Progress on Thin Film Freezing Technology for Dry Powder Inhalation Formulations
Abstract
:1. Introduction
2. Fundamentals of Thin Film Freezing Technology
3. Characteristics of Nanoparticles Produced by TFF
3.1. Solubility and Dissolution
3.2. Stability of TFF Powders
4. Application of TFF Technology in the Development of Nanoformulation
4.1. Advanced Technique to Improve the Solubility of API
4.2. Dry Powders for Inhalation
5. Recent Advancements of Thin Film Freezing in Novel Drug Delivery Systems
5.1. TFF Processed DPI for SARS-CoV-2 (COVID-19)
5.2. TFF-Processed DPI for Tacrolimus Delivery
5.3. TFF-Processed Bacteriophage Dry Powders
5.4. TFF-Processed Dry Powder for Pulmonary Fungal Infection
5.5. TFF Technology for Solubility Enhancement
5.6. CRISPR–Cas9 Nanocomplexes in DPI
5.7. TFF Processed siRNA Encapsulated Solid Lipid Nanoparticles
5.8. TFF Processed Dry Vaccine Powders
6. Commercial Prospects and Future Scope of TFF
7. Conclusions and Future Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Overhoff, K.A.; Johnston, K.P.; Tam, J.; Engstrom, J.; Williams, R.O., III. Use of Thin Film Freezing to Enable Drug Delivery: A Review. J. Drug Deliv. Sci. Technol. 2009, 19, 89–98. [Google Scholar] [CrossRef]
- Overhoff, K.A.; Engstrom, J.D.; Chen, B.; Scherzer, B.D.; Milner, T.E.; Johnston, K.P.; Williams, R.O., III. Novel Ultra-Rapid Freezing Particle Engineering Process for Enhancement of Dissolution Rates of Poorly Water-Soluble Drugs. Eur. J. Pharm. Biopharm. 2007, 65, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, H.; Lang, B.; O’Donnell, K.; Zhang, H.; Wang, Z.; Dong, Y.; Wu, C.; Williams, R.O., III. Formulation and Delivery of Improved Amorphous Fenofibrate Solid Dispersions Prepared by Thin Film Freezing. Eur. J. Pharm. Biopharm. 2012, 82, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Hufnagel, S.; Sahakijpijarn, S.; Moon, C.; Cui, Z.; Williams, R.O., III. The Development of Thin-Film Freezing and Its Application to Improve Delivery of Biologics as Dry Powder Aerosols. KONA Powder Part. J. 2022, 39, 2022010. [Google Scholar] [CrossRef]
- Jiang, J.; Peng, H.-H.; Yang, Z.; Ma, X.; Sahakijpijarn, S.; Moon, C.; Ouyang, D.; Williams, R.O., III. The Applications of Machine Learning (ML) in Designing Dry Powder for Inhalation by Using Thin-Film-Freezing Technology. Int. J. Pharm. 2022, 626, 122179. [Google Scholar] [CrossRef]
- Hufnagel, S.; Xu, H.; Sahakijpijarn, S.; Moon, C.; Chow, L.Q.M.; Williams, R.O., III; Cui, Z. Dry Powders for Inhalation Containing Monoclonal Antibodies Made by Thin-Film Freeze-Drying. Int. J. Pharm. 2022, 618, 121637. [Google Scholar] [CrossRef]
- Xu, J.; Shi, P.-Y.; Li, H.; Zhou, J. Broad Spectrum Antiviral Agent Niclosamide and Its Therapeutic Potential. ACS Infect. Dis. 2020, 6, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Ko, M.; Lee, J.; Choi, I.; Byun, S.Y.; Park, S.; Shum, D.; Kim, S. Identification of Antiviral Drug Candidates against SARS-CoV-2 from FDA-Approved Drugs. Antimicrob. Agents Chemother. 2020, 64, e00819-20. [Google Scholar] [CrossRef]
- Overhoff, K.A.; McConville, J.T.; Yang, W.; Johnston, K.P.; Peters, J.I.; Williams, R.O., III. Effect of Stabilizer on the Maximum Degree and Extent of Supersaturation and Oral Absorption of Tacrolimus Made by Ultra-Rapid Freezing. Pharm. Res. 2008, 25, 167–175. [Google Scholar] [CrossRef]
