcarrier for oral delivery of proteins. Int. J. Pharm. 2018, 552, 352–359. [Google Scholar] [CrossRef]
- Franklin, R.M.; Baer, H.; Hooton, M.L.; Brown, H. The stability of short ragweed pollen extract as measured by skin test and antigen E. J. Allergy Clin. Immunol. 1976, 58, 51–59. [Google Scholar] [CrossRef]
- World Health Organization. Pharmaceuticals, U. WHO Guidelines on Stability Testing of Pharmaceutical Products Containing Well-established Drug Substances in Conventional Dosage Forms; World Health Organization: Geneva, Switzerland, 1994. [Google Scholar]
- Rai, G.; Yadav, A.; Jain, N.K.; Agrawal, G.P. Eudragit-coated dextran microspheres of 5-fluorouracil for site-specific delivery to colon. Drug Deliv. 2014, 23, 328–337. [Google Scholar] [CrossRef]
- Yang, L.; Chu, J.S.; Fix, J.A. Colon-specific drug delivery: New approaches and in vitro/in vivo evaluation. Int. J. Pharm. 2002, 235, 1–15. [Google Scholar] [CrossRef]
- He, W.; Du, Q.; Cao, D.; Xiang, B.; Fan, L. Study on colon-specific pectin/ethylcellulose film-coated 5-fluorouracil pellets in rats. Int. J. Pharm. 2008, 348, 35–45. [Google Scholar] [CrossRef]
- Wolpin, B.M.; Mayer, R.J. Systemic Treatment of Colorectal Cancer. Gastroenterology 2008, 134, 1296–1310.e1. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Shentu, J.-Z.; Wu, L.-H.; Dou, J.; Xu, Q.-Y.; Zhou, H.-L.; Wu, G.-L.; Huang, M.-Z.; Hu, X.-J.; Chen, J.-C. Relative bioavailability and pharmacokinetic comparison of two different enteric formulations of omeprazole. J. Zhejiang Univ. Sci. B 2012, 13, 348–355. [Google Scholar] [CrossRef] [Green Version]
- Chabner, B.A. Antineoplastic agents. In Goodman Gilman’s The Pharmacyological Basis of Therapeutics; McGraw Hill Education: New York, NY, USA, 1996. [Google Scholar]
- Sandle, G.I. Salt and water absorption in the human colon: A modern appraisal. Gut 1998, 43, 294–299. [Google Scholar] [CrossRef] [Green Version]
Formulations (Ratio of 5-FU/SEMC) | Amount (mg) | %EE (Mean ± SD) | %DL (Mean ± SD) | Size (µ) (Mean ± SD) | |
---|---|---|---|---|---|
5-FU | SEMC | ||||
F1 (1:4) | 50 | 200 | 47.66 ± 2.34 | 9.53 ± 0.46 | 12.42 ± 2.94 |
F2 (1:2) | 100 | 200 | 59.81 ± 4.19 | 19.94 ± 1.41 | 13.68 ± 3.91 |
F3 (3:4) | 150 | 200 | 58.86 ± 4.04 | 25.23 ± 1.73 | 17.02 ± 2.94 |
F2-ERS coated (with 5 mL of 5% ERS) | 100 | 200 | 56.23 ± 5.48 | 10.22 ± 0.99 | 15.47 ± 3.68 |
Stipulated Time Points | F2 Uncoated (Mean ± SD) | F2-ERS (Mean ± SD) | ||||
---|---|---|---|---|---|---|
Size (µ) | %EE | %DL | Size (µ) | %EE | %DL | |
Initially | 13.68 ± 3.91 | 59.81 ± 4.19 | 19.94 ± 1.39 | 15.47 ± 3.68 | 56.23 ± 5.48 | 10.22 ± 0.99 |
At 15th day | 13.86 ± 3.85 | 58.04 ± 3.48 | 19.34 ± 1.16 | 15.72 ± 3.75 | 55.03 ± 5.04 | 10.01 ± 0.92 |
At 30th day | 13.98 ± 3.81 | 56.95 ± 3.05 | 18.98 ± 1.02 | 15.87 ± 3.78 | 54.61 ± 5.24 | 9.93 ± 0.95 |
Pharmacokinetic Parameters | Plasma | Colon | Gastric | ||||||
---|---|---|---|---|---|---|---|---|---|
F2-ERS $ | F2 (Uncoated) $ | Change in % Control | F2-ERS $ | F2 (Uncoated) $ | Change in % Control | F2-ERS $ | F2 (Uncoated) $ | Change in % Control | |
