High Solubilization and Controlled Release of Paclitaxel Using Thermosponge Nanoparticles for Effective Cancer Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PTX@TNPs with Various Amounts of PTX
2.3. In Vitro Drug Release Profiles
2.4. In Vitro Anticancer Efficacy in Cancer Cells with MDR Effect
2.5. Statistical Analysis
3. Results and Discussion
3.1. Preparation and Characterization of PTX@TNPs
3.2. In Vitro Release Behavior of Lipophilic PTX
3.3. Anticancer Efficacy of PTX@TNPs with Different Drug Loading Contents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, K.D.; Leticia, N.; Angela, B.M.; Julia, Y.R.K.; Catherine, M.A.; Ahmedin, J.; Joan, L.K.; Rebecca, L.S. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin. 2019, 69, 363–385. [Google Scholar] [CrossRef] [Green Version]
- Chabner, B.A.; Roberts, T.G. Timeline: Chemotherapy and the war on cancer. Nat. Rev. Cancer 2005, 5, 65–72. [Google Scholar] [CrossRef]
- Kumar, P.; Raza, K.; Kaushik, L.; Malik, R.; Arora, S.; Katare, O.P. Role of colloidal drug delivery carriers in taxane-mediated chemotherapy: A review. Curr. Pharm. Des. 2016, 22, 5127–5143. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, D.; Zhang, Q.; Chen, Y.; Zheng, D.; Hao, L.; Duan, C.; Jia, L.; Liu, G.; Liu, Y. Synergistic effect of folate-mediated targeting and verapamil-mediated P-gp inhibition with paclitaxel-polymer micelles to overcome multi-drug resistance. Biomaterials 2011, 32, 9444–9456. [Google Scholar] [CrossRef] [PubMed]
- Naderinezhad, S.; Amoabediny, G.; Haghiralsadat, F. Co-delivery of hydrophilic and hydrophobic anticancer drugs using biocompatible pH-sensitive lipid-based nano-carriers for multidrug-resistant cancers. RSC Adv. 2017, 7, 30008–30019. [Google Scholar] [CrossRef] [Green Version]
- Palmeira, A.; Sousa, E.; Vasconcelos, M.H.; Pinto, M.M. Three decades of P-gp inhibitors: Skimming through several generations and scaffolds. Curr. Med. Chem. 2012, 19, 1946–2025. [Google Scholar] [CrossRef]
- Nigam, S.K. What do drug transporters really do? Nat. Rev. Drug. Discov. 2014, 14, 29–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esim, O.; Sarper, M.; Ozkan, C.K.; Oren, S.; Baykal, B.; Savaser, A.; Ozkan, Y. Effect simultaneous delivery with P-glycoprotein inhibitor and nanoparticle administration of doxorubicin on cellular uptake and in vitro anticancer activity. Saudi Pharm. J. 2020, 28, 465–472. [Google Scholar] [CrossRef]
- Koziara, T.M.; Whisman, T.R.; Tseng, M.T.; Mumper, R.J. In-vivo efficacy of novel paclitaxel nanoparticles in paclitaxel-resistant human colorectal tumors. J. Control. Release 2006, 112, 312–319. [Google Scholar] [CrossRef]
- Jia, L.; Li, Z.; Shen, J.; Zheng, D.; Tian, X.; Guo, H.; Chang, P. Multifunctional mesoporous silica nanoparticles mediated co-delivery of paclitaxel and tetrandrine for overcoming multidrug resistance. Int. J. Pharm. 2015, 489, 318–330. [Google Scholar] [CrossRef]
- Fellner, F.; Bauer, B.; Miller, D.S.; Schaffrik, M.; Fankhänel, M.; Spruss, T.; Bernhardt, G.; Graeff, C.; Färber, L.; Gschaidmeier, H.; et al. Transport of paclitaxel (Taxol) across the blood–brain barrier in vitro and in vivo. J. Clin. Investig. 2002, 110, 1309–1318. [Google Scholar] [CrossRef]
- Mickisch, G.H.; Pai, L.H.; Gottesman, M.M.; Pastan, I. Monoclonal antibody MRK16 reverses the multidrug resistance of multidrug-resistant transgenic mice. Cancer Res. 1992, 52, 4427–4432. [Google Scholar]
- Singla, A.K.; Garg, A.; Aggarwal, D. Paclitaxel and its formulations. Int. J. Pharm. 2002, 235, 179–192. [Google Scholar] [CrossRef]
- Lee, S.C.; Kim, C.; Kwon, I.C.; Chung, H.; Jeong, S.Y. Polymeric micelles of poly(2-ethyl-2-oxazoline)-block-poly(epsilon-caprolactone) copolymer as a carrier for paclitaxel. J. Control. Release 2003, 89, 437–446. [Google Scholar]
- Jin, K.T.; Lu, Z.B.; Chen, J.Y.; Liu, Y.Y.; Lan, H.R.; Dong, H.Y.; Yang, F.; Zhao, Y.Y.; Chen, X.Y. Recent Trends in Nanocarrier-Based Targeted Chemotherapy: Selective Delivery of Anticancer Drugs for Effective Lung, Colon, Cervical, and Breast Cancer Treatment. J. Nanomater. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, R.; Wang, Y.; Jing, W.; Liu, Y.; Ma, Y.; Sun, B.; Wang, M.; Chen, P.; Liu, H.; et al. Reduction-sensitive paclitaxel prodrug self-assembled nanoparticles with tetrandrine effectively promote synergistic therapy against drug-sensitive and multidrug-resistant breast cancer. Mol. Pharm. 2017, 14, 3628–3635. [Google Scholar] [CrossRef]
- Afrooz, H.; Ahmadi, F.; Fallahzadeh, F.; Mousavi-Fard, S.H.; Alipour, S. Design and characterization of paclitaxel-verapamil co-encapsulated PLGA nanoparticles: Potential system for overcoming P-glycoprotein mediated MDR. J. Drug Deliv. Sci. Technol. 2017, 41, 174–181. [Google Scholar] [CrossRef]
- Patel, N.R.; Rathi, A.; Mongayt, D.; Torchilin, V.P. Reversal of multidrug resistance by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes. Int. J. Pharm. 2011, 416, 296–299. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.J.; Price, J.C. Effect of drug loading and molecular weight of cellulose acetate propionate on the release characteristics of theophylline microspheres. Pharm. Res. 1991, 8, 1396–1400. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.K.; Price, J.; Whitworth, C.W. Control of drug release rate by use of mixtures of polycaprolactone and cellulose acetate butyrate polymers. Drug Dev. Ind. Pharm. 1987, 13, 1119–1135. [Google Scholar] [CrossRef]
- Chen, H.; Lui, Y.S.; Zhao, J.; Xu, L.; Tan, L.P. Effect of solvent composition of electrospun PLGA fibers on paclitaxel release. Mater. Technol. 2018, 33, 716–722. [Google Scholar] [CrossRef]
- Choi, W.I.; Kamaly, N.; Riol-Blanco, L.; Lee, I.H.; Wu, J.; Swami, A.; Vilos, C.; Yameen, B.; Yu, M.; Shi, J.; et al. A solvent-free thermosponge nanoparticle platform for efficient delivery of labile proteins. Nano Lett. 2014, 14, 6449–6455. [Google Scholar] [CrossRef]
- Lee, J.S.; Hwang, Y.; Oh, H.; Kim, S.; Kim, J.-H.; Lee, J.-H.; Shin, Y.C.; Tae, G.; Choi, W.I. A novel chitosan nanocapsule for enhanced skin penetration of cyclosporin A and effective hair growth in vivo. Nano Res. 2019, 12, 3024–3030. [Google Scholar] [CrossRef]
- Choi, J.S.; Park, J.S. Effects of paclitaxel nanocrystals surface charge on cell internalization. Eur. J. Pharm. Sci. 2016, 93, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Wang, B.; Lai, C.; Xu, X.; Zhen, Z.; Zhou, H.; Xu, D. iRGD-paclitaxel conjugate nanoparticles for targeted paclitaxel delivery. Drug Dev. Res. 2019, 80, 1080–1088. [Google Scholar] [CrossRef]
- Mauro, P.P.D.; Borrós, S. Development of high drug loaded and customizing novel nanoparticles for modulated and controlled release of paclitaxel. Pharm. Res. 2014, 31, 3461–3477. [Google Scholar] [CrossRef]
- Sohn, J.S.; Yoon, D.S.; Sohn, J.Y.; Park, J.S.; Choi, J.S. Development and evaluation of targeting ligands surface modified paclitaxel nanocrystals. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 72, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Li, J.; Zhang, Y.; Ding, D.; Li, X.; Xu, H. Superior antitumor effect of self-assembly supramolecular paclitaxel nanoparticles. RSC Adv. 2020, 10, 12999–13005. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, R.; Luo, Q.; Wang, Y.; Zhang, K.; Deng, X.; Zhu, W.; Li, X.; Shen, Z. In situ fabrication of paclitaxel-loaded core-crosslinked micelles via thiol-ene “click” chemistry for reduction-responsive drug release. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 99–107. [Google Scholar] [CrossRef]
- Obeidat, W.M.; Price, P.C. Preparation and evaluation of Eudragit S 100 microspheres as pH-sensitive release preparations for piroxicam and theophylline using the emulsion-solvent evaporation method. J. Microencapsul. 2006, 23, 195–202. [Google Scholar] [CrossRef]
- Hu, J.; Johnston, K.P.; Williams, R.O., III. Nanoparticle Engineering Processes for Enhancing the Dissolution Rates of Poorly Water Soluble Drugs. Drug. Dev. Ind. Pharm. 2004, 30, 233–245. [Google Scholar] [CrossRef]
- Abouelmagd, S.A.; Sun, B.; Chang, A.C.; Ku, Y.J.; Yeo, Y. Release Kinetics Study of Poorly Water-Soluble Drugs from Nanoparticles: Are We Doing It Right? Mol. Pharm. 2015, 12, 997–1003. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Kumar, D.; Swarnakar, N.K.; Thanki, K. Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel. Biomaterials 2012, 33, 6758–6768. [Google Scholar] [CrossRef]
- Hsu, S.-T.; Yao, Y.L. Effect of drug loading and laser surface melting on drug release profile from biodegradable polymer. J. Appl. Polym. Sci. 2013, 130, 4147–4156. [Google Scholar] [CrossRef]
- Mu, J.; Zhong, H.; Zou, H.; Liu, T.; Yu, N.; Zhang, X.; Xu, Z.; Chen, Z.; Guo, S. Acid-sensitive PEGylated paclitaxel prodrug nanoparticles for cancer therapy: Effect of PEG length on antitumor efficacy. J. Control. Release 2020, 326, 265–275. [Google Scholar] [CrossRef]
- Levit, S.L.; Yang, H.; Tang, C. Rapid Self-Assembly of Polymer Nanoparticles for Synergistic Codelivery of Paclitaxel and Lapatinib via Flash NanoPrecipitation. Nanomaterials 2020, 10, 561. [Google Scholar] [CrossRef] [Green Version]
- Minko, T.; Batrakova, E.V.; Li, S.; Li, Y.; Pakunlu, R.I.; Alakhov, V.Y.; Kabanov, A.V. Pluronic block copolymers alter apoptotic signal transduction of doxorubicin in drug-resistant cancer cells. J. Control Release 2005, 105, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Kabanov, A.V.; Batrakova, E.V.; Alakhov, V.Y. Pluronic block copolymers for overcoming drug resistance in cancer. Adv. Drug Deliv. Rev. 2002, 54, 759–779. [Google Scholar] [CrossRef]
- Batrakova, E.V.; Li, S.; Vinogradov, S.V.; Alakhov, V.Y.; Miller, D.W.; Kabanov, A.V. Mechanism of pluronic effect on P-glycoprotein efflux system in blood–brain barrier: Contributions of energy depletion and membrane fluidization. J. Pharmacol. Exp. Ther. 2001, 299, 483–493. [Google Scholar]
- Wei, Z.; Yuan, S.; Chen, Y.; Yu, S.; Hao, J.; Luo, J.; Sha, X.; Fang, X. Enhanced antitumor efficacy by Paclitaxel-loaded Pluronic P123/F127 mixed micelles against non-small cell lung cancer based on passive tumor targeting and modulation of drug resistance. Eur. J. Pharm. Biopharm. 2010, 75, 341–353. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.S.; Oh, H.; Sung, D.; Lee, J.H.; Choi, W.I. High Solubilization and Controlled Release of Paclitaxel Using Thermosponge Nanoparticles for Effective Cancer Therapy. Pharmaceutics 2021, 13, 1150. https://doi.org/10.3390/pharmaceutics13081150
Lee JS, Oh H, Sung D, Lee JH, Choi WI. High Solubilization and Controlled Release of Paclitaxel Using Thermosponge Nanoparticles for Effective Cancer Therapy. Pharmaceutics. 2021; 13(8):1150. https://doi.org/10.3390/pharmaceutics13081150
Chicago/Turabian StyleLee, Jin Sil, Hyeryeon Oh, Daekyung Sung, Jin Hyung Lee, and Won Il Choi. 2021. "High Solubilization and Controlled Release of Paclitaxel Using Thermosponge Nanoparticles for Effective Cancer Therapy" Pharmaceutics 13, no. 8: 1150. https://doi.org/10.3390/pharmaceutics13081150
APA StyleLee, J. S., Oh, H., Sung, D., Lee, J. H., & Choi, W. I. (2021). High Solubilization and Controlled Release of Paclitaxel Using Thermosponge Nanoparticles for Effective Cancer Therapy. Pharmaceutics, 13(8), 1150. https://doi.org/10.3390/pharmaceutics13081150