- Overhoff, K.A.; Moreno, A.; Miller, D.A.; Johnston, K.P.; Williams, R.O., III. Solid Dispersions of Itraconazole and Enteric Polymers Made by Ultra-Rapid Freezing. Int. J. Pharm. 2007, 336, 122–132. [Google Scholar] [CrossRef]
- Engstrom, J.D.; Lai, E.S.; Ludher, B.S.; Chen, B.; Milner, T.E.; Williams, R.O., III; Kitto, G.B.; Johnston, K.P. Formation of Stable Submicron Protein Particles by Thin Film Freezing. Pharm. Res. 2008, 25, 1334–1346. [Google Scholar] [CrossRef] [PubMed]
- Sinswat, P.; Overhoff, K.; Mcconville, J.; Johnston, K.; Williams, R.O., III. Nebulization of Nanoparticulate Amorphous or Crystalline Tacrolimus—Single-Dose Pharmacokinetics Study in Mice. Eur. J. Pharm. Biopharm. 2008, 69, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Platform Technology. Available online: https://tffpharma.com/platform-technology/ (accessed on 13 November 2022).
- Sahakijpijarn, S.; Moon, C.; Koleng, J.J.; Christensen, D.J.; Williams, R.O., III. Development of Remdesivir as a Dry Powder for Inhalation by Thin Film Freezing. Pharmaceutics 2020, 12, 1002. [Google Scholar] [CrossRef] [PubMed]
- Wilkhu, J.; McNeil, S.E.; Kirby, D.J.; Perrie, Y. Formulation Design Considerations for Oral Vaccines. Ther. Deliv. 2011, 2, 1141–1164. [Google Scholar] [CrossRef] [PubMed]
- Mahar, R.; Chakraborty, A.; Nainwal, N. The Influence of Carrier Type, Physical Characteristics, and Blending Techniques on the Performance of Dry Powder Inhalers. J. Drug Deliv. Sci. Technol. 2022, 76, 103759. [Google Scholar] [CrossRef]
- Ghaemmaghamian, Z.; Zarghami, R.; Walker, G.; O’Reilly, E.; Ziaee, A. Stabilizing Vaccines via Drying: Quality by Design Considerations. Adv. Drug Deliv. Rev. 2022, 187, 114313. [Google Scholar] [CrossRef]
- Wang, J.; Kuang, M.; Xu, H.; Williams, R.O., III; Cui, Z. Accelerated Mass Transfer from Frozen Thin Films during Thin-Film Freeze-Drying. bioRxiv 2022. [Google Scholar] [CrossRef]
- Sahakijpijarn, S.; Moon, C.; Ma, X.; Su, Y.; Koleng, J.J.; Dolocan, A.; Williams, R.O., III. Using Thin Film Freezing to Minimize Excipients in Inhalable Tacrolimus Dry Powder Formulations. Int. J. Pharm. 2020, 586, 119490. [Google Scholar] [CrossRef]
- Sahakijpijarn, S.; Beg, M.; Levine, S.M.; Peters, J.I.; Williams, R.O., III. A Safety and Tolerability Study of Thin Film Freeze-Dried Tacrolimus for Local Pulmonary Drug Delivery in Human Subjects. Pharmaceutics 2021, 13, 717. [Google Scholar] [CrossRef]
- Purohit, H.S.; Trasi, N.S.; Osterling, D.J.; Stolarik, D.F.; Jenkins, G.J.; Gao, W.; Zhang, G.G.Z.; Taylor, L.S. Assessing the Impact of Endogenously Derived Crystalline Drug on the in Vivo Performance of Amorphous Formulations. Mol. Pharm. 2019, 16, 3617–3625. [Google Scholar] [CrossRef]
- Trasi, N.S.; Purohit, H.S.; Taylor, L.S. Evaluation of the Crystallization Tendency of Commercially Available Amorphous Tacrolimus Formulations Exposed to Different Stress Conditions. Pharm. Res. 2017, 34, 2142–2155. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Tam, J.; Miller, D.A.; Zhou, J.; McConville, J.T.; Johnston, K.P.; Williams, R.O., III. High Bioavailability from Nebulized Itraconazole Nanoparticle Dispersions with Biocompatible Stabilizers. Int. J. Pharm. 2008, 361, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Johnston, K.P.; Williams, R.O., III. Spray Freezing into Liquid versus Spray-Freeze Drying: Influence of Atomization on Protein Aggregation and Biological Activity. Eur. J. Pharm. Sci. 2006, 27, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Serno, T.; Geidobler, R.; Winter, G. Protein Stabilization by Cyclodextrins in the Liquid and Dried State. Adv. Drug Deliv. Rev. 2011, 63, 1086–1106. [Google Scholar] [CrossRef] [PubMed]
