Systematic Review of Pharmacogenetics of ABC and SLC Transporter Genes in Acute Myeloid Leukemia
Abstract
:1. Introduction
2. Materials and Methods
Search Strategy and Selection of Studies
3. Results
3.1. Influx Transporters: SLC Family
3.2. Efflux Transporters: ABC Family
3.3. SNP-SNP Combinations of Transporters
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tallman, M.S.; Wang, E.S.; Altman, J.K.; Appelbaum, F.R.; Bhatt, V.R.; Bixby, D.; Coutre, S.E.; De Lima, M.; Fathi, A.T.; Fiorella, M.; et al. Acute Myeloid Leukemia, Version 3.2019, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2019, 17, 721–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medeiros, B.C.; Chan, S.M.; Daver, N.G.; Jonas, B.A.; Pollyea, D.A. Optimizing survival outcomes with post-remission therapy in acute myeloid leukemia. Am. J. Hematol. 2019, 94, 803–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Megías-Vericat, J.E.; Montesinos, P.; Herrero, M.J.; Bosó, V.; Martínez-Cuadrón, D.; Poveda, J.L.; Sanz, M.Á.; Aliño, S.F. Pharmacogenomics and the treatment of acute myeloid leukemia. Pharmacogenomics 2016, 17, 1245–1272. [Google Scholar] [CrossRef] [PubMed]
- Megias-Vericat, J.E.; Martinez-Cuadron, D.; Herrero, M.J.; Alino, S.F.; Poveda, J.L.; Sanz, M.A.; Montesinos, P. Pharmaco-genetics of metabolic genes of anthracyclines in acute myeloid leukemia. Curr. Drug Metab. 2018, 19, 55–74. [Google Scholar] [CrossRef]
- Iacobucci, I.; Lonetti, A.; Candoni, A.; Sazzini, M.; Papayannidis, C.; Formica, S.; Ottaviani, E.; Ferrari, A.; Michelutti, A.; Simeone, E.; et al. Profiling of drug-metabolizing enzymes/transporters in CD33+ acute myeloid leukemia patients treated with Gemtuzumab-Ozogamicin and Fludarabine, Cytarabine and Idarubicin. Pharm. J. 2012, 13, 335–341. [Google Scholar] [CrossRef]
- Lal, S.; Wong, Z.W.; Jada, S.R.; Xiang, X.; Chen Shu, X.; Ang, P.C.; Figg, W.D.; Lee, E.J.; Chowbay, B. Novel SLC22A16 polymorphisms and influence on doxorubicin pharmacokinetics in Asian breast cancer patients. Pharmacogenomics 2007, 8, 567–575. [Google Scholar] [CrossRef]
- Bray, J.; Sludden, J.; Griffin, M.J.; Cole, M.; Verrill, M.; Jamieson, D.; Boddy, A.V. Influence of pharmacogenetics on response and toxicity in breast cancer patients treated with doxorubicin and cyclophosphamide. Br. J. Cancer 2010, 102, 1003–1009. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.H.; Leake, B.F.; Kim, R.B.; Ho, R.H. Contribution of Organic Anion-Transporting Polypeptides 1A/1B to Doxorubicin Uptake and Clearance. Mol. Pharmacol. 2017, 91, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Niemi, M.; Pasanen, M.K.; Neuvonen, P.J. Organic Anion Transporting Polypeptide 1B1: A Genetically Polymorphic Transporter of Major Importance for Hepatic Drug Uptake. Pharmacol. Rev. 2011, 63, 157–181. [Google Scholar] [CrossRef]
- Oshiro, C.; Mangravite, L.; Klein, T.; Altman, R. PharmGKB very important pharmacogene: SLCO1B1. Pharm. Genom. 2010, 20, 211–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durmus, S.; Naik, J.; Buil, L.; Wagenaar, E.; van Tellingen, O.; Schinkel, A.H. In vivo disposition of doxorubicin is affected by mouse Oatp1a/1b and human OATP1A/1B transporters. Int. J. Cancer. 2014, 135, 1700–1710. [Google Scholar] [CrossRef] [PubMed]
- Drenberg, C.D.; Paugh, S.W.; Pounds, S.B.; Shi, L.; Orwick, S.J.; Li, L.; Hu, S.; Gibson, A.A.; Ribeiro, R.C.; Rubnitz, J.; et al. Inherited variation in OATP1B1 is associated with treatment outcome in acute myeloid leukemia. Clin. Pharmacol. Ther. 2016, 99, 651–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Megías-Vericat, J.E.; Martínez-Cuadrón, D.; Herrero, M.J.; Rodríguez-Veiga, R.; Solana-Altabella, A.; Boluda, B.; Balles-taLópez, O.; Cano, I.; Acuña-Cruz, E.; Cervera, J.; et al. Impact of combinations of single-nucleotide polymorphisms of anthracycline transporter genes upon the efficacy and toxicity of induction chemo-therapy in acute myeloid leukemia. Leuk. Lymphoma. 2021, 62, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Yee, S.W.; Giacomini, K.M. Emerging Roles of the Human Solute Carrier 22 Family. Drug metabolism and disposition: The biological fate of chemicals. Drug Metab. Dispos. 2021, 50. [Google Scholar] [CrossRef]
- Yee, S.W.; Mefford, J.A.; Singh, N.; Percival, M.M.; Stecula, A.; Yang, K.; Witte, J.S.; Takahashi, A.; Kubo, M.; Matsuda, K.; et al. Impact of polymorphisms in drug pathway genes on disease-free survival in adults with acute myeloid leukemia. J. Hum. Genet. 2013, 58, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Hurren, R.; MacLean, N.; Gronda, M.; Jitkova, Y.; Sukhai, M.A.; Minden, M.D.; Schimmer, A.D. Carnitine transporter CT2 (SLC22A16) is over-expressed in acute myeloid leukemia (AML) and target knockdown reduces growth and viability of AML cells. Apoptosis 2015, 20, 1099–1108. [Google Scholar] [CrossRef]
- Müller, P.; Asher, N.; Heled, M.; Cohen, S.B.; Risch, A.; Rund, D. Polymorphisms in transporter and phase II metabolism genes as potential modifiers of the predisposition to and treatment outcome of de novo acute myeloid leukemia in Israeli ethnic groups. Leuk. Res. 2008, 32, 919–929. [Google Scholar] [CrossRef]