Mean ± SD, n = 3 | Mean ± SD, n = 3 | Mean ± SD, n = 3 | Mean ± SD, n = 3 | Mean ± SD, n = 3 | Mean ± SD, n = 3 | ||||
Ke (1/h) | 0.09 ± 0.002 | 0.17 ± 0.0009 | 47.06 | 0.30 ± 0.0001 | 0.10 ± 0.000 | −200.00 | 0.06 ± 0.000 | 0.28 ± 0.028 | 785.71 |
t1/2 (h) | 7.38 ± 0.1875 | 4.03 ± 0.02 | −83.13 | 2.31 ± 0.0001 | 6.79 ± 0.0001 | 65.98 | 11.04 ± 0.0001 | 2.43 ± 0.23 | −354.32 |
Tmax (h) | 16.0 ± 0.0 | 1.0 ± 0.0 | −1500.00 | 12.0 ± 0.0 | 12.0 ± 0.0 | 0.00 | 3.0 ± 0.0 | 1.0 ± 0.0 | −200.00 |
Cmax (μg/mL) | 19.48 ± 0.61 | 102.82 ± 3.84 | 80.45 | 1271.53 ± 47.09 | 4.71 ± 0.06 | −26,896.39 | 23.55 ± 0.41 | 406.23 ± 15.04 | 94.20 |
AUC0-t (μg/mL·h) | 252.60 ± 6.24 | 264.09 ± 9.84 | 4.35 | 16,209.05 ± 600.34 | 64.86 ± 0.91 | −24,890.83 | 116.05 ± 2.01 | 1649.27 ± 71.14 | 92.96 |
AUC0-inf (μg/mL·h) | 350.54 ± 12.14 | 267.19 ± 9.83 | −31.20 | 16,509.59 ± 611.46 | 79.16 ± 1.11 | −20,755.98 | 129.98 ± 2.25 | 1651.17 ± 71.48 | 92.13 |
AUMC0-inf (μg/mL·h2) | 7212.19 ± 337.23 | 1387.17 ± 47.14 | −419.92 | 223,020.8 ± 8260.02 | 1218.264 ± 17.16 | −18,206.44 | 1322.44 ± 22.92 | 6941.41 ± 445.61 | 80.95 |
MRT0-inf (h) | 20.56 ± 0.29 | 5.19 ± 0.02 | −296.15 | 13.51 ± 0.001 | 15.38 ± 0.001 | 12.16 | 10.17 ± 0.001 | 4.20 ± 0.09 | −142.14 |
Vz/F {(mg)/(μg/mL)} | 0.24 ± 0.005 | 0.17 ± 0.007 | −41.18 | 0.002 ± 0.001 | 0.99 ± 0.01 | 99.80 | 0.99 ± 0.02 | 0.017 ± 0.001 | −5723.53 |
Cl/F {(mg)/(μg/mL)/h} | 0.023 ± 0.001 | 0.031 ± 0.001 | 25.81 | 0.001 ± 0.0001 | 0.102 ± 0.001 | 99.02 | 0.062 ± 0.001 | 0.005 ± 0.001 | −1140.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raish, M.; Kalam, M.A.; Ahmad, A.; Shahid, M.; Ansari, M.A.; Ahad, A.; Ali, R.; Bin Jardan, Y.A.; Alshamsan, A.; Alkholief, M.; et al. Eudragit-Coated Sporopollenin Exine Microcapsules (SEMC) of Phoenix dactylifera L. of 5-Fluorouracil for Colon-Specific Drug Delivery. Pharmaceutics 2021, 13, 1921. https://doi.org/10.3390/pharmaceutics13111921
Raish M, Kalam MA, Ahmad A, Shahid M, Ansari MA, Ahad A, Ali R, Bin Jardan YA, Alshamsan A, Alkholief M, et al. Eudragit-Coated Sporopollenin Exine Microcapsules (SEMC) of Phoenix dactylifera L. of 5-Fluorouracil for Colon-Specific Drug Delivery. Pharmaceutics. 2021; 13(11):1921. https://doi.org/10.3390/pharmaceutics13111921
Chicago/Turabian StyleRaish, Mohammad, Mohd Abul Kalam, Ajaz Ahmad, Mudassar Shahid, Mushtaq Ahmad Ansari, Abdul Ahad, Raisuddin Ali, Yousef A. Bin Jardan, Aws Alshamsan, Musaed Alkholief, and et al. 2021. "Eudragit-Coated Sporopollenin Exine Microcapsules (SEMC) of Phoenix dactylifera L. of 5-Fluorouracil for Colon-Specific Drug Delivery" Pharmaceutics 13, no. 11: 1921. https://doi.org/10.3390/pharmaceutics13111921
APA StyleRaish, M., Kalam, M. A., Ahmad, A., Shahid, M., Ansari, M. A., Ahad, A., Ali, R., Bin Jardan, Y. A., Alshamsan, A., Alkholief, M., Alkharfy, K. M., Abdelrahman, I. A., & Al-Jenoobi, F. I. (2021). Eudragit-Coated Sporopollenin Exine Microcapsules (SEMC) of Phoenix dactylifera L. of 5-Fluorouracil for Colon-Specific Drug Delivery. Pharmaceutics, 13(11), 1921. https://doi.org/10.3390/pharmaceutics13111921