- Carrasquillo, K.G.; Stanley, A.M.; Aponte-Carro, J.C.; De Jésus, P.; Costantino, H.R.; Bosques, C.J.; Griebenow, K. Non-Aqueous Encapsulation of Excipient-Stabilized Spray-Freeze Dried BSA into Poly (Lactide-Co-Glycolide) Microspheres Results in Release of Native Protein. J. Control. Release 2001, 76, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Moon, C.; Watts, A.B.; Lu, X.; Su, Y.; Williams, R.O., III. Enhanced Aerosolization of High Potency Nanoaggregates of Voriconazole by Dry Powder Inhalation. Mol. Pharm. 2019, 16, 1799–1812. [Google Scholar] [CrossRef]
- Watts, A.B.; Wang, Y.B.; Johnston, K.P.; Williams, R.O. Respirable Low-Density Microparticles Formed in Situ from Aerosolized Brittle Matrices. Pharm. Res. 2013, 30, 813–825. [Google Scholar] [CrossRef]
- Thakkar, S.G.; Ruwona, T.B.; Williams, R.O., III; Cui, Z. The Immunogenicity of Thin-Film Freeze-Dried, Aluminum Salt-Adjuvanted Vaccine When Exposed to Different Temperatures. Hum. Vaccines Immunother. 2017, 13, 936–946. [Google Scholar] [CrossRef] [Green Version]
- Thakkar, S.G.; Warnken, Z.N.; Alzhrani, R.F.; Valdes, S.A.; Aldayel, A.M.; Xu, H.; Williams, R.O., III; Cui, Z. Intranasal Immunization with Aluminum Salt-Adjuvanted Dry Powder Vaccine. J. Control. Release 2018, 292, 111–118. [Google Scholar] [CrossRef]
- Jara, M.O.; Warnken, Z.N.; Sahakijpijarn, S.; Moon, C.; Maier, E.Y.; Christensen, D.J.; Koleng, J.J.; Peters, J.I.; Hackman Maier, S.D.; Williams, R.O., III. Niclosamide Inhalation Powder Made by Thin-Film Freezing: Multi-Dose Tolerability and Exposure in Rats and Pharmacokinetics in Hamsters. Int. J. Pharm. 2021, 603, 120701. [Google Scholar] [CrossRef]
- Carvalho, S.R.; Watts, A.B.; Peters, J.I.; Liu, S.; Hengsawas, S.; Escotet-Espinoza, M.S.; Williams, R.O., III. Characterization and Pharmacokinetic Analysis of Crystalline versus Amorphous Rapamycin Dry Powder via Pulmonary Administration in Rats. Eur. J. Pharm. Biopharm. 2014, 88, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Lang, B.; McGinity, J.W.; Williams, R.O., III. Dissolution Enhancement of Itraconazole by Hot-Melt Extrusion Alone and the Combination of Hot-Melt Extrusion and Rapid Freezing-Effect of Formulation and Processing Variables. Mol. Pharm. 2014, 11, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.B.; Watts, A.B.; Peters, J.I.; Liu, S.; Batra, A.; Williams, R.O., III. In Vitro and in Vivo Performance of Dry Powder Inhalation Formulations: Comparison of Particles Prepared by Thin Film Freezing and Micronization. AAPS PharmSciTech 2014, 15, 981–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Zhang, M.; Xiong, L.; Feng, W.; Williams, R.O., III. Bioavailability Improvement of Carbamazepine via Oral Administration of Modified-Release Amorphous Solid Dispersions in Rats. Pharmaceutics 2020, 12, 1023. [Google Scholar] [CrossRef]