- Seeringer, A.; Yi-Jing, H.; Schlenk, R.; Doehner, K.; Kirchheiner, J.; Doehner, H. 9242 Pharmacogenetic factors in metabolism, transport and toxicity of cytarabine treatment in patients with AML. Eur. J. Cancer Suppl. 2009, 7, 572–573. [Google Scholar] [CrossRef]
- Cao, H.X.; Miao, C.F.; Yan, L.; Tang, P.; Zhang, L.R.; Sun, L. Polymorphisms at microRNA binding sites of Ara-C and an-thracyclines-metabolic pathway genes are associated with outcome of acute myeloid leukemia patients. J. Transl. Med. 2017, 15, 235. [Google Scholar] [CrossRef] [Green Version]
- Gray, J.H.; Owen, R.P.; Giacomini, K.M. The concentrative nucleoside transporter family, SLC28. Pflügers Archiv. 2004, 447, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Visscher, H.; Ross, C.J.; Rassekh, S.R.; Barhdadi, A.; Dubé, M.P.; Al-Saloos, H.; Sandor, G.S.; Caron, H.N.; van Dalen, E.C.; Kremer, L.C.; et al. Canadian Pharmacogenomics Network for Drug Safety Consortium. Pharmacogenomic prediction of anthracycline-induced cardio-toxicity in children. J. Clin. Oncol. 2012, 30, 1422–1428. [Google Scholar] [CrossRef] [PubMed]
- Visscher, H.; Ross, C.J.; Rassekh, S.R.; Sandor, G.S.; Caron, H.N.; Van Dalen, E.C.; Kremer, L.C.; Van Der Pal, H.J.; Rogers, P.C.; Rieder, M.J.; et al. Validation of variants inSLC28A3andUGT1A6as genetic markers predictive of anthracycline-induced cardiotoxicity in children. Pediatr. Blood Cancer 2013, 60, 1375–1381. [Google Scholar] [CrossRef] [PubMed]
- Aminkeng, F.; Bhavsar, A.P.; Visscher, H.; Rassekh, S.R.; Li, Y.; Lee, J.W.; Brunham, L.R.; Caron, H.N.; van Dalen, E.C.; Kremer, L.C.; et al. Canadian Phar-macogenomics Network for Drug Safety Consortium. A coding variant in RARG confers susceptibility to anthracy-cline-induced cardiotoxicity in childhood cancer. Nat Genet. 2015, 47, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Sági, J.C.; Egyed, B.; Kelemen, A.; Kutszegi, N.; Hegyi, M.; Gézsi, A.; Herlitschke, M.A.; Rzepiel, A.; Fodor, L.E.; Ottóffy, G.; et al. Possible roles of genetic variations in chemotherapy related cardiotoxicity in pediatric acute lymphoblastic leukemia and osteosarcoma. BMC Cancer 2018, 18, 704. [Google Scholar] [CrossRef]
- Wojnowski, L.; Kulle, B.; Schirmer, M.; Schlüter, G.; Schmidt, A.; Rosenberger, A.; Vonhof, S.; Bickeböller, H.; Toliat, M.R.; Suk, E.-K.; et al. NAD(P)H Oxidase and Multidrug Resistance Protein Genetic Polymorphisms Are Associated With Doxorubicin-Induced Cardiotoxicity. Circulation 2005, 112, 3754–3762. [Google Scholar] [CrossRef] [Green Version]
- Vulsteke, C.; Pfeil, A.M.; Maggen, C.; Schwenkglenks, M.; Pettengell, R.; Szucs, T.D.; Lambrechts, D.; Dieudonné, A.-S.; Hatse, S.; Neven, P.; et al. Clinical and genetic risk factors for epirubicin-induced cardiac toxicity in early breast cancer patients. Breast Cancer Res. Treat. 2015, 152, 67–76. [Google Scholar] [CrossRef]
- Reichwagen, A.; Ziepert, M.; Kreuz, M.; Gödtel-Armbrust, U.; Rixecker, T.; Poeschel, V.; Reza Toliat, M.; Nürnberg, P.; Tzvetkov, M.; Deng, S.; et al. Association of NADPH oxidase poly-morphisms with anthracycline-induced cardiotoxicity in the RICOVER60 trial of patients with aggressive CD20(+) B-cell lymphoma. Pharmacogenomics 2015, 16, 361–372. [Google Scholar] [CrossRef]
- Zeller, T.; Wild, P.; Szymczak, S.; Rotival, M.; Schillert, A.; Castagne, R.; Maouche, S.; Germain, M.; Lackner, K.; Rossmann, H.; et al. Genetics and beyond--the tran-scriptome of human monocytes and disease susceptibility. PLoS ONE 2010, 5, e10693. [Google Scholar] [CrossRef] [Green Version]
- Dimas, A.S.; Deutsch, S.; Stranger, B.E.; Montgomery, S.B.; Borel, C.; Attar-Cohen, H.; Ingle, C.; Beazley, C.; Arcelus, M.G.; Sekowska, M.; et al. Common Regulatory Variation Impacts Gene Expression in a Cell Type–Dependent Manner. Science 2009, 325, 1246–1250. [Google Scholar] [CrossRef] [Green Version]
- White, J.C.; Rathmell, J.P.; Capizzi, R.L. Membrane transport influences the rate of accumulation of cytosine arabinoside in human leukemia cells. J. Clin. Investig. 1987, 79, 380–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessel, D.; Hall, T.C.; Rosenthal, D. Uptake and phosphorylation of cytosine arabinoside by normal and leukemic human blood cells in vitro. Cancer Res. 1969, 29, 459–463. [Google Scholar] [PubMed]
- Sundaram, M.; Yao, S.Y.; Ingram, J.C.; Berry, Z.A.; Abidi, F.; Cass, C.E.; Baldwin, S.A.; Young, J.D. Topology of a Human Equilibrative, Nitrobenzylthioinosine (NBMPR)-sensitive Nucleoside Transporter (hENT1) Implicated in the Cellular Uptake of Adenosine and Anti-cancer Drugs. J. Biol. Chem. 2001, 276, 45270–45275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gati, W.P.; Paterson, A.R.; Larratt, L.M.; Turner, A.R.; Belch, A.R. Sensitivity of acute leukemia cells to cytarabine is a correlate of cellular es nucleoside transporter site content measured by flow cytometry with SAENTA-fluorescein. Blood 1997, 90, 346–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Visser, F.; King, K.M.; Baldwin, S.A.; Young, J.D.; Cass, C.E. The role of nucleoside transporters in cancer chemotherapy with nucleoside drugs. Cancer Metastasis Rev. 2007, 26, 85–110. [Google Scholar] [CrossRef]
- Eltzschig, H.K.; Abdulla, P.; Hoffman, E.; Hamilton, K.E.; Daniels, D.; Schonfeld, C.; Loffler, M.; Reyes, G.; Duszenko, M.; Karhausen, J.; et al. HIF-1–dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J. Exp. Med. 2005, 202, 1493–1505. [Google Scholar] [CrossRef]
- Montero, T.D.; Racordon, D.; Bravo, L.; Owen, G.I.; Bronfman, M.L.; Leisewitz, A.V. PPARalpha and PPARgamma regulate the nucleoside transporter hENT1. Biochem. Biophys. Res. Commun. 2012, 419, 405–411. [Google Scholar] [CrossRef]
- Galmarini, C.M.; Thomas, X.; Calvo, F.; Rousselot, P.; Rabilloud, M.; El Jaffari, A.; Cros, E.; Dumontet, C. In vivo mechanisms of resistance to cytarabine in acute myeloid leukaemia. Br. J. Haematol. 2002, 117, 860–868. [Google Scholar] [CrossRef]
- Jaramillo, A.C.; Hubeek, I.; Broekhuizen, R.; Pastor-Anglada, M.; Kaspers, G.J.L.; Jansen, G.; Cloos, J.; Peters, G.J. Expression of the nucleoside transporters hENT1 (SLC29) and hCNT1 (SLC28) in pediatric acute myeloid leukemia. Nucleosides Nucleotides Nucleic Acids 2020, 39, 1379–1388. [Google Scholar] [CrossRef]
- Osato, D.H.; Huang, C.C.; Kawamoto, M.; Johns, S.J.; Stryke, D.; Wang, J.; Ferrin, T.E.; Herskowitz, I.; Giacomini, K.M. Functional characterization in yeast of genetic variants in the human equilibrative nucleoside transporter, ENT1. Pharmacogenetics 2003, 13, 297–301. [Google Scholar] [CrossRef]
- Myers, S.N.; Goyal, R.K.; Roy, J.D.; Fairfull, L.D.; Wilson, J.W.; Ferrell, R.E. Functional single nucleotide polymorphism haplotypes in the human equilibrative nucleoside transporter 1. Pharm. Genom. 2006, 16, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Parmar, S.; Seeringer, A.; Denich, D.; Gärtner, F.; Pitterle, K.; Syrovets, T.; Ohmle, B.; Stingl, J.C. Variability in transport and biotransformation of cytarabine is associated with its toxicity in peripheral blood mononuclear cells. Pharmacogenomics 2011, 12, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Lee, C.; Cheong, H.S.; Koh, Y.; Ahn, K.-S.; Kim, H.-L.; Shin, H.D.; Yoon, S.-S. SLC29A1 (ENT1) polymorphisms and outcome of complete remission in acute myeloid leukemia. Cancer Chemother. Pharmacol. 2016, 78, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.I.; Huh, I.-S.; Kim, I.-W.; Park, T.; Ahn, K.-S.; Yoon, S.-S.; Yoon, J.-H.; Oh, J.M. Combined interaction of multi-locus genetic polymorphisms in cytarabine arabinoside metabolic pathway on clinical outcomes in adult acute myeloid leukaemia (AML) patients. Eur. J. Cancer 2012, 49, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Zhu, J.; Chen, F.; Xiao, F.; Huang, H.; Han, X.; Zhong, L.; Zhong, H.; Xu, L.; Ni, B.; et al. SLC29A1 single nucleotide polymorphisms as independent prognostic predictors for survival of patients with acute myeloid leukemia: An in vitro study. J. Exp. Clin. Cancer Res. 2014, 33, 90. [Google Scholar] [CrossRef] [PubMed]
- Amaki, J.; Onizuka, M.; Ohmachi, K.; Aoyama, Y.; Hara, R.; Ichiki, A.; Kawai, H.; Sato, A.; Miyamoto, M.; Toyosaki, M.; et al. Single nucleotide polymorphisms of cytarabine metabolic genes influence clinical outcome in acute myeloid leukemia patients receiving high-dose cytarabine therapy. Int. J. Hematol. 2015, 101, 543–553. [Google Scholar] [CrossRef] [PubMed]
- International Transporter Consortium; Giacomini, K.M.; Huang, S.M.; Tweedie, D.J.; Benet, L.Z.; Brouwer, K.L.; Chu, X.; Dahlin, A.; Evers, R.; Fischer, V.; et al. Membrane transporters in drug development. Nat. Rev. Drug Discov. 2010, 9, 215–236. [Google Scholar]
- Lal, S.; Wong, Z.W.; Sandanaraj, E.; Xiang, X.; Ang, P.C.S.; Lee, E.J.D.; Chowbay, B. Influence of ABCB1 and ABCG2 polymorphisms on doxorubicin disposition in Asian breast cancer patients. Cancer Sci. 2008, 99, 816–823. [Google Scholar] [CrossRef]
- Guo, Y.; Köck, K.; Ritter, C.A.; Chen, Z.-S.; Grube, M.; Jedlitschky, G.; Illmer, T.; Ayres, M.; Beck, J.F.; Siegmund, W.; et al. Expression of ABCC-Type Nucleotide Exporters in Blasts of Adult Acute Myeloid Leukemia: Relation to Long-term Survival. Clin. Cancer Res. 2009, 15, 1762–1769. [Google Scholar] [CrossRef] [Green Version]
- Hopper-Borge, E.; Xu, X.; Shen, T.; Shi, Z.; Chen, Z.-S.; Kruh, G.D. Human Multidrug Resistance Protein 7 (ABCC10) Is a Resistance Factor for Nucleoside Analogues and Epothilone B. Cancer Res. 2009, 69, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Illmer, T.; Schuler, U.S.; Thiede, C.; I Schwarz, U.; Kim, R.B.; Gotthard, S.; Freund, D.; Schäkel, U.; Ehninger, G.; Schaich, M. MDR1 gene polymorphisms affect therapy outcome in acute myeloid leukemia patients. Cancer Res. 2002, 62, 4955–4962. [Google Scholar] [PubMed]
- Kaya, P.; Gündüz, U.; Arpaci, F.; Ural, A.U.; Guran, S. Identification of polymorphisms on theMDR1 gene among Turkish population and their effects on multidrug resistance in acute leukemia patients. Am. J. Hematol. 2005, 80, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Park, J.Y.; Sohn, S.K.; Lee, N.Y.; Baek, J.H.; Jeon, S.B.; Kim, J.G.; Suh, J.S.; Do, Y.R. Multidrug resistance-1 gene polymorphism associated with the treatment outcomes in de novo acute myeloid leukemia. J. Clin. Oncol. 2005, 23, 6550. [Google Scholar] [CrossRef]
- Van Der Holt, B.; Vandenheuveleibrink, M.; Van Schaik, R.H.N.; Van Der Heiden, I.P.; Wiemer, E.A.C.; Vossebeld, P.J.M.; Löwenberg, B.; Sonneveld, P. ABCB1 gene polymorphisms are not associated with treatment outcome in elderly acute myeloid leukemia patients. Clin. Pharmacol. Ther. 2006, 80, 427–439. [Google Scholar] [CrossRef]
- Hur, E.-H.; Lee, J.-H.; Lee, M.J.; Choi, S.-J.; Lee, J.-H.; Kang, M.J.; Seol, M.; Jang, Y.E.; Lee, H.-J.; Kang, I.-S.; et al. C3435T polymorphism of the MDR1 gene is not associated with P-glycoprotein function of leukemic blasts and clinical outcome in patients with acute myeloid leukemia. Leuk. Res. 2008, 32, 1601–1604. [Google Scholar] [CrossRef]
- Hampras, S.S.; Sucheston, L.; Weiss, J.; Baer, M.R.; Zirpoli, G.; Singh, P.K.; Wetzler, M.; Chennamaneni, R.; Blanco, J.G.; Ford, L.; et al. Genetic polymorphisms of ATP-binding cassette (ABC) proteins, overall survival and drug toxicity in patients with Acute Myeloid Leukemia. Int. J. Mol. Epidemiol. Genet. 2010, 1, 201–207. [Google Scholar]
- Gréen, H.; Falk, I.J.; Lotfi, K.; Paul, E.; Hermansson, M.; Rosenquist, R.; Paul, C.; Nahi, H. Association of ABCB1 polymorphisms with survival and in vitro cytotoxicty in de novo acute myeloid leukemia with normal karyotype. Pharm. J. 2010, 12, 111–118. [Google Scholar] [CrossRef]
- Scheiner, M.A.M.; Vasconcelos, F.d.C.; Matta, R.R.d.; Figueira, R.D.B., Jr.; Maia, R.C. ABCB1 genetic variation and P-glycoprotein expression/activity in a cohort of Brazilian acute myeloid leukemia patients. J. Cancer Res. Clin. Oncol. 2012, 138, 959–969. [Google Scholar] [CrossRef]
- Jakobsen Falk, I.; Fyrberg, A.; Paul, E.; Nahi, H.; Hermanson, M.; Rosenquist, R.; Höglund, M.; Palmqvist, L.; Stockelberg, D.; Wei, Y.; et al. Impact of ABCB1 single nucleotide polymorphisms 1236C>T and 2677G>T on overall survival in FLT3 wild-type de novo AML patients with normal karyotype. Br. J. Haematol. 2014, 167, 671–680. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Yin, J.-Y.; Xu, Y.-J.; Li, X.; Zhang, Y.; Liu, Z.-G.; Zhou, F.; Zhai, M.; Li, Y.; Li, X.-P.; et al. Association of ABCB1 Polymorphisms with the Efficacy of Ondansetron in Chemotherapy-induced Nausea and Vomiting. Clin. Ther. 2014, 36, 1242–1252.e2. [Google Scholar] [CrossRef]
- He, H.; Yin, J.; Li, X.; Zhang, Y.; Xu, X.; Zhai, M.; Chen, J.; Qian, C.; Zhou, H.; Liu, Z. Association of ABCB1 polymorphisms with prognostic outcomes of anthracycline and cytarabine in Chinese patients with acute myeloid leukemia. Eur. J. Clin. Pharmacol. 2015, 71, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Megías-Vericat, J.E.; Montesinos, P.; Herrero, M.J.; Moscardó, F.; Bosó, V.; Rojas, L.; Martínez-Cuadrón, D.; Hervás, D.; Boluda, B.; García-Robles, A.; et al. Impact of ABC single nucleotide polymorphisms upon the efficacy and toxicity of induction chemotherapy in acute myeloid leukemia. Leuk. Lymphoma. 2017, 58, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Rafiee, R.; Chauhan, L.; Alonzo, T.A.; Wang, Y.-C.; Elmasry, A.; Loken, M.R.; Pollard, J.; Aplenc, R.; Raimondi, S.; Hirsch, B.A.; et al. ABCB1 SNP predicts outcome in patients with acute myeloid leukemia treated with Gemtuzumab ozogamicin: A report from Children’s Oncology Group AAML0531 Trial. Blood Cancer J. 2019, 9, 51. [Google Scholar] [CrossRef] [PubMed]
- Short, N.J.; Richard-Carpentier, G.; Kanagal-Shamanna, R.; Patel, K.P.; Konopleva, M.; Papageorgiou, I.; Pemmaraju, N.; Borthakur, G.; Ravandi, F.; DiNardo, C.D.; et al. Impact of CD33 and ABCB1 single nucleotide polymorphisms in patients with acute myeloid leukemia and advanced myeloid malignancies treated with de-citabine plus gemtuzumab ozogamicin. Am. J Hematol. 2020, 95, E225–E228. [Google Scholar] [CrossRef]
- van den Heuvel-Eibrink, M.M.V.D.; Wiemer, E.A.C.; de Boevere, M.J.; van der Holt, B.; Vossebeld, P.J.M.; Pieters, R.; Sonneveld, P. MDR1 gene–related clonal selection and P-glycoprotein function and expression in relapsed or refractory acute myeloid leukemia. Blood 2001, 97, 3605–3611. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-K.; Bae, S.-Y.; Kim, H.N.; Kim, N.Y.; Kim, H.J.; Bang, S.-M.; Jo, D.-Y.; Won, J.-H.; Lee, N.-R.; Kwak, J.-Y.; et al. Prognostic Impact of DNA Repair and MDR-1 Gene Polymorphisms In De Novo Acute Myeloid Leukemia with t(8;21) or Inv(16). Blood 2010, 116, 1714. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Kim, H.-N.; Lee, I.-K.; Bang, S.-M.; Jo, D.-Y.; Won, J.-H.; Kwak, J.-Y.; Yim, C.-Y.; Yang, D.-H.; Lee, J.-J.; et al. Prognostic Significance of ABCB1 (MDR1) Gene Polymorphisms in De Novo Acute Myeloid Leukemia with t(8;21) or inv(16). Blood 2007, 110, 4271. [Google Scholar] [CrossRef]
- Monzo, M.; Brunet, S.; Urbano-Ispizua, A.; Navarro, A.; Perea, G.; Esteve, J.; Artells, R.; Granell, M.; Berlanga, J.; Ribera, J.M.; et al. Genomic polymorphisms provide prognostic information in intermediate-risk acute myeloblastic leukemia. Blood 2006, 107, 4871–4879. [Google Scholar] [CrossRef] [Green Version]
- Varatharajan, S.; Panetta, J.; Abraham, A.; Karathedath, S.; Mohanan, E.; Lakshmi, K.M.; Arthur, N.; Srivastava, V.M.; Nemani, S.; George, B.; et al. Population pharmacokinetics of Daunorubicin in adult patients with acute myeloid leukemia. Cancer Chemother. Pharmacol. 2016, 78, 1051–1058. [Google Scholar] [CrossRef]
- Borg, A.G.; Burgess, R.; Green, L.M.; Scheper, R.J.; Yin, J.A.L. P-glycoprotein and multidrug resistance-associated protein, but not lung resistance protein, lower the intracellular daunorubicin accumulation in acute myeloid leukaemic cells. Br. J. Haematol. 2000, 108, 48–54. [Google Scholar] [CrossRef]
- Seedhouse, C.H.; Grundy, M.; White, P.; Li, Y.; Fisher, J.; Yakunina, D.; Moorman, A.; Hoy, T.; Russell, N.; Burnett, A.; et al. Sequential Influences of Leukemia-Specific and Genetic Factors on P-Glycoprotein Expression in Blasts from 817 Patients Entered into the National Cancer Research Network Acute Myeloid Leukemia 14 and 15 Trials. Clin. Cancer Res. 2007, 13, 7059–7066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamba, J.; Strom, S.; Venkataramanan, R.; Thummel, K.E.; Lin, Y.S.; Liu, W.; Cheng, C.; Lamba, V.; Watkins, P.B.; Schuetz, E. MDR1 genotype is associated with hepatic cytochrome P450 3A4 basal and induction phenotype. Clin. Pharmacol. Ther. 2006, 79, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Megías-Vericat, J.E.; Rojas, L.; Herrero, M.J.; Bosó, V.; Montesinos, P.; Moscardó, F.; Poveda, J.L.; Sanz, M.Á.; Aliño, S.F. Influence of ABCB1 polymorphisms upon the effectiveness of standard treatment for acute myeloid leukemia: A systematic review and meta-analysis of observational studies. Pharm. J. 2015, 15, 109–118. [Google Scholar] [CrossRef]
- Megías-Vericat, J.E.; Rojas, L.; Herrero, M.J.; Bosó, V.; Montesinos, P.; Moscardó, F.; Poveda, J.L.; Sanz, M.Á.; Aliño, S.F. Positive impact of ABCB1 polymorphisms in overall survival and complete remission in acute myeloid leukemia: A systematic review and meta-analysis. Pharm. J. 2016, 16, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Hertz, D.L.; Caram, M.V.; Kidwell, K.M.; Thibert, J.N.; Gersch, C.; Seewald, N.J.; Smerage, J.; Rubenfire, M.; Henry, N.L.; Cooney, K.A.; et al. Evidence for association of SNPs in ABCB1 and CBR3 but not RAC2, NCF4 SLC28A3 or TOP2B with chronic cardiotoxicity in a cohort of breast cancer patients treated with anthracyclines. Pharmacogenomics 2016, 17, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Rossi, D.; Rasi, S.; Franceschetti, S.; Capello, D.; Castelli, A.; De Paoli, L.; Ramponi, A.; Chiappella, A.; Pogliani, E.M.; Vitolo, U.; et al. Analysis of the host pharmacogenetic background for prediction of outcome and toxicity in diffuse large B-cell lymphoma treated with R-CHOP21. Leukemia 2009, 23, 1118–1126. [Google Scholar] [CrossRef] [PubMed]
- Lubieniecka, J.M.; Graham, J.; Heffner, D.; Mottus, R.; Reid, R.; Hogge, D.; Grigliatti, T.A.; Riggs, W.K. A discovery study of daunorubicin induced cardiotoxicity in a sample of acute myeloid leukemia patients prioritizes P450 oxidoreductase poly-morphisms as a potential risk factor. Front. Genet. 2013, 4, 231. [Google Scholar] [CrossRef] [Green Version]
- Sissung, T.M.; Huang, P.A.; Hauke, R.J.; McCrea, E.M.; Peer, C.J.; Barbier, R.H.; Strope, J.D.; Ley, A.M.; Zhang, M.; Hong, J.A.; et al. Severe Hepatotoxicity of Mithramycin Therapy Caused by Altered Expression of Hepatocellular Bile Transporters. Mol. Pharmacol. 2019, 96, 158–167. [Google Scholar] [CrossRef]
- Stride, B.D.; Grant, C.E.; Loe, D.W.; Hipfner, D.R.; Cole, S.P.C.; Deeley, R.G. Pharmacological Characterization of the Murine and Human Orthologs of Multidrug-Resistance Protein in Transfected Human Embryonic Kidney Cells. Mol. Pharmacol. 1997, 52, 344–353. [Google Scholar] [CrossRef] [Green Version]
- Conrad, S.; Kauffmann, H.-M.; Ito, K.-I.; Leslie, E.; Deeley, R.G.; Schrenk, D.; Cole, S. A naturally occurring mutation in MRP1 results in a selective decrease in organic anion transport and in increased doxorubicin resistance. Pharmacogenetics 2002, 12, 321–330. [Google Scholar] [CrossRef]
- Semsei, A.F.; Erdelyi, D.J.; Ungvari, I.; Csagoly, E.; Hegyi, M.; Kiszel, P.S.; Lautner-Csorba, O.; Szabolcs, J.; Masat, P.; Fekete, G.; et al. ABCC1polymorphisms in anthracycline-induced cardiotoxicity in childhood acute lymphoblastic leukaemia. Cell Biol. Int. 2012, 36, 79–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahjoubi, F.; Akbari, S.; Montazeri, M.; Moshyri, F. MRP1 polymorphisms (T2684C, C2007T, C2012T, and C2665T) are not associated with multidrug resistance in leukemic patients. Genet. Mol. Res. 2008, 7, 1369–1374. [Google Scholar] [CrossRef] [PubMed]
- Kunadt, D.; Dransfeld, C.; Dill, C.; Schmiedgen, M.; Kramer, M.; Altmann, H.; Röllig, C.; Bornhäuser, M.; Mahlknecht, U.; Schaich, M.; et al. Multidrug-related protein 1 (MRP1) polymorphisms rs129081, rs212090, and rs212091 predict survival in normal karyotype acute myeloid leukemia. Ann. Hematol. 2020, 99, 2173–2180. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; König, J.; Buchholz, J.K.; Spring, H.; Leier, I.; Keppler, D. Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol. Pharmacol. 1999, 55, 929–937. [Google Scholar]
- Armenian, S.H.; Ding, Y.; Mills, G.; Sun, C.; Venkataraman, K.; Wong, F.L.; Neuhausen, S.L.; Senitzer, D.; Wang, S.; Forman, S.J.; et al. Genetic susceptibility to anthracycline-related congestive heart failure in survivors of haematopoietic cell transplantation. Br. J. Haematol. 2013, 163, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Windsor, R.E.; Strauss, S.J.; Kallis, C.; Wood, N.E.; Whelan, J.S. Germline genetic polymorphisms may influence chemotherapy response and disease outcome in osteosarcoma: A pilot study. Cancer 2012, 118, 1856–1867. [Google Scholar] [CrossRef]
- Varatharajan, S.; Abraham, A.; Karathedath, S.; Ganesan, S.; Lakshmi, K.M.; Arthur, N.; Srivastava, V.M.; George, B.; Srivastava, A.; Mathews, V.; et al. ATP-binding casette transporter expression in acute myeloid leukemia: Association with in vitro cytotoxicity and prognostic markers. Pharmacogenomics 2017, 18, 235–244. [Google Scholar] [CrossRef]
- Butrym, A.; Łacina, P.; Bogunia-Kubik, K.; Mazur, G. ABCC3 and GSTM5 gene polymorphisms affect overall survival in Polish acute myeloid leukaemia patients. Curr. Probl. Cancer 2021, 45, 100729. [Google Scholar] [CrossRef]
- Hu, S.; Chen, Z.; Franke, R.; Orwick, S.; Zhao, M.; Rudek, M.A.; Sparreboom, A.; Baker, S.D. Interaction of the Multikinase Inhibitors Sorafenib and Sunitinib with Solute Carriers and ATP-Binding Cassette Transporters. Clin. Cancer Res. 2009, 15, 6062–6069. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Niu, H.; Inaba, H.; Orwick, S.; Rose, C.; Panetta, J.; Yang, S.; Pounds, S.; Fan, Y.; Calabrese, C.; et al. Activity of the Multikinase Inhibitor Sorafenib in Combination with Cytarabine in Acute Myeloid Leukemia. JNCI J. Natl. Cancer Inst. 2011, 103, 893–905. [Google Scholar] [CrossRef]
- Doyle, L.A.; Yang, W.; Abruzzo, L.V.; Krogmann, T.; Gao, Y.; Rishi, A.K.; Ross, D.D. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA 1998, 95, 15665–15670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Manautou, J.E.; Rasmussen, T.P.; Zhong, X.B. Development of precision medicine approaches based on interindividual variability of BCRP/ABCG2. Acta Pharm. Sin. B 2019, 9, 659–674. [Google Scholar] [CrossRef] [PubMed]
- Ross, D.D.; Karp, J.E.; Chen, T.T.; Doyle, L.A. Expression of breast cancer resistance protein in blast cells from patients with acute leukemia. Blood 2000, 96, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Benderra, Z.; Faussat, A.-M.; Sayada, L.; Perrot, J.-Y.; Chaoui, D.; Marie, J.-P.; Legrand, O. Breast Cancer Resistance Protein and P-Glycoprotein in 149 Adult Acute Myeloid Leukemias. Clin. Cancer Res. 2004, 10, 7896–7902. [Google Scholar] [CrossRef] [Green Version]
- Benderra, Z.; Faussat, A.M.; Sayada, L.; Perrot, J.-Y.; Tang, R.; Chaoui, D.; Morjani, H.; Marzac, C.; Marie, J.-P.; Legrand, O. MRP3, BCRP, and P-Glycoprotein Activities are Prognostic Factors in Adult Acute Myeloid Leukemia. Clin. Cancer Res. 2005, 11, 7764–7772. [Google Scholar] [CrossRef] [Green Version]
- Tiribelli, M.; Geromin, A.; Michelutti, A.; Cavallin, M.; Pianta, A.; Fabbro, D.; Russo, D.; Damante, G.; Fanin, R.; Damiani, D. Concomitant ABCG2 overexpression and FLT3-ITD mutation identify a subset of acute myeloid leukemia patients at high risk of relapse. Cancer 2010, 117, 2156–2162. [Google Scholar] [CrossRef]
- Wang, F.; Liang, Y.-J.; Wu, X.-P.; Chen, L.-M.; To, K.K.W.; Dai, C.-L.; Yan, Y.-Y.; Wang, Y.-S.; Tong, X.-Z.; Fu, L.-W. Prognostic value of the multidrug resistance transporter ABCG2 gene polymorphisms in Chinese patients with de novo acute leukaemia. Eur. J. Cancer 2011, 47, 1990–1999. [Google Scholar] [CrossRef]
- Tiribelli, M.; Fabbro, D.; Franzoni, A.; Fanin, R.; Damante, G.; Damiani, D. Q141K polymorphism of ABCG2 protein is associated with poor prognosis in adult acute myeloid leukemia treated with idarubicin-based chemotherapy. Haematologica 2013, 98, e28–e29. [Google Scholar] [CrossRef]
- Rhodes, K.E.; Zhang, W.; Yang, D.; Press, O.A.; Gordon, M.; Vallböhmer, D.; Schultheis, A.M.; Lurje, G.; Ladner, R.D.; Fazzone, W.; et al. ABCB1, SLCO1B1 and UGT1A1 gene polymorphisms are associated with toxicity in metastatic colorectal cancer patients treated with first-line irinotecan. Drug Metab. Lett. 2007, 1, 23–30. [Google Scholar] [CrossRef]
- Sai, K.; Saito, Y.; Maekawa, K.; Kim, S.-R.; Kaniwa, N.; Nishimaki-Mogami, T.; Sawada, J.-I.; Shirao, K.; Hamaguchi, T.; Yamamoto, N.; et al. Additive effects of drug transporter genetic polymorphisms on irinotecan pharmacokinetics/pharmacodynamics in Japanese cancer patients. Cancer Chemother. Pharmacol. 2010, 66, 95–105. [Google Scholar] [CrossRef]
- Peters, B.J.; Rodin, A.S.; Klungel, O.H.; van Duijn, C.M.; Stricker, B.H.C.; Slot, R.V.; de Boer, A.; der Zee, A.-H.M.-V. Pharmacogenetic interactions between ABCB1 and SLCO1B1 tagging SNPs and the effectiveness of statins in the prevention of myocardial infarction. Pharmacogenomics 2010, 11, 1065–1076. [Google Scholar] [CrossRef] [PubMed]
- Neve, E.P.A.; Artursson, P.; Ingelman-Sundberg, M.; Karlgren, M. An Integrated in Vitro Model for Simultaneous Assessment of Drug Uptake, Metabolism, and Efflux. Mol. Pharm. 2013, 10, 3152–3163. [Google Scholar] [CrossRef] [PubMed]
- Lane, H.-Y.; Tsai, G.E.; Lin, E. Assessing Gene-Gene Interactions in Pharmacogenomics. Mol. Diagn. Ther. 2012, 16, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Donnette, M.; Solas, C.; Giocanti, M.; Venton, G.; Farnault, L.; Berda-Haddad, Y.; Hau, L.T.T.; Costello, R.; Ouafik, L.; Lacarelle, B.; et al. Simultaneous determination of cytosine arabinoside and its metabolite uracil arabinoside in human plasma by LC-MS/MS: Application to pharmacokinetics-pharmacogenetics pilot study in AML patients. J. Chromatogr. B 2019, 1126–1127, 121770. [Google Scholar] [CrossRef]
- Yamakawa, Y.; Hamada, A.; Nakashima, R.; Yuki, M.; Hirayama, C.; Kawaguchi, T.; Saito, H. Association of genetic poly-morphisms in the influx transporter SLCO1B3 and the efflux transporter ABCB1 with imatinib pharmacokinetics in patients with chronic myeloid leukemia. Ther. Drug Monit. 2011, 33, 244–250. [Google Scholar] [PubMed]
- Zhang, H.; He, X.; Li, J.; Wang, Y.; Wang, C.; Chen, Y.; Niu, C.; Gao, P. SLCO1B1c. 521T>C gene polymorphisms are associated with high-dose methotrexate pharmacokinetics and clinical outcome of pediatric acute lymphoblastic leukemia. Zhonghua Er Ke Za Zhi—Chin. J. Pediatr. 2014, 52, 770–776. [Google Scholar]
- Bruhn, O.; Cascorbi, I. Polymorphisms of the drug transporters ABCB1, ABCG2, ABCC2 and ABCC3 and their impact on drug bioavailability and clinical relevance. Expert Opin. Drug Metab. Toxicol. 2014, 10, 1337–1354. [Google Scholar] [CrossRef]
- Bruckmueller, H.; Cascorbi, I. ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: What is our current understanding? Expert Opin. Drug. Metab. Toxicol. 2021, 17, 369–396. [Google Scholar] [CrossRef]
- Roumier, C.; Cheok, M.H. Pharmacogenomics in acute myeloid leukemia. Pharmacogenomics 2009, 10, 1839–1851. [Google Scholar] [CrossRef]
- Emadi, A.; E Karp, J. The clinically relevant pharmacogenomic changes in acute myelogenous leukemia. Pharmacogenomics 2012, 13, 1257–1269. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, F.C.; de Souza, P.S.; Hancio, T.; de Faria, F.C.C.; Maia, R.C. Update on drug transporter proteins in acute myeloid leukemia: Pathological implication and clinical setting. Crit. Rev. Oncol. 2021, 160, 103281. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Merino, Á.; Labrador, J.; Zubiaur, P.; Alcaraz, R.; Herrero, M.J.; Montesinos, P.; Abad-Santos, F.; Saiz-Rodríguez, M. Role of Pharmacogenetics in the Treatment of Acute Myeloid Leukemia: Systematic Review and Future Perspectives. Pharmaceutics 2022, 14, 559. [Google Scholar] [CrossRef] [PubMed]
- Megías-Vericat, J.E.; Solana-Altabella, A.; Ballesta-López, O.; Martínez-Cuadrón, D.; Montesinos, P. Drug-drug interactions of newly approved small molecule inhibitors for acute myeloid leukemia. Ann. Hematol. 2020, 99, 1989–2007. [Google Scholar] [CrossRef] [PubMed]
SNP | Study | n | Age (Range) | Ethnia (Country) | HWE | LMA Status (%) | Chemotherapy Scheme | Clinical Outcomes |
---|---|---|---|---|---|---|---|---|
SLCO1B1 | ||||||||
T521C rs4149056 | Iacobucci et al., 2012 [5] | 94 | 51 (19–65) | Caucasian (Italy) | Yes | De novo (80.9%) Secondary (19.1%) | Ara C + IDA + FLUDA + GO |
|
Drenberg et al., 2016 [13] 1 | 164 | 9.1 (0–21) | White (70%) Black (20%) Others (10%) | Yes | De novo | Ara C + DAUNO + ETOP + MIT |
| |
Megías-Vericat et al., 2021 [14] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA |
| |
597C>T rs2291075 | Drenberg et al., 2016 [13] 1 | 164 | 9.1 (0–21) | White (70%) Black (20%) Others (10%) | Yes | De novo | Ara C + DAUNO + ETOP + MIT |
|
388A>G rs2306283 | Drenberg et al., 2016 [13] 1 | 164 | 9.1 (0–21) | White (70%) Black (20%) Others (10%) | Yes | De novo | Ara C + DAUNO + ETOP + MIT |
|
SLC22A12 | ||||||||
T1246C rs11231825 | Iacobucci et al., 2012 [5] | 94 | 51 (19–65) | Caucasian (Italy) | Yes | De novo (80.9%) Secondary (19.1%) | Ara C + IDA + FLUDA + GO |
|
rs528211 (G>A) | Yee et al., 2013 [16] 2 | 154 | NR | Caucasian (Europe) | NR | NR | Ara C + ETOP + BUSUL (pre-TX) |
|
rs2360872 (C>T) | Yee et al., 2013 [16] 2 | 154 | NR | Caucasian (Europe) | NR | NR | Ara C + ETOP + BUSUL (pre-TX) |
|
rs505802 (A>G) | Yee et al., 2013 [16] 2 | 154 | NR | Caucasian (Europe) | NR | NR | Ara C + ETOP + BUSUL (pre-TX) |
|
rs524023 (G>A) | Yee et al., 2013 [16] 2 | 154 | NR | Caucasian (Europe) | NR | NR | Ara C + ETOP + BUSUL (pre-TX) |
|
rs9734313 (T>C) | Yee et al., 2013 [16] 2 | 154 | NR | Caucasian (Europe) | NR | NR | Ara C + ETOP + BUSUL (pre-TX) |
|
rs11231825 (C>T) | Yee et al., 2013 [16] 2 | 154 | NR | Caucasian (Europe) | NR | NR | Ara C + ETOP + BUSUL (pre-TX) |
|
rs11606370 (A>C) | Yee et al., 2013 [16] 2 | 154 | NR | Caucasian (Europe) | NR | NR | Ara C + ETOP + BUSUL (pre-TX) |
|
rs893006 (T>G) | Yee et al., 2013 [16] 2 | 154 | NR | Caucasian (Europe) | NR | NR | Ara C + ETOP + BUSUL (pre-TX) |
|
SLC22A16 | ||||||||
rs12210538 1226A>G | Megías-Vericat et al., 2021 [14] | 225 | 52.5 (16–78) | Caucasian (Spain) | Yes | De novo | Ara C + IDA |
|
rs714368 146A>G | Megías-Vericat et al., 2021 [14] | 225 | 52.5 (16–78) | Caucasian (Spain) | Yes | De novo | Ara C + IDA |
|
SLC25A37 | ||||||||
rs7818607 (C>A) | Yee et al., 2013 [16] 2 | 154 | NR | Caucasian (Europe) | NR | NR | Ara C + ETOP + BUSUL (pre-TX) |
|
rs8534 (C>T) | Yee et al., 2013 [16] 2 | 154 | NR | Caucasian (Europe) | NR | NR | Ara C + ETOP + BUSUL (pre-TX) |
|
CNT1 (SLC28A1) | ||||||||
G565A rs2290272 | Müller et al., 2008 [18] | 139 | 46.3 (15–86) | Jews (61.2%) Arabs (38.8%) | Yes | De novo | Ara C + ANT ± FLUDA ± MIT |
|
C1561T rs2242046 | Seeringer et al., 2009 [19] 3 | 322 | <60 | Caucasian (Germany) | NR | NR (normal cytogenetic status) | Ara C + IDA + ETOP |
|
rs8025045 (G>T) | Cao et al., 2017 [20] | 206 | 67.2 (22–98) | Asian (China) | Yes | De novo | Ara C + ANT |
|
SLC28A2 | ||||||||
rs10519020 (G>C) | Drenberg et al., 2016 [13] 1 | 164 | 9.1 (0–21) | White (70%) Black (20%) Others (10%) | Yes | De novo | Ara C + DAUNO + ETOP + MIT |
|
SLC28A3 | ||||||||
rs11140500 (C>T) | Yee et al., 2013 [16] 2 | 154 | NR | Caucasian (Europe) | NR | NR | Ara C + ETOP + BUSUL (pre-TX) |
|
hENT1 (SLC29A1) | ||||||||
C469A rs3734703 | Kim et al., 2013 [44] 4 | 97 | 50 (16–76) | Asian (South Korea) | Yes | De novo | Ara C + IDA |
|
Kim et al., 2016 [43] | 103 | 50.4 (16–76) | Asian (South Korea) | Yes | De novo | Ara C + IDA |
| |
Cao et al., 2017 [20] | 206 | 67.2 (22–98) | Asian (China) | Yes | De novo | Ara C + ANT |
| |
C>T rs9394992 | Wan et al., 2014 [45] | 100 | 43 (17–76) | Asian (China) | Yes | De novo | Ara C + DAUNO or IDA |
|
Amaki et al., 2015 [46] | 39 | 54 (23–71) | Asian (Japan) | Yes | De novo | Ara C + IDA or DAUNO (consolidation: Ara C high doses) |
| |
Kim et al., 2016 [43] | 103 | 50.4 (16–76) | Asian (South Korea) | Yes | De novo | Ara C + IDA |
| |
T>C rs324148 | Wan et al., 2014 [45] | 100 | 43 (17–76) | Asian (China) | Yes | De novo | Ara C + DAUNO or IDA |
|
Kim et al., 2016 [43] | 103 | 50.4 (16–76) | Asian (South Korea) | Yes | De novo | Ara C + IDA |
| |
A>C rs693955 | Amaki et al., 2015 [46] | 39 | 54 (23–71) | Asian (Japan) | Yes | De novo | Ara C + IDA or DAUNO (consolidation: Ara C high doses) |
|
Kim et al., 2016 [43] | 103 | 50.4 (16–76) | Asian (South Korea) | Yes | De novo | Ara C + IDA |
| |
rs507964 (A>C) | Kim et al., 2016 [43] | 103 | 50.4 (16–76) | Asian (South Korea) | Yes | De novo | Ara C + IDA |
|
rs747199 (C>G) | Kim et al., 2016 [43] | 103 | 50.4 (16–76) | Asian (South Korea) | Yes | De novo | Ara C + IDA |
|
SNP | Study | n | Age (Range) | Ethnia (Country) | HWE | LMA Status (%) | Chemotherapy Scheme | Clinical Outcomes |
---|---|---|---|---|---|---|---|---|
ABCB1 | ||||||||
C3435T rs1045642 | Illmer et al., 2002 [51] | 405 | 53 (17–78) | Caucasian (Germany) | Yes | De novo | Ara C+ MIT + ETOP + AMSA |
|
Kaya et al., 2005 [52] | 28 | 36 (20–64) | Arabs (Turkey) | NR | NR | Ara C + ANT |
| |
Kim DH et al., 2006 [53] | 81 | 39 (15–72) | Asian (South Korea) | Yes | De novo | Ara C + IDA |
| |
Van der Holt et al., 2006 [54] 1 | 150 (130) | 67 (60–85) | Caucasian (Netherlands) | No | De novo: 79Secondary: 21 | Ara C + DAUNO |
| |
Hur et al., 2008 [55] | 200 | 44 (NR) | Asian (South Korea) | Yes | De novo | Ara C + ANT |
| |
Hampras et al., 2010 [56] | 261 | 61.5 (20–85) | Caucasian (86%) Others (14%) (USA) | Yes | De novo: 75Secondary: 25 | Ara C + ANT |
| |
Green et al., 2012 [57] | 100 | 63 (20–85) | Caucasian (Europe) | Yes | De novo (normal karyotype) | Ara C + ANT or MIT +/or Others |
| |
Scheiner et al., 2012 [58] 2 | 109 (44) | 34 (<1–86) | Others: White (69.7%) Non-white (30.3%) | No | De novo: 72.5Secondary: 18.3 | Ara C + IDA |
| |
Falk et al., 2014 [59] 3 | 201 | 59 (18–85) | Caucasian (Sweden) | Yes | De novo (normal karyotype) | Ara C + DAUNO or IDA ± ETOP +/or Others |
| |
He et al., 2014 [60] | 215 | 43.6 (14–57) | Asian (China) | Yes | De novo | Ara C (high doses) |
| |
He et al., 2015 [61] | 263 | 45.4 (14–58) | Asian (China) | Yes | De novo (intermediate cytogenetic risk) | Ara C + DAUNO ± MIT |
| |
Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA |
| |
Rafiee et al., 2019 [63] | 942 | 9.7 (0–30) | Caucasian (81%) Black (13%) Asian (5%) Others (1%) | Yes | De novo | Ara C + IDA + ETOP ± GO |
| |
Short et al., 2020 [64] | 104 | 68 (24–88) | Caucasian (86%) Black (13%) | NR | AML 82De novo: 43.9Secondary: 56.1 | GO + DAC |
| |
G2677T/A rs2032582 | Van den Heuvel et al., 2001 [65] | 30 | 34.6 (1–67) | Caucasian (Netherlands) | NR | Relapsed: 100 | Ara C + ANT + Others |
|
Illmer et al., 2002 [51] | 405 | 53 (17–78) | Caucasian (Germany) | Yes | De novo | Ara C+ MIT + ETOP + AMSA |
| |
Kaya et al., 2005 [52] | 28 | 36 (20–64) | Arabs (Turkey) | NR | NR | Ara C + ANT |
| |
Kim DH et al., 2006 [53] | 81 | 39 (15–72) | Asian (South Korea) | Yes | De novo | Ara C + IDA |
| |
Van der Holt et al., 2006 [54] 1 | 150 (142) | 67 (60–85) | Caucasian (Netherlands) | Yes | De novo: 79Secondary: 21 | Ara C + DAUNO |
| |
Hampras et al., 2010 [56] | 261 | 61.5 (20–85) | Caucