Biocompatible Nanocarriers for Enhanced Cancer Photodynamic Therapy Applications
Abstract
:1. Introduction
2. The Potential Application of Biocompatible Nanocarriers in PDT
2.1. Polymer-Based Nanocarriers
2.2. Dendrimers
2.3. Liposomes
2.4. Carbon-Based Nanoparticles
2.5. Gold Nanoparticles
2.6. Silver Nanoparticles
2.7. Magnetic Nanoparticles
2.8. Mesoporous Silica Nanoparticles
3. Biocompatible Nanocarriers for Photosensitizers in PDT
4. Biocompatible Nano Carrier-Based Targeted Therapy in PDT
5. Clinical Application of PDT in Cancer Treatment
6. Future Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
µM | Micromolar |
1O2 | Singlet oxygen |
2D | Two-dimension |
3D | Three-dimension |
4T1 | Murine mammary carcinoma cells |
4T1 cells | Mouse breast tumor cells |
A375 | malignant melanoma cancer cells |
A549 | Human adeno lung carcinoma |
ALA | 5-Aminolevulinic acid |
Arg-Gly-Asp | Arginylglycylaspartic acid |
B16-F10 | Murine melanoma cells |
BODIPY | boron-dipyrromethene |
CACO-2 cells | Human colorectal adenocarcinoma cells |
CCL1.3 | Fibroblast cells |
CD44 | Cell surface adhesion receptor 44 |
CDT | Chemodynamic therapy |
Ce6 | Chlorin e6 |
CLIPT | Continuous low-irradiance photodynamic therapy procedure |
DETC | Diethyldithiocarbamate |
DLA cells | Dalton’s Lymphoma Ascite |
DNA | Deoxyribonucleic acid |
EGFRvIII | Epidermal growth factor receptor variant III |
EpCAM or CD326 | Epithelial cell adhesion molecules |
EPR effect | Enhanced permeability and retention Effect |
Fe3O4 | Iron (II, III) oxide |
g-C3N4 QDs | Graphitic carbon nitride quantum dots |
h | Hour |
H2O2 | Hydrogen peroxide |
HBMEC | Brain capillary endothelial cells |
HBMEC | Blood-brain barrier |
HEK 293T | Human embryonic kidney cells |
HeLa | Human cervical carcinoma cells |
HMSNs | Hollow mesoporous silica nanoparticles |
HpD | Haematoporphyrin derivatives |
HPPH | 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a |
HT-29 cells | Human colon cancer cells |
IR820 | Indocyanine green |
J/cm2 | Joules per square centimeter |
Kg | Kilogram |
LED | Light emitting diode |
MB | Methylene blue |
MCF-7 | Human breast cancer cells |
MDA-MB231 | human breast cancer cells |
MDA-MB-435 | Human breast cancer cells |
mg | Milligram |
mTHPC | m-Tetrahydroxyphenylchlorin |
MTT | 2,5-diphenyl-2H-tetrazolium bromide salts |
mV | Millivolt |
NIH3T3 cells | Mouse embryo fibroblast cells |
nm | Nanometer |
NPs | Nanoparticles |
O2 | Oxygen |
OEC-M1 | Oral epidermoid carcinoma cells |
OH | Hydroxide |
PAMAM | Poly(amidoamine) |
PBS | Phosphate bufferred saline |
PDT | Photodynamic therapy |
PEG | Poly(ethylene glycol) |
PLGA | Poly(lactic-co-glycolic acid) |
PPI | Poly(propylene imine) |
PpIX | Protoporphyrin IX |
PS | Photosensitizer |
PS | Photosensitizers |
PTT | Photothermal effect |
RGD | Tripeptide consisting of arginine, glycine, and aspartate |
ROS | Reactive oxygen species |
SiHa cells | Human cervical cancer cells |
SKOV-3 cells | Human adenocarcinoma cells |
T98G cells | Glioblastoma cells |
TAPP | 5,10,15,20-tetrakis (4-aminophenyl) porphyrin |
TPP | Triphenylphosphine |
U87 MG | Uppsala 87 malignant glioma cells |
W/cm2 | Watt per square centimetre |
ZnPc | Zinc phthalocyanine |
References
- Cooper, G.M. The Development and Causes of Cancer. In The Cell: A Molecular Approach, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2000; Available online: https://www.ncbi.nlm.nih.gov/books/NBK9963/ (accessed on 15 September 2021).
- Lodish, H.; Berk, A.; Zipursky, S.L.; Matsudaira, P.; Baltimore, D.; Darnell, J. Section 12.4, DNA Damage and Repair and Their Role in Carcinogenesis. In Molecular Cell Biology, 4th ed.; W. H. Freeman: New York, NY, USA, 2000; Available online: https://www.ncbi.nlm.nih.gov/books/NBK21554/ (accessed on 15 September 2021).
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv. Pharm. Bull. 2017, 7, 339–348. [Google Scholar] [CrossRef]
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 7 May 2021).
- Ravindran, J.; Prasad, S.; Aggarwal, B.B. Curcumin and Cancer Cells: How Many Ways Can Curry Kill Tumor Cells Selectively? AAPS J. 2009, 11, 495–510. [Google Scholar] [CrossRef] [PubMed]
- Sutradhar, K.B.; Amin, M.L. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol. 2014, 2014, 939378. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020, 7, 193. [Google Scholar] [CrossRef] [PubMed]
- Ang, C.Y.; Tan, S.Y.; Zhao, Y. Recent advances in biocompatible nanocarriers for delivery of chemotherapeutic cargoes towards cancer therapy. Org. Biomol. Chem. 2014, 12, 4776–4806. [Google Scholar] [CrossRef]
- Li, L.-Y.; Zhou, Y.-M.; Gao, R.-Y.; Liu, X.-C.; Du, H.-H.; Zhang, J.-L.; Ai, X.-C.; Zhang, J.-P.; Fu, L.-M.; Skibsted, L.H. Naturally occurring nanotube with surface modification as biocompatible, target-specific nanocarrier for cancer phototherapy. Biomaterials 2019, 190–191, 86–96. [Google Scholar] [CrossRef]
- Malekzad, H.; Zangabad, P.S.; Mirshekari, H.; Hamblin, M.R. Noble metal nanoparticles in biosensors: Recent studies and application. Nanotechnol. Rev. 2017, 6, 301–329. [Google Scholar] [CrossRef]
- Mekuria, S.L.; Debele, T.A.; Tsai, H.-C. PAMAM dendrimer based targeted nano-carrier for bio-imaging and therapeutic agents. RSC Adv. 2016, 6, 63761–63772. [Google Scholar] [CrossRef]
- Bhaskar, S.; Tian, F.; Stoeger, T.; Kreyling, W.; de la Fuente, J.M.; Grazu, V.; Borm, P.; Estrada, G.; Ntziachristos, V.; Razansky, D. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: Perspectives on tracking and neuroimaging. Part. Fibre Toxicol. 2010, 7, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyagi, N.; Song, Y.H.; De, R. Recent progress on biocompatible nanocarrier-based genistein delivery systems in cancer therapy. J. Drug Target. 2019, 27, 394–407. [Google Scholar] [CrossRef]