- O’Donnell, K.P.; Cai, Z.; Schmerler, P.; Williams, R.O., III. Atmospheric Freeze Drying for the Reduction of Powder Electrostatics of Amorphous, Low Density, High Surface Area Pharmaceutical Powders. Drug Dev. Ind. Pharm. 2013, 39, 205–217. [Google Scholar] [CrossRef]
- Beinborn, N.A.; Du, J.; Wiederhold, N.P.; Smyth, H.D.C.; Williams, R.O., III. Dry Powder Insufflation of Crystalline and Amorphous Voriconazole Formulations Produced by Thin Film Freezing to Mice. Eur. J. Pharm. Biopharm. 2012, 81, 600–608. [Google Scholar] [CrossRef]
- Shamma, R.; Elkasabgy, N. Design of Freeze-Dried Soluplus/Polyvinyl Alcohol-Based Film for the Oral Delivery of an Insoluble Drug for the Pediatric Use. Drug Deliv. 2016, 23, 489–499. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, X.; Xu, X.; Gao, N.; Liu, X. Preparation, Characterization and in Vivo Pharmacokinetic Study of PVP-Modified Oleanolic Acid Liposomes. Int. J. Pharm. 2017, 517, 1–7. [Google Scholar] [CrossRef]
- Lang, B.; Chow, K.T.; Williams, R.O., III. Thin Film Freezing-Template Emulsion of Itraconazole to Improve the Dissolution Properties of Poorly Water-Soluble Drugs. J. Drug Deliv. Sci. Technol. 2014, 24, 205–211. [Google Scholar] [CrossRef]
- Beinborn, N.A.; Lirola, H.L.; Williams, R.O., III. Effect of Process Variables on Morphology and Aerodynamic Properties of Voriconazole Formulations Produced by Thin Film Freezing. Int. J. Pharm. 2012, 429, 46–57. [Google Scholar] [CrossRef]
- Wang, J.-L.; Hanafy, M.S.; Xu, H.; Leal, J.; Zhai, Y.; Ghosh, D.; Williams, R.O., III; David Charles Smyth, H.; Cui, Z. Aerosolizable SiRNA-Encapsulated Solid Lipid Nanoparticles Prepared by Thin-Film Freeze-Drying for Potential Pulmonary Delivery. Int. J. Pharm. 2021, 596, 120215. [Google Scholar] [CrossRef] [PubMed]
- Praphawatvet, T.; Peters, J.I.; Williams, R.O., III. Inhaled Nanoparticles–An Updated Review. Int. J. Pharm. 2020, 587, 119671. [Google Scholar] [CrossRef] [PubMed]
- Aboulfotouh, K.; Xu, H.; Williams, R.O., III; Cui, Z. Development of Dry Powder Formulations of AS01B Containing Vaccines Using Thin-Film Freeze-Drying. Int. J. Pharm. 2022, 622, 121825. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Bhowmik, T.; Gong, K.; Ngoc, T.; Huynh, A.; Williams, R.O., III; Cui, Z. Thin-Film Freeze-Drying of a Norovirus Vaccine Candidate. Int. J. Pharm. 2021, 609, 121126. [Google Scholar] [CrossRef] [PubMed]
- Sahakijpijarn, S.; Moon, C.; Warnken, Z.N.; Maier, E.Y.; DeVore, J.E.; Christensen, D.J.; Koleng, J.J.; Williams, R.O. In Vivo Pharmacokinetic Study of Remdesivir Dry Powder for Inhalation in Hamsters. Int. J. Pharm. X 2021, 3, 100073. [Google Scholar] [CrossRef]
- Guan, P.; Lu, Y.; Qi, J.; Niu, M.; Lian, R.; Wu, W. Solidification of Liposomes by Freeze-Drying: The Importance of Incorporating Gelatin as Interior Support on Enhanced Physical Stability. Int. J. Pharm. 2015, 478, 655–664. [Google Scholar] [CrossRef]
- Zhang, Y.; Soto, M.; Ghosh, D.; Williams, R.O., III. Manufacturing Stable Bacteriophage Powders by Including Buffer System in Formulations and Using Thin Film Freeze-Drying Technology. Pharm. Res. 2021, 38, 1793–1804. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Williams, R.O., III; Smyth, H.D.C. Development of PEGylated Chitosan/CRISPR–Cas9 Dry Powders for Pulmonary Delivery via Thin-Film Freeze-Drying. Int. J. Pharm. 2021, 605, 120831. [Google Scholar] [CrossRef] [PubMed]
- Engstrom, J.D.; Tam, J.M.; Miller, M.A.; Williams, R.O., III; Johnston, K.P. Templated Open Flocs of Nanorods for Enhanced Pulmonary Delivery with Pressurized Metered Dose Inhalers. Pharm. Res. 2009, 26, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Thakkar, S.G.; Ruwona, T.B.; Williams, R.O., III; Cui, Z. A Method of Lyophilizing Vaccines Containing Aluminum Salts into a Dry Powder without Causing Particle Aggregation or Decreasing the Immunogenicity Following Reconstitution. J. Control. Release 2015, 204, 38–50. [Google Scholar] [CrossRef]
- Moon, C.; Sahakijpijarn, S.; Koleng, J.J.; Williams, R.O., III. Processing Design Space Is Critical for Voriconazole Nanoaggregates for Dry Powder Inhalation Produced by Thin Film Freezing. J. Drug Deliv. Sci. Technol. 2019, 54, 101295. [Google Scholar] [CrossRef]
- Alrashedi, M.G.; Alrashedi, A.G.; Ali, A.S.; Ibrahim, I.M. Lung Delivery Systems to Optimize Pharmacotherapy of COVID-19: A Concise Review. J. Pharm. Res. Int. 2021, 33, 268–277. [Google Scholar] [CrossRef]
- Eedara, B.B.; Alabsi, W.; Encinas-Basurto, D.; Polt, R.; Ledford, J.G.; Mansour, H.M. Inhalation Delivery for the Treatment and Prevention of COVID-19 Infection. Pharmaceutics 2021, 13, 1077. [Google Scholar] [CrossRef] [PubMed]
- AboulFotouh, K.; Uno, N.; Xu, H.; Moon, C. Formulation of Dry Powders of Vaccines Containing MF59 or AddaVax by Thin-Film Freeze-Drying. Int. J. Pharm. 2022, 625, 120021. [Google Scholar] [CrossRef]
TFF | Spray Drying | Spray Freeze Drying | Nano Milling | |
---|---|---|---|---|
Potential to prevent molecular damage | ||||
Thermal Degradation | Yes | No | Yes | No |
Shear Stress | Yes | No | No | No |
Air/water denaturation | Yes | No | No | Yes |
Technology Differentiation |
|
|
|
|
Limitations of technology |
|
|
|
|
Drug/API | Excipients | Formulation | Application of TFF Technology | Ref. |
---|---|---|---|---|
Fenofibrate | HPMC, CMC-Na, Methocel, Soluplus | Dry powders/Amorphous solid dispersions | The TFF approach demonstrated improved dissolving rates, which in turn improved the drug’s bioavailability since it was not very water soluble. | [3] |
Niclosamide | Mannitol, and leucine | Inhalation dry powder | Resolves the bioavailability restriction of niclosamide. Satisfactory aerosol efficiency was displayed. | [31] |
Micronized danazol/bulk API | Polyvinylpyrrolidone | Nanostructured amorphous API | The production of weakly water-soluble APIs into high surface area nanostructured particles with quick dissolving rates using URF technology is a practical and reliable procedure that will probably increase the APIs’ accessibility in vivo. | [2] |
Rapamycin | Lactose | Crystalline dry powder formulations | Comparing the physical mixture composition to the rapamycin formulation, the latter showed improved in vitro aerodynamic characteristics, exhibited quicker dissolving rates and improved solubility, both of which resulted in increased in vivo systemic bioavailability. | [32] |
Itraconazole | Hypromellose acetate succinate LF | amorphous solid dispersions | Improved dissolving capabilities in the ITZ amorphous solid dispersion formulation could further boost the drug’s oral bioavailability. | [33] |
Tacrolimus | Lactose, Mannitol, Trehalose | dry powder for inhalation/nanostructured aggregates | DPI formulations increase solubility and offer good aerosolization. | [19] |
OVA-Alhydrogel (Aluminum Salt-adjuvanted Vaccine) | Trehalose, | vaccine dry powder | Improved solubility and stability | [29] |
Tacrolimus | Mannitol | DPI | Substantial increase in pulmonary bioavailability. | [34] |
Tacrolimus | Lactose | inhaled formulations/colloidal dispersions after reconstitution and as a dry powder, DPI | For patients who have received lung transplants, pulmonary administration of TFF TAC-LAC could be a safe and effective treatment option. | [20] |
Carbamazepine | HPMC E3, L100-55, cellulose acetate (CA) | modified-release amorphous solid dispersions (mr-ASD) | In the CBZ-mr-ASD compositions, the absorption of CBZ and its primary active metabolite, CBZ-E, considerably increased. | [35] |
Itraconazole | 1,4-dioxane | - | AFD’s reduction in chargeability is greatly desired since it enables better powder management. | [36] |
Voriconazole | Polyvinylpyrrolidone | Dry powder insufflation | Improved solubility and dissolution rate. | [37] |
Drug/API | Excipient | Formulation | Application of TFF Technology | Ref. |
---|---|---|---|---|
Voriconazole | Mannitol | Nanoaggregates of crystalline voriconazole powder/DPI | Drug and therapy alternatives with enhanced aerosol performance and excellent aerosolization efficacy for pulmonary aspergillosis invasion. | [27] |
Bacteriophage-T7 phage | sucrose and leucine | Dry powder inhalers | Stabilize phage | [48] |
PEGylated chitosan/CRISPR–Cas9 polymer nanocomplexes | mannitol, sucrose, trehalose, leucine, chitosan, etc. | DPI | Two preparations with 3% mannitol, either containing or without leucine, were discovered to be appropriate for inhalation and to have the requisite aerodynamic properties | [49] |
Bovine serum albumin | HFA 227, 2H, 3H-Perfluoropentane | Nanorods | When pMDIs are used to actuate nanorods, which are stable against settling, the nanorods can be generated to create high fine particle percentages and ideal aerodynamic diameters. | [50] |
tetanus toxoid vaccine | aluminum hydroxide, trehalose | Dry powders | By adding aluminum salt adjuvant to dry vaccine powder, the TFFD approach can be used to create new vaccines or reformulate old ones. | [51] |
Voriconazole | lactose monohydrate, PVP | DPI, Nanostructured, Amorphous Solid Dispersions | When inhaled passively through DPI, the low density, brittle matrix components in the TFF formulation could breakdown in place to form inhalable particles. | [41] |
Monoclonal antibodies anti-PD-1 mAbs | Mannitol, lactose, Trehalose, Polyvinylpyrrolidone | Aerosolizable dry powders | Increased stability in storage, enhanced aerosol efficiency | [6] |
Aerosolizable siRNA/TNF-α siRNA | Lecithin, Mannitol | Dry powder solid lipid nanoparticles | Excellent aerosol performance characteristics and maintain the SLNs’ physical characteristics after siRNA encapsulation. | [42] |
Voriconazole | Mannitol | Nanoaggregates for dry powder inhalation | TFF was used to create crystalline voriconazole nanoaggregates at various inhalation flow rates and medication loadings. | [52] |
voriconazole | Mannitol | voriconazole nanoaggregates | Up to the 13th month at 25 °C/60% RH, the FPF and formulation stability of the 3% w/w mannitol composition increased. | [43] |
Protein | -NA- | protein-based therapeutics | To enable cold chain-free storage and efficient pulmonary distribution, protein dry powders manufactured by TFF have high thermostability and aerosol properties. | [4] |
AS01B | -NA- | Dry powder | TFFD permitted the use of a single stabilizing agent at a low dosage to produce both dry powder AS01B liposomal adjuvant and AS01B-adjuvanted vaccines. | [44] |
Bivalent Norovirus vaccines | trehalose or sucrose | Dry powder | A cold chain is not necessary for the norovirus vaccine while it is being stored and transported. | [45] |
Rapamycin | Lactose | Respirable rapamycin powder | TFF products dramatically increased uptake and presystemic elimination absorption. | [32] |
Remdesivir | Leucine, Captisol | dry powder insufflation/inhalation, | Drug concentration in plasma is sufficient to provide antiviral action. Expand the COVID-19 therapy | [46] |
Remdesivir | Captisol, mannitol, lactose, and leucine | dry powder for inhalation | Antiviral medication can lessen linked morbidity and mortality by enhancing physical stability. | [14] |
ovalbumin (OVA)-Alhydrogel | Trehalose, aluminum (oxy) hydroxide | dry powder vaccine/Intranasal vaccination by dry powder, nasal dry powder delivery device | Improved stability of storage. The flow characteristics of dry vaccine powder are excellent. The dry powder vaccines were evenly distributed. | [30] |
LDH or lysozyme/lactate dehydrogenase (LDH)/Protein Particle | Trehalose | Dried Powders | A promising approach to create stable submicron protein particles of interest in respiratory and parenteral administration uses is the intermediate cooling rate regime for TFF. | [11] |
Tacrolimus anhydrous | α-lactose, mannitol, and raffinose | Dry Powder inhalation | TFF approaches will be helpful for producing aerosolized brittle matrices and a viable platform for thermolabile, highly powerful, and poorly water-soluble drug delivery to the lungs. | [28] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pardeshi, S.R.; Kole, E.B.; Kapare, H.S.; Chandankar, S.M.; Shinde, P.J.; Boisa, G.S.; Salgaonkar, S.S.; Giram, P.S.; More, M.P.; Kolimi, P.; et al. Progress on Thin Film Freezing Technology for Dry Powder Inhalation Formulations. Pharmaceutics 2022, 14, 2632. https://doi.org/10.3390/pharmaceutics14122632
Pardeshi SR, Kole EB, Kapare HS, Chandankar SM, Shinde PJ, Boisa GS, Salgaonkar SS, Giram PS, More MP, Kolimi P, et al. Progress on Thin Film Freezing Technology for Dry Powder Inhalation Formulations. Pharmaceutics. 2022; 14(12):2632. https://doi.org/10.3390/pharmaceutics14122632
Chicago/Turabian StylePardeshi, Sagar R., Eknath B. Kole, Harshad S. Kapare, Sachin M. Chandankar, Prashant J. Shinde, Ganesh S. Boisa, Sanjana S. Salgaonkar, Prabhanjan S. Giram, Mahesh P. More, Praveen Kolimi, and et al. 2022. "Progress on Thin Film Freezing Technology for Dry Powder Inhalation Formulations" Pharmaceutics 14, no. 12: 2632. https://doi.org/10.3390/pharmaceutics14122632
APA StylePardeshi, S. R., Kole, E. B., Kapare, H. S., Chandankar, S. M., Shinde, P. J., Boisa, G. S., Salgaonkar, S. S., Giram, P. S., More, M. P., Kolimi, P., Nyavanandi, D., Dyawanapelly, S., & Junnuthula, V. (2022). Progress on Thin Film Freezing Technology for Dry Powder Inhalation Formulations. Pharmaceutics, 14(12), 2632. https://doi.org/10.3390/pharmaceutics14122632