- Sharma, P.; Rana, S.; Barick, K.C.; Kumar, C.; Salunke, H.G.; Hassan, P.A. Biocompatible phosphate anchored Fe3O4 nanocarriers for drug delivery and hyperthermia. New J. Chem. 2014, 38, 5500–5508. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018, 16, 71. [Google Scholar] [CrossRef] [Green Version]
- Sathish Sundar, D.; Gover Antoniraj, M.; Senthil Kumar, C.; Mohapatra, S.S.; Houreld, N.N.; Ruckmani, K. Recent trends of biocompatible and biodegradable nanoparticles in drug delivery. Curr. Med. Chem. 2016, 23, 3730–3751. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Fan, Y.; Feng, Q.; Cui, F.-Z. Biocompatibility and toxicity of nanoparticles and nanotubes. J. Nanomat. 2012, 2012, 548389. [Google Scholar] [CrossRef] [Green Version]
- Sukhanova, A.; Bozrova, S.; Sokolov, P.; Berestovoy, M.; Karaulov, A.; Nabiev, I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett. 2018, 13, 44. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Lee, Y.-K.; Park, I.-K.; Hwang, S.R. Current limitations and recent progress in nanomedicine for clinically available photodynamic therapy. Biomedicines 2021, 9, 85. [Google Scholar] [CrossRef]
- Bazak, R.; Houri, M.; Achy, S.E.; Hussein, W.; Refaat, T. Passive targeting of nanoparticles of cancer: A comprehensive review of the literature. Mol. Clin. Oncol. 2014, 2, 904–908. [Google Scholar] [CrossRef] [Green Version]
- Hong, E.J.; Choi, D.G.; Shim, M.S. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm. Sin. B 2016, 6, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Fakayode, O.J.; Tsolekile, N.; Songca, S.P.; Oluwafemi, O.S. Applications of functionalized nanomaterials in photodynamic therapy. Biophys. Rev. 2018, 10, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Sun, Z.; Ren, Y.; Chen, X.; Zhang, W.; Zhu, X.; Mao, Z.; Shen, J.; Nie, S. Advances in nanomaterials for use in photothermal and photodynamic therapeutics (review). Mol. Med. Rep. 2019, 20, 5–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benov, L. Photodynamic therapy: Current status and future directions. Med. Princ. Pract. 2014, 24, 14–28. [Google Scholar] [CrossRef]
- Mansoori, B.; Mohammadi, A.; Amin Doustvandi, M.; Mohammadnejad, F.; Kamari, F.; Gjerstorff, M.F.; Baradaran, B.; Hamblin, M.R. Photodynamic therapy for cancer: Role of natural products. Photodiagnosis Photodyn. Ther. 2019, 26, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016, 473, 347–364. [Google Scholar] [CrossRef] [Green Version]
- Castano, A.P.; Demidova, T.N.; Hamblin, M.R. Mechanisms in photodynamic therapy: Part one-photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn. Ther. 2004, 1, 279–293. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy—Mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018, 106, 1098–1107. [Google Scholar] [CrossRef]
- Li, T.; Yan, L. Functional Polymer Nanocarriers for Photodynamic Therapy. Pharmaceuticals 2018, 11, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klajnert, B.; Rozanek, M.; Bryszewska, M. Dendrimers in photodynamic therapy. Curr. Med. Chem. 2012, 19, 4903–4912. [Google Scholar] [CrossRef]
- Derycke, A.S.; de Witte, P.A. Liposomes for photodynamic therapy. Adv. Drug Deliv. Rev. 2004, 56, 17–30. [Google Scholar] [CrossRef]
- Sundaram, P.; Abrahamse, H. Phototherapy combined with carbon nanomaterials (1D and 2D) and their applications in cancer therapy. Materials 2020, 13, 4830. [Google Scholar] [CrossRef]
- García Calavia, P.; Bruce, G.; Pérez-García, L.; Russell, D.A. Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochem. Photobiol. Sci. 2018, 17, 1534–1552. [Google Scholar] [CrossRef] [Green Version]
- Khoza, P.; Ndhundhuma, I.; Karsten, A.; Nyokong, T. Photodynamic therapy activity of phthalocyanine silver nanoparticles on melanoma cancer cells. J. Nanosci. Nanotechnol. 2020, 20, 3097–3104. [Google Scholar] [CrossRef]
- Choi, K.H.; Nam, K.C.; Cho, G.; Jung, J.S.; Park, B.J. Enhanced Photodynamic Anticancer Activities of Multifunctional Magnetic Nanoparticles (Fe3O4) Conjugated with Chlorin e6 and Folic Acid in Prostate and Breast Cancer Cells. Nanomaterials 2018, 8, 722. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Nam, J.; Hong, H.; Xu, Y.; Moon, J.J. Positron Emission Tomography-Guided Photodynamic Therapy with Biodegradable Mesoporous Silica Nanoparticles for Personalized Cancer Immunotherapy. ACS Nano 2019, 13, 12148–12161. [Google Scholar] [CrossRef]
- Fernandez, M.; Orozco, J. Advances in functionalized photosensitive polymeric nanocarriers. Polymers 2021, 13, 2464. [Google Scholar] [CrossRef]
- Prabhu, R.; Patravale, V.; Joshi, M.D. Polymeric nanoparticles for targeted treatment in oncology: Current insights. Int. J. Nanomedicine 2015, 10, 1001–1018. [Google Scholar] [PubMed] [Green Version]
- Li, J.; Li, J.; Pu, Y.; Li, S.; Gao, W.; He, B. PDT-Enhanced Ferroptosis by a Polymer Nanoparticle with pH-Activated Singlet Oxygen Generation and Superb Biocompatibility for Cancer Therapy. Biomacromolecules 2021, 22, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wu, M.; Zeng, Y.; Wu, L.; Wang, Q.; Han, X.; Liu, X.; Liu, J. Chlorin e6 Conjugated Poly(dopamine) Nanospheres as PDT/PTT Dual-Modal Therapeutic Agents for Enhanced Cancer Therapy. ACS Appl. Mater. Interfaces 2015, 7, 8176–8187. [Google Scholar] [CrossRef] [PubMed]
- Ebani, P.R.; Stefanello, L.; Kuhn, B.L.; Frizzo, C.P.; Burgo, T.A.L.; Kloster, C.L.; Villetti, M.A. Carboxymethyl chitosan/ionic liquid imidazolium-based nanoparticles as nanocarriers for zinc phthalocyanine and its photodynamic activity. J. Mol. Liq. 2021, 336, 116874. [Google Scholar] [CrossRef]
- Zhu, D.; Roy, S.; Liu, Z.; Weller, H.; Parak, W.J.; Feliu, N. Remotely controlled opening of delivery vehicles and release of cargo by external triggers. Adv. Drug Deliv. Rev. 2019, 138, 117–132. [Google Scholar] [CrossRef]
- Barhoumi, A.; Liu, Q.; Kohane, D.S. Ultraviolet light-mediated drug delivery: Principles, applications, and challenges. J. Control. Rel. 2015, 219, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Schoppa, T.; Jung, D.; Rust, T.; Mulac, D.; Kuckling, D.; Langer, K. Light-responsive polymeric nanoparticles based on a novel nitropiperonal based polyester as drug delivery systems for photosensitizers in PDT. Int. J. Pharm. 2021, 597, 120326. [Google Scholar] [CrossRef]
- Madaan, K.; Kumar, S.; Poonia, N.; Lather, V.; Pandita, D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci. 2014, 6, 139–150. [Google Scholar]
- Sherje, A.P.; Jadhav, M.; Dravyakar, B.R.; Kadam, D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int. J. Pharm. 2018, 548, 707–720. [Google Scholar] [CrossRef]
- Patri, A.K.; Kukowska-Latallo, J.F.; Baker, J.R., Jr. Targeted drug delivery with dendrimers: Comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv. Drug Deliv. Rev. 2005, 57, 2203–2214. [Google Scholar] [CrossRef]
- Pooresmaeil, M.; Namazi, H. Advances in development of the dendrimers having natural saccharides in their structure for efficient and controlled drug delivery applications. Eur. Polym. J. 2021, 148, 110356. [Google Scholar] [CrossRef]
- Ouyang, Z.; Gao, Y.; Shen, M.; Shi, X. Dendrimer-based nanobybrids in cancer photomedicine. Mater. Today Bio. 2021, 10, 100111. [Google Scholar] [CrossRef] [PubMed]
- Dabrzalska, M.; Janaszewska, A.; Zablocka, M.; Mignani, S.; Majoral, J.P.; Klajnert-Maculewicz, B. Cationic phosphorus dendrimer enhances photodynamic activity of rose bengal against basal cell carcinoma cell lines. Mol. Pharm. 2017, 14, 1821–1830. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Battah, S.; Mazzacuva, F.; Hider, R.C.; Dobbin, P.; MacRobert, A.J. Design of bifunctional dendritic 5-Aminolevulinic acid and hydroxypyridinone conjugates for photodynamic therapy. Bioconjugate Chem. 2018, 29, 3411–3428. [Google Scholar] [CrossRef] [Green Version]
- Kojima, C.; Toi, Y.; Harada, A.; Kono, K. Preparation of Poly (ethylene glycol)-Attached Dendrimers Encapsulating Photosensitizers for Application to Photodynamic Therapy. Bioconjugate Chem. 2007, 18, 663–670. [Google Scholar] [CrossRef]
- Guimaraes, D.; Cavaco-Paulo, A.; Nogueira, E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021, 601, 120571. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.S.; Zheng, G. Liposomal nanostructures for photosensitizer delivery. Lasers Surg. Med. 2011, 43, 734–748. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, K.; Hikita, T.; Maeda, N.; Yonezawa, S.; Takeuchi, Y.; Asai, T.; Namba, Y.; Oku, N. Antiangiogenic photodynamic therapy (PDT) by using long-circulating liposomes modified with peptide specific to angiogenic vessels. Biochim. Biophys. Acta Biomembr. 2005, 1669, 69–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Wang, L.; Cao, H.; Li, Q.; Li, Y.; Han, M.; Wang, H.; Li, J. Photodynamic Therapy with Liposomes Encapsulating Photosensitizers with Aggregation-Induced Emission. Nano Lett. 2019, 19, 1821–1826. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feuser, P.E.; Cordeiro, A.P.; de Bem Silveira, G.; Correa, M.E.A.B.; Silveira, P.C.L.; Sayer, C.; de Araujo, P.H.H.; Machado-de-Avila, R.A.; Bo, A.G.D. Co-encapsulation of sodium diethyldithiocarbamate (DETC) and zinc phthalocyanine (ZnPc) in liposomes promotes increases phototoxic activity against (MDA-MB 231) human breast cancer cells. Colloids Surf. B 2021, 197, 111434. [Google Scholar] [CrossRef]
- Lee, E.-H.; Lim, S.-J.; Lee, M.-K. Chitosan-coated liposomes to stabilize and enhance transdermal delivery of indocyanine green for photodynamic therapy of melanoma. Carbohydr. Polym. 2019, 224, 115143. [Google Scholar] [CrossRef]
- Miretti, M.; Tempesti, T.C.; Prucca, C.G.; Baumgartner, M.T. Zn phthalocyanines loaded into liposomes: Characterization and enhanced performance of photodynamic activity on glioblastoma cells. Bioorg. Med. Chem. 2020, 28, 115355. [Google Scholar] [CrossRef]
- Sui, C.; Tan, R.; Chen, Y.; Yin, G.; Wang, Z.; Xu, W.; Li, X. MOFs-Derived Fe–N Codoped Carbon Nanoparticles as O2-Evolving Reactor and ROS Generator for CDT/PDT/PTT Synergistic Treatment of Tumors. Bioconjugate Chem. 2021, 32, 318–327. [Google Scholar] [CrossRef]
- Zheng, D.-W.; Li, B.; Li, C.-X.; Fan, J.-C.; Lei, Q.; Li, C.; Xu, Z.; Zhang, X.-Z. Carbon-Dot-Decorated Carbon Nitride Nanoparticles for Enhanced Photodynamic Therapy against Hypoxic Tumor via Water Splitting. ACS Nano 2016, 10, 8715–8722. [Google Scholar] [CrossRef]
- Chan, M.-H.; Chen, C.-W.; Lee, I.-J.; Chan, Y.-C.; Tu, D.; Hsiao, M.; Chen, C.-H.; Chen, X.; Liu, R.-S. Near-Infrared Light-Mediated Photodynamic Therapy Nanoplatform by the Electrostatic Assembly of Upconversion Nanoparticles with Graphitic Carbon Nitride Quantum Dots. Inorg. Chem. 2016, 55, 10267–10277. [Google Scholar] [CrossRef]
- Kang, M.S.; Lee, S.Y.; Kim, K.S.; Han, D.W. State of the Art Biocompatible Gold Nanoparticles for Cancer Theragnosis. Pharmaceutics 2020, 12, 701. [Google Scholar] [CrossRef]
- Kong, F.Y.; Zhang, J.W.; Li, R.F.; Wang, Z.X.; Wang, W.J.; Wang, W. Unique Roles of Gold Nanoparticles in Drug Delivery, Targeting and Imaging Applications. Molecules 2017, 22, 1445. [Google Scholar] [CrossRef] [Green Version]
- Yao, C.; Zhang, L.; Wang, J.; He, Y.; Xin, J.; Wang, S.; Xu, H. Gold nanoparticles mediated phototherapy for cancer. J. Nanomat. 2016, 2016, 5497136. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Meyers, J.D.; Broome, A.-M.; Kenney, M.C.; Basilion, J.P.; Burda, C. Deep Penetration of a PDT Drug into Tumors by Noncovalent Drug-Gold Nanoparticle Conjugates. J. Am. Chem. Soc. 2011, 133, 2583–2591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, D.; Sailapu, S.K.; Simon, A.T.; Ghosh, S.S.; Chattopadhyay, A. Gold-Nanocluster-Embedded Mucin Nanoparticles for Photodynamic Therapy and Bioimaging. Langmuir 2019, 35, 10475–10483. [Google Scholar] [CrossRef]
- Wei, X.; Chen, H.; Tham, H.P.; Zhang, N.; Xing, P.; Zhang, G.; Zhao, Y. Combined Photodynamic and Photothermal Therapy Using Cross-Linked Polyphosphazene Nanospheres Decorated with Gold Nanoparticles. ACS Appl. Nano Mater. 2018, 1, 3663–3672. [Google Scholar] [CrossRef]
- Lin, J.; Wang, S.; Huang, P.; Wang, Z.; Chen, S.; Niu, G.; Li, W.; He, J.; Cui, D.; Lu, G.; et al. Photosensitizer-Loaded Gold Vesicles with Strong Plasmonic Coupling Effect for Imaging-Guided Photothermal/Photodynamic Therapy. ACS Nano 2013, 7, 5320–5329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mfouo-Tynga, I.; El-Hussein, A.; Abdel-Harith, M.; Abrahamse, H. Photodynamic ability of silver nanoparticles in inducing cytotoxic effects in breast and lung cancer cell lines. Int. J. Nanomed. 2014, 9, 3771–3780. [Google Scholar]
- Mahajan, P.G.; Dige, N.C.; Vanjare, B.D.; Eo, S.-H.; Seo, S.-Y.; Kim, S.J.; Hong, S.-K.; Choi, C.-S.; Lee, K.H. A potential mediator for photodynamic therapy based on silver nanoparticles functionalized with porphyrin. J. Photochem. Photobiol. A Chem. 2019, 377, 26–35. [Google Scholar] [CrossRef]
- Natesan, S.; Krishnaswami, V.; Ponnusamy, C.; Madiyalakan, M.; Woo, T.; Palanisamy, R. Hypocrellin B and nano silver loaded polymeric nanoparticles: Enhanced generation of singlet oxygen for improved photodynamic therapy. Mater. Sci. Eng. C 2017, 77, 935–946. [Google Scholar] [CrossRef]
- de Freitas, C.F.; Kimura, E.; Rubira, A.F.; Muniz, E.C. Curcumin and silver nanoparticles carried out from polysaccharide-based hydrogels improved the photodynamic properties of curcumin through metal-enhanced singlet oxygen effect. Mater. Sci. Eng. C 2020, 112, 110853. [Google Scholar] [CrossRef] [PubMed]
- Hosu, O.; Tertis, M.; Cristea, C. Implication of magnetic nanoparticles in cancer detection, screening, and treatment. Magnetochemistry 2019, 5, 55. [Google Scholar] [CrossRef] [Green Version]
- Arias, L.S.; Pessan, J.P.; Vieira, A.P.M.; Lima, T.M.T.; Delbem, A.C.B.; Monteiro, D.R. Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics 2018, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Hou, H.; Huang, X.; Wei, G.; Xu, F.; Wang, Y.; Zhou, S. Fenton Reaction-Assisted Photodynamic Therapy for Cancer with Multifunctional Magnetic Nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 29579–29592. [Google Scholar] [CrossRef]
- Cinteza, L.O.; Ohulchanskyy, T.Y.; Sahoo, Y.; Bergey, E.J.; Pandey, R.K.; Prasad, P.N. Diacyllipid Micelle-Based Nanocarrier for Magnetically Guided Delivery of Drugs in Photodynamic Therapy. Mol. Pharm. 2006, 3, 415–423. [Google Scholar] [CrossRef]
- Di Corato, R.; Bealle, G.; Kolosnjaj-Tabi, J.; Espinosa, A.; Clement, O.; Silva, A.K.A.; Menager, C.; Wilhelm, C. Combining Magnetic Hyperthermia and Photodynamic Therapy for Tumor Ablation with Photoresponsive Magnetic Liposomes. ACS Nano 2015, 9, 2904–2916. [Google Scholar] [CrossRef]
- Zhou, H.; Hou, X.; Liu, Y.; Zhao, T.; Shang, Q.; Tang, J.; Liu, J.; Wang, Y.; Wu, Q.; Luo, Z.; et al. Superstable Magnetic Nanoparticles in Conjugation with Near-Infrared Dye as a Multimodal Theranostic Platform. ACS Appl. Mater. Interfaces 2016, 8, 4424–4433. [Google Scholar] [CrossRef]
- Rastegari, E.; Hsiao, Y.-J.; Lai, W.-Y.; Lai, Y.-H.; Yang, T.-C.; Chen, S.-J.; Huang, P.-I.; Chiou, S.-H.; Mou, C.-Y.; Chien, Y. An Update on Mesoporous Silica Nanoparticle Applications in Nanomedicine. Pharmaceutics 2021, 13, 1067. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Chang, C.; Zuhao, L.; Zhou, Y.; Xu, Q.; Li, C.; Huang, Z.; Xu, H.; Xu, P.; Lu, B. Hyaluronic acid targeted and pH-responsive nanocarriers based on hollow mesoporous silica nanoparticles for chemo-photodynamic combination therapy. Colloids Surf. B 2020, 194, 111166. [Google Scholar] [CrossRef]
- Han, R.; Wu, S.; Yan, Y.; Chen, W.; Tang, K. Construction of ferrocene modified and indocyanine green loaded multifunctional mesoporous silica nanoparticle for simultaneous chemodynamic/photothermal/photodynamic therapy. Mater. Today Commun. 2021, 26, 101842. [Google Scholar] [CrossRef]
- Pan, Q.; Tian, J.; Zhu, H.; Hong, L.; Mao, Z.; Oliveira, J.M.; Reis, R.L.; Li, X. Tumor-Targeting Polycaprolactone Nanoparticles with Codelivery of Paclitaxel and IR780 for Combinational Therapy of Drug-Resistant Ovarian Cancer. ACS Biomater. Sci. Eng. 2020, 6, 2175–2185. [Google Scholar] [CrossRef]
- Dabrzalska, M.; Zablocka, M.; Mignani, S.; Majoral, J.P.; Klajnert-Maculewicz, B. Phosphorus dendrimers and photodynamic therapy. Spectroscopic studies on two dendrimer-photosensitizer complexes: Cationic phosphorus dendrimer with rose bengal and anionic phosphorus dendrimer with methylene blue. Int. J. Pharm. 2015, 492, 266–274. [Google Scholar] [CrossRef]
- Ghosh, S.; Carter, K.A.; Lovell, J.F. Liposomal formulations of photosensitizers. Biomaterials 2019, 218, 119341. [Google Scholar] [CrossRef]
- Zhu, Z.; Tang, Z.; Phillips, J.A.; Yang, R.; Wang, H.; Tan, W. Regulation of singlet oxygen generation using single-walled carbon nanotubes. J. Am. Chem. Soc. 2008, 130, 10856–10857. [Google Scholar] [CrossRef]
- Tan, X.; Wang, J.; Pang, X.; Liu, L.; Sun, Q.; You, Q.; Tan, F.; Li, N. Indocyanine Green-Loaded Silver Nanoparticle@Polyaniline Core/Shell Theranostic Nanocomposites for Photoacoustic/Near-Infrared Fluorescence Imaging-Guided and Single-Light-Triggered Photothermal and Photodynamic Therapy. ACS Appl. Mater. Interfaces 2016, 8, 34991–35003. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.K.A.; Kolosnjaj-Tabi, J.; Bonneau, S.; Marangon, I.; Boggetto, N.; Aubertin, K.; Clement, O.; Bureau, M.F.; Luciani, N.; Gazeau, F.; et al. Magnetic and Photoresponsive Theranosomes: Translating Cell-Released Vesicles into Smart Nanovectors for Cancer Therapy. ACS Nano 2013, 7, 4954–4966. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Qu, Q.; Zhao, Y. Targeted Delivery of 5-Aminolevulinic Acid by Multifunctional Hollow Mesoporous Silica Nanoparticles for Photodynamic Skin Cancer Therapy. ACS Appl. Mater. Interfaces 2015, 7, 10671–10676. [Google Scholar] [CrossRef] [PubMed]
- Yi, G.; Hong, S.H.; Son, J.; Yoo, J.; Park, C.; Choi, Y.; Koo, H. Recent advances in nanoparticle carriers for photodynamic therapy. Quant. Imaging Med. Surg. 2018, 8, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-G.; Chang, J.-E.; Shin, B.; Na, K.; Shim, C.-K. 99mTc-hematoporphyrin linked albumin nanoparticles for lung cancer targeted photodynamic therapy and imaging. J. Mater. Chem. 2010, 20, 9042–9046. [Google Scholar] [CrossRef]
- Lamch, L.; Bazylinska, U.; Kulbacka, J.; Pietkiewicz, J.; Bieżuńska-Kusiak, K.; Wilk, K.A. Polymeric micelles for enhanced Photofrin II® delivery, cytotoxicity and pro-apoptotic activity in human breast and ovarian cancer cells. Photodiagnosis Photodyn. Ther. 2014, 11, 570–585. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Delgado, J.A.; Castro, P.M.; Machado, A.; Araujo, F.; Rodrigues, F.; Korsak, B.; Ferreira, M.; Tome, J.P.; Sarmento, B. Hydrogels containing porphyrin-loaded nanoparticles for topical photodynamic applications. Int. J. Pharm. 2016, 510, 221–231. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Liu, H. Co-delivery of chitosan nanoparticles of 5-aminolevulinic acid and shGBAS for improving photodynamic therapy efficacy in oral squamous cell carcinomas. Photodiagnosis Photodyn. Ther. 2021, 34, 102218. [Google Scholar] [CrossRef] [PubMed]
- Brezaniova, I.; Hruby, M.; Kralova, J.; Kral, V.; Cernochova, Z.; Cernoch, P.; Slouf, M.; Kredatusova, J.; Stepanek, P. Temoporfin-loaded 1-tetradecanol-based thermoresponsive solid lipid nanoparticles for photodynamic therapy. J. Control. Release 2016, 241, 34–44. [Google Scholar] [CrossRef]
- Konan-Kouakou, Y.N.; Boch, R.; Gurny, R.; Allemann, E. In vitro and in vivo activities of verteporfin-loaded nanoparticles. J. Control. Rel. 2005, 103, 83–91. [Google Scholar] [CrossRef]
- Sundaram, P.; Abrahamse, H. Effective Photodynamic Therapy for Colon Cancer Cells Using Chlorin e6 Coated Hyaluronic Acid-Based Carbon Nanotubes. Int. J. Mol. Sci. 2020, 21, 4745. [Google Scholar] [CrossRef]
- Chepurna, O.M.; Yakovliev, A.; Ziniuk, R.; Nikolaeva, O.A.; Levchenko, S.M.; Xu, H.; Losytskyy, M.Y.; Bricks, J.L.; Slominskii, Y.L.; Vretik, L.O.; et al. Core–shell polymeric nanoparticles co-loaded with photosensitizer and organic dye for photodynamic therapy guided by fluorescence imaging in near and short-wave infrared spectral regions. J. Nanobiotechnol. 2020, 18, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Thakur, N.S.; Mandal, N.; Patel, G.; Kirar, S.; Reddy, Y.N.; Kushwah, V.; Jain, S.; Kalia, Y.N.; Bhaumik, J.; Banerjee, U.C. Co-administration of zinc phthalocyanine and quercetin via hybrid nanoparticles for augmented photodynamic therapy. Nanomedicine Nanotechnol. 2021, 33, 102368. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Cheng, L.; Zhao, A.; Zhang, H.; Zhang, A. Pluronic-based graphene oxide-methylene blue nanocomposite for photodynamic/photothermal combined therapy of cancer cells. Photodiagnosis Photodyn. Ther. 2020, 29, 101640. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Babu, A.; Kim, S.-J.; Murugesan, R.; Jeyasubramanian, K. Enhanced photodynamic efficacy and efficient delivery of Rose Bengal using nanostructured poly(amidoamine) dendrimers: Potential application in photodynamic therapy of cancer. Cancer Nanotechnol. 2011, 2, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Wang, N.; Liu, B.; Du, Y.; Li, R.; Meng, Y.; Feng, Y.; Shan, Z.; Meng, S. A phototheranostic nanoparticle for cancer therapy fabricated by BODIPY and graphene to realize photo-chemo synergistic therapy and fluorescence/photothermal imaging. Dyes Pigm. 2020, 177, 177–108262. [Google Scholar] [CrossRef]
- Damke, G.M.Z.F.; Souza, R.P.; Montanha, M.C.; Damke, E.; Gonçalves, R.S.; César, G.B.; Kimura, E.; Caetano, W.; Hioka, N.; Consolaro, M.E. Selective Photodynamic Effects on Breast Cancer Cells Provided by p123 Pluronic®- Based Nanoparticles Modulating Hypericin Delivery. Anticancer Agents Med. Chem. 2020, 20, 1352–1367. [Google Scholar] [CrossRef] [PubMed]
- Krishnaswami, V.; Ponnusamy, C.; Sankareswaran, S.; Paulsamy, M.; Madiyalakan, R.; Palanichamy, R.; Kandasamy, R.; Natesan, S. Development of copolymeric nanoparticles of hypocrellin B: Enhanced phototoxic effect and ocular distribution. Eur. J. Pharm. Sci. 2018, 116, 26–36. [Google Scholar] [CrossRef]
- Rivas Aiello, M.B.; Castrogiovanni, D.; Parisi, J.; Azcarate, J.C.; Garcia Einschlag, F.S.; Gensch, T.; Bosio, G.N.; Martire, D.O. Photodynamic therapy in HeLa cells incubated with Riboflavin and pectin-coated silver nanoparticles. Photochem. Photobiol. 2018, 94, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Zhang, L.; Liu, W.; Huang, Y.; Hu, P.; Dai, T.; Xu, J.; Chen, Z. Albumin-based nanoparticles combined with photodynamic therapy enhance the antitumor activity of curcumin derivative C086. Dyes Pigm. 2021, 189, 109258. [Google Scholar] [CrossRef]
- Campu, A.; Focsan, M.; Lerouge, F.; Borlan, R.; Tie, L.; Rugina, D.; Astilean, S. ICG-loaded gold nano-bipyramids with NIR activatable dual PTT-PDT therapeutic potential in melanoma cells. Colloid Surf. B 2020, 194, 111213. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Pan, S.; Zheng, J.; Hong, Y.; Liu, J.; Chang, H.; Miao, Y.; Sun, Y.; Li, Y. Electrostatic self-assembled Iridium(III) nano-photosensitizer for selectively disintegrated and mitochondria targeted photodynamic therapy. Dyes Pigm. 2020, 175, 108105. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Li, J.; Huang, H.; Sun, X.; Lv, Y. Development and evaluation of hyaluronic acid-based polymeric micelles for targeted delivery of photosensitizer for photodynamic therapy in vitro. J. Drug Deliv. Sci. Technol. 2018, 48, 414–421. [Google Scholar] [CrossRef]
- Fu, X.; Sun, H.; Zhang, G.; Zhao, K.; Tian, Y.; Gao, Z.; Cui, J.; Yu, Q. Targeted poly(ethylene glycol) nanoparticles for photodynamic therapy. Colloid Surf. A 2020, 606, 125394. [Google Scholar] [CrossRef]
- Jamali, Z.; Khoobi, M.; Hejazi, S.M.; Eivazi, N.; Abdolahpour, S.; Imanparast, F.; Moradi-Sardareh, H.; Paknejad, M. Evaluation of targeted curcumin (CUR) loaded PLGA nanoparticles for in vitro photodynamic therapy on human glioblastoma cell line. Photodiagnosis Photodyn. Ther. 2018, 23, 190–201. [Google Scholar] [CrossRef]
- Zhu, X.; Zhou, H.; Liu, Y.; Wen, Y.; Wei, C.; Yu, Q.; Liu, J. Transferrin/aptamer conjugated mesoporous ruthenium nanosystem for redox-controlled and targeted chemo-photodynamic therapy of glioma. Acta Biomater. 2018, 82, 143–157. [Google Scholar] [CrossRef]
- Liang, L.; Care, A.; Zhang, R.; Lu, Y.; Packer, N.H.; Sunna, A.; Qian, Y.; Zvyagin, A.V. Facile Assembly of Functional Upconversion Nanoparticles for Targeted Cancer Imaging and Photodynamic Therapy. ACS Appl. Mater. Interfaces 2016, 8, 11945–11953. [Google Scholar] [CrossRef]
- Lin, A.-L.; Fan, P.-P.; Liu, S.-F.; Chen, J.-H.; Zhao, Y.-Y.; Zheng, B.-Y.; Ke, M.-R.; Huang, J.-D. A phthalocyanine-based liposomal nanophotosensitizer with highly efficient tumor-targeting and photodynamic activity. Dyes Pigm. 2020, 180, 108455. [Google Scholar] [CrossRef]
- Yoon, H.Y.; Koo, H.; Choi, K.Y.; Lee, S.J.; Kim, K.; Kwon, I.C.; Leary, J.F.; Park, K.; Yuk, S.H.; Park, J.H.; et al. Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials 2012, 33, 3980–3989. [Google Scholar] [CrossRef] [PubMed]
- Shanmugapriya, K.; Kim, H.; Kang, H.W. Epidermal growth factor receptor conjugated fucoidan/alginates loaded hydrogel for activating EGFR/AKT signaling pathways in colon cancer cells during targeted photodynamic therapy. Int. J. Biol. Macromol. 2020, 158, 1163–1174. [Google Scholar] [CrossRef]
- Sardoiwala, M.N.; Kushwaha, A.C.; Dev, A.; Shrimali, N.; Guchhait, P.; Karmakar, S.; Choudhury, S.R. Hypericin-Loaded Transferrin Nanoparticles Induce PP2A-Regulated BMI1 Degradation in Colorectal Cancer-Specific Chemo-Photodynamic Therapy. ACS Biomater. Sci. Eng. 2020, 6, 3139–3153. [Google Scholar] [CrossRef]
- Spring, B.Q.; Rizvi, I.; Xu, N.; Hasan, T. The role of photodynamic therapy in overcoming cancer drug resistance. Photochem. Photobiol. Sci. 2015, 14, 1476–1491. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.W.; Oh, G.; Ahn, J.C.; Chung, E. Non-oncologic applications of nanomedicine-based phototherapy. Biomedicines 2021, 9, 113. [Google Scholar] [CrossRef] [PubMed]
- Low-cost Enabling Technology for Image-guided Photodynamic Therapy (PDT) of Oral Cancer Cancer. Available online: https://www.clinicaltrials.gov/ct2/show/study/NCT03638622 (accessed on 15 September 2021).
- Photodynamic Therapy Using HPPH in Treating Patients with Dysplasia, Cancer in Situ, or Invasive Cancer of the Larynx. Available online: https://www.clinicaltrials.gov/ct2/show/NCT00675233 (accessed on 15 September 2021).
- Photodynamic Therapy (PDT) for Recurrent Pediatric Brain Tumors. Available online: https://www.clinicaltrials.gov/ct2/show/NCT01682746 (accessed on 15 September 2021).
- Photodynamic Therapy (PDT) in Lung Cancer (PDT). Available online: https://www.clinicaltrials.gov/ct2/show/NCT00984243 (accessed on 15 September 2021).
- Sequential Whole Bladder Photodynamic Therapy (WBPDT) in the Management of Superficial Bladder Cancer. Available online: https://www.clinicaltrials.gov/ct2/show/NCT00322699 (accessed on 15 September 2021).
- Photodynamic Therapy in Treating Patients with Skin Cancer. Available online: https://www.clinicaltrials.gov/ct2/show/NCT00002975 (accessed on 15 September 2021).
- Safety Study Using Photodynamic Therapy Light Therapy for Patients With Chest Wall Progression of Breast Cancer and Satellite Metastases of Melanoma (CLIPT). Available online: https://www.clinicaltrials.gov/ct2/show/NCT00862901 (accessed on 15 September 2021).
- Silicon Phthalocyanine 4 and Photodynamic Therapy in Stage IA-IIA Cutaneous T-Cell Non-Hodgkin Lymphoma. Available online: https://www.clinicaltrials.gov/ct2/show/NCT01800838 (accessed on 15 September 2021).
- A Trial of Photodynamic Therapy with HPPH for Treatment of Dysplasia, Carcinoma in Situ and T1 Carcinoma of the Oral Cavity and/or Oropharynx. Available online: https://www.clinicaltrials.gov/ct2/show/NCT01140178 (accessed on 15 September 2021).
- Treatment of Primary Breast Cancer Using PDT. Available online: https://www.clinicaltrials.gov/ct2/show/NCT02872064 (accessed on 15 September 2021).
- Efficacy, Safety and Quality of Life after TOOKAD® Soluble VTP for Localized Prostate Cancer (PCM304). Available online: https://www.clinicaltrials.gov/ct2/show/NCT01875393 (accessed on 15 September 2021).
- Laser Assisted Drug Delivery in the Treatment of Superficial Non Melanoma Skin Cancer: A Randomized Controlled Trial. Available online: https://www.clinicaltrials.gov/ct2/show/NCT03012009 (accessed on 15 September 2021).
- Intrapleural Photodynamic Therapy in a Multimodal Treatment for Patients with Malignant Pleural Mesothelioma (MesoPDT). Available online: https://www.clinicaltrials.gov/ct2/show/NCT02662504 (accessed on 15 September 2021).
- Phase I Photodynamic Therapy (PDT) for Benign Dermal Neurofibromas (NF1). Available online: https://www.clinicaltrials.gov/ct2/show/NCT01682811 (accessed on 15 September 2021).
- Photodynamic Therapy with Visudyne for Human Retinoblastoma: A Preliminary Study. Available online: https://www.clinicaltrials.gov/ct2/show/NCT04429139 (accessed on 15 September 2021).
- Photodynamic Therapy to Treat Actinic Damage in Patients with Squamous Cell Carcinoma (SCC) of the Lip. Available online: https://www.clinicaltrials.gov/ct2/show/NCT00868088 (accessed on 15 September 2021).
Biocompatible Nanocarriers | Preparation Method | Size (nm) | Photosensitizers | Outcomes |
---|---|---|---|---|
Albumin nanoparticles | Solvent diffusion method | 100 to 200 nm | Hematoporphyrin | The synthesized hematoporphyrin-loaded albumin nanoparticle accumulation was increased in murine lung tumor cells compared to normal lungs cells [92]. |
Polymeric micelles (Pluronic P123 and F127 mixture) | Solvent evaporation method | 12.5 to 16.6 nm | Photofrin II® | PDT irradiation on PS loaded polymeric micelles showed an increased cytotoxic effect in the human cancer cell model [93]. |
TmPyP-loaded PLGA nanoparticles | Evaporation method | Between 118 ± 5 and 133 ± 2 nm | 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)-porphyrin tetra-iodide (TMPyP) | The formulation showed positive outcomes in laser irradiation and skin permeability studies, and it can be successfully used for topical diseases, such as melanoma [94]. |
Chitosan nanoparticles | Ionic crosslinking method | 254.3 ± 9.42 nm | ALA | The synthesized nanoparticle shows a spherical shape, good dispersion, and stability. The PDT effect of ALA-loaded nanoparticles was studied against WSU-HN6 and CAL-27 cells—the elevated mitochondrial ROS production was observed in both cells [95]. |
Thermoresponsive solid lipid nanoparticles | High-performance hot homogenization and ultrasonication method | from ~20 nm up to 700 nm | Temoporfin | Temoporfin-loaded solid lipid nanoparticle formulation was tested in 4T1 (murine mammary carcinoma) and MDA-MB-231 (human breast adenocarcinoma) cells. It showed faster accumulation in the cells, and induced increased phototoxicity against tumor cells [96]. |
Poly(d,l-lactide-co-glycolide) nanoparticles | Salting-out technique | Two types 167 and 370 nm in diameter | Verteporfin | The synthesized biocompatible polymeric nanoparticle was tested against EMT-6 mammary tumor cells, and the smaller size of the nanoparticle showed very good photocytotoxicity compared to large nanoparticles. Similarly, the small nanoparticles effectively controlled the tumor growth in an in vivo mice study [97]. |
Hyaluronic acid-based carbon nanotubes | π-π interactions | 203 ± 6.6 nm | Chlorin e6 | The synthesized single-walled carbon nanotubes confirmed the enhanced PDT effect of chlorin e6 against CACO-2 cells compared to free chlorin e6 [98]. |
Core-shell polymeric nanoparticles | Microemulsion polymerization method | ~170 and 220 nm | HPPH | The synthesized nanoparticles help to prevent the fluorescence quenching in water. It helps to achieve fluorescence imaging-guided PDT [99]. |
Lipid polymer hybrid nanoparticles | Self-assembly | 170 ± 20 nm | Zinc phthalocyanine | The synthesized lipid polymer hybrid nanoparticles improved the stability, cellular uptake, sustained release, and fluorescence properties of Zinc Phthalocyanine. The synthesized nanoparticle was tested both in vitro and in vivo. In vitro cytotoxic study shows increased cell death against MCF-7 cells, and an increased PDT antitumor effect in an in vivo study (Sprague Dawley rats) [100]. |
Pluronic-based nanocomposite | Thin-film hydration method. | 121.8 nm | Methylene blue | The synthesized nanocomposite shows synergistic effects (PDT/PTT) against the human cervical cancer cell line (SiHa). Cell death occurred by following the cell apoptosis pathway, and it can effectively treat cancer via noninvasive phototherapy [101]. |
Multifunctional mesoporous silica nanoparticle | Sol-gel method | 200 nm | Indocyanine green | The combined chemodynamic/PTT/PDT therapy shows that an increased inhibition rate of HeLa cells compared to the treatment given by chemodynamic therapy alone or dual PTT/PDT [83]. |
Rose bengal-loaded nanostructured poly-amidoamine dendrimers | Michael addition method followed by encapsulation | 20 nm | Rose bengal | The controlled release property of Rose bengal-loaded dendrimer formulation was confirmed by the in vitro drug release study. The nanostructured formulation produced remarkable photocytotoxicity properties against DLA cells (Dalton’s Lymphoma Ascite) [102]. |
BODIPY with mPEG-based phototheranostic nanoparticle | Freeze-drying method | 282 nm | BODIPY | The synthesized Mitomycin C-graphene BODIPY-mPEG nanoparticle possessed excellent properties for applying tumor tissue imaging-guided photo chemo synergistic therapy [103]. |
Pluronic®-based nanoparticles | Solid dispersion method | NA | Hypericin | The synthesized micelles showed high stability and selective internalization in MCF-7 cells. The accumulated micelles were observed in mitochondria and endoplasmic reticulum, and it showed effective phototoxic cell death [104]. |
Hypocrellin and nanosilver-loaded PLGA-TPGS copolymeric nanoparticles | Ring-opening and bulk polymerization method | 89.59 to 566.8 nm | Hypocrellin | An enhanced phototoxic effect was observed in A549 cells (human adeno lung carcinoma) irradiated by 590 nm using a mercury vapor lamp [105]. |
Pectin-coated silver nanoparticles | Heated and stirring method | 2.3 ± 0.7 nm and 9 ± 6 nm. | Riboflavin | The synthesized pectin-based nanoparticle increases the biocompatibility of silver nanoparticles, and the loaded riboflavin emission enhanced singlet oxygen production compared to the control. Cytotoxicity study shows the increased photodamage effect when nanoparticles and riboflavin are present in the sample [106]. |
Albumin-based nanoparticle | Self-assembly method | 36 nm | Curcumin | Enhanced antitumor activity was observed in HeLa cells through PDT. The curcumin derivative-loaded nanoparticle induced cell cycle arrest and apoptosis in HeLa cells [107]. |
Name of the Nanocarriers/Targeting Ligand/Photosensitizers/Drug Used | Target | Cancer Treatment (In Vitro/In Vivo) | Outcomes | Reference |
---|---|---|---|---|
Folic acid-functionalized and Poly-lactic acid (PLA) coated, Indocyanine green loaded colloidal gold nanobipyramid | Folate receptor | Murine melanoma B16-F10 cell line (in vitro) | The synthesized nanocarriers targeted the overexpressed folate receptor on the membrane of B16-F10 cells, which also showed improved photothermal and photodynamic activity when irradiated with both 785 and 808 nm lasers. | [108] |
Iridium (III) nano-PS self-assembled with hyaluronic acid (HA) | CD 44 receptor | Mouse metastatic breast cancer cells (4T1.2) (in vitro) | Nano-PS treated cells were irradiated by 532 nm light. The CD 44 receptor targeting efficiency of HA-coated nanoparticles showed excellent cellular uptake and mitochondria accumulation abilities, and it significantly improved the phototoxicity in 4T1.2 cells. | [109] |
Protoporphyrin IX-loaded hyaluronic acid-based polymeric micelles | CD 44 receptor | CD44 overexpressing A549 cells (in vitro) | It is observed that the synthesized micelles showed an increased cellular uptake and enhanced phototoxic activity in CD44, overexpressing A549 cells in both 2D and 3D cultures. | [110] |
Arg-Gly-Asp (RGD) peptide-functionalized chlorin e6 (Ce6) loaded PEGylated mesoporous silica nanoparticles | avβ3 integrin | The human glioma cell line of U87 MG cells (in vitro) | Confocal laser scanning microscopy study confirmed the cellular targeting efficiency and cellular internalization of RGD functionalized nanoparticles in U87 MG cells. 660 nm laser irradiation on RGD functionalized nanoparticles resulted in improved cellular toxicity than free Ce6. | [111] |
Curcumin-loaded Poly (D, l-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) conjugated to the anti-EGFRvIII monoclonal antibody | EGFR receptor | DKMG/EGFRvIII cells (EGFRvIII overexpressed human glioblastoma cell line) (in vitro) | Antibody conjugated PLGA NPs were incubated with cells for 1 h and irradiated with 460 nm blue LED light at a dose of 60 J/cm2. Cellular uptake percentage was significantly higher in EGFRvIII overexpress cells than DK-MGlow cells (low expressed EGFRvIII human glioblastoma cell line). | [112] |
Transferrin and aptamer conjugated [Ru(bpy)2(tip)]2+ (RBT)-loaded mesoporous ruthenium nanoparticles | Transferrin (TfR) and nucleolin expressing gliomas | U87 cells glioma cells, 293T cells and brain capillary endothelial (HBMEC) cells (in vitro), and BALB/c nude mice (in vivo) | Aptamer AS1411 and transferrin have a high binding affinity with nucleolin and transferrin receptors, respectively. Antitumor drug, RBT, has a high-efficiency PS when irradiated with 808 nm. The study suggested that the dual functionalized RBT-loaded MRN overcomes the blood-brain barrier (c), and actively targets gliomas. | [113] |
Antibodies conjugated, rose bengal (RB) PS-loaded upconversion nanoparticles with a silica layer | Epithelial cell adhesion molecules (EpCAM), also known as CD326 | Human colorectal adenocarcinoma HT-29 cells (in vitro) | 980 nm irradiation was used to activate RB molecules. Fluorescence imaging study revealed that the synthesized antibody conjugated nanomaterials had a high affinity, with EpCAM overexpressed in HT-29 cells, and negligible in EpCAM negative murine microglia cells (BV2 cell line). | [114] |
ClinicalTrials.Gov Identifier | Condition or Disease | Photosensitizer | PDT | Phase | Recruitment Status |
---|---|---|---|---|---|
NCT03638622 | Oral cancer | Total 60 mg/kg of Aminolevulinic acid (5-ALA) administered orally via three repeated doses (20 mg/kg at 0, 1, and 2 h) | LED light sources are used in a wavelength of 405 nm. The total fluence of 100 J/cm2 at the lesion surface in 30–45 min | 1 and 2 | Completed [121] |
NCT00675233 | Head and neck cancer | HPPH (2-1[Hexyloxyethyl]-2-devinylpyropheophorbide-a) | 665 nm | 1 | Completed [122] |
NCT01682746 | Recurrent pediatric brain tumors | Photofrin (Porfimer sodium) administered via intravenous (IV) route, 24 h before surgery and PDT | 630 nm photo illumination with a total energy of 240 J/cm2 | 1 | Completed [123] |
NCT00984243 | Lung cancer | 2mm/Kg dose of Photofrin II administered via IV, 40–50 before PDT | 620–630 nm, and a total energy of 200–300 J/cm2 (Argon-dye laser) and 100–200 J/cm2 (Excimer-dye laser) | NA | Completed [124] |
NCT00322699 | Bladder cancer | 1.5 mg/kg of Photofrin (Porfimer sodium) administered via IV, 2 days before PDT | 630 nm with light doses of 1200 J (±100 J) | 1 and 2 | Completed [125] |
NCT00002975 | Skin cancer | Aminolevulinic acid | 633 nm laser irradiation | 2 | Completed [126] |
NCT00862901 | Breast cancer Skin cancer | Photofrin (0.8 mg/kg body weight) administered via single IV injection 36–48 h before continuous low-irradiance photodynamic therapy (CLIPT) procedure | 630 nm red spectrum Diomed laser in four different experimental conditions (fluence 100, 200, 400 and 800 J/cm2 over 24 h) through a fiber optic patch | 1 | Completed [127] |
NCT01800838 | Lymphoma | Topically applied Silicon phthalocyanine 4 | Visible light at a wavelength of 675 nm | 1 | Completed [128] |
NCT01140178 | Oral cavity carcinoma | HPPH | 665 nm light with escalating laser doses from 100 J/cm2 to 125 and 140 J/cm2 | 1 | Completed [129] |
NCT02872064 | Breast cancer | Single IV dose of Verteporfin (0.4 mg/kg), 60–90 min before PDT | 690 nm red laser light. A light dose from 20 to 90 J/cm of light diffuser length | NA | Completed [130] |
NCT01875393 | Prostate cancer | Lyophilized formulation of TOOKAD® (4 mg/kg) | 753 nm with the fixed energy of 200 J/cm | 3 | Completed [131] |
NCT03012009 | Non-melanoma skin cancer | Methyl aminolevulinate | 630 nm, 37 J/cm2 | NA | Completed [132] |
NCT02662504 | Malignant Pleural Mesothelioma | Photofrin (2 mg/kg) | 630 nm | 2 | Completed [133] |
NCT01682811 | Benign Dermal Neurofibromas | 5-ALA | 630 nm | 1 | Completed [134] |
NCT04429139 | Retinoblastoma | Verteporfin (6 mg/m2) administered via IV route | 689 nm (200 s to generate 120 J/cm2) | NA | Completed [135] |
NCT00868088 | Squamous Cell Carcinoma | Topically applied ALA | 405–420 nm at a dose of 1000 s | 4 | Completed [136] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhilip Kumar, S.S.; Abrahamse, H. Biocompatible Nanocarriers for Enhanced Cancer Photodynamic Therapy Applications. Pharmaceutics 2021, 13, 1933. https://doi.org/10.3390/pharmaceutics13111933
Dhilip Kumar SS, Abrahamse H. Biocompatible Nanocarriers for Enhanced Cancer Photodynamic Therapy Applications. Pharmaceutics. 2021; 13(11):1933. https://doi.org/10.3390/pharmaceutics13111933
Chicago/Turabian StyleDhilip Kumar, Sathish Sundar, and Heidi Abrahamse. 2021. "Biocompatible Nanocarriers for Enhanced Cancer Photodynamic Therapy Applications" Pharmaceutics 13, no. 11: 1933. https://doi.org/10.3390/pharmaceutics13111933
APA StyleDhilip Kumar, S. S., & Abrahamse, H. (2021). Biocompatible Nanocarriers for Enhanced Cancer Photodynamic Therapy Applications. Pharmaceutics, 13(11), 1933. https://doi.org/10.3390/pharmaceutics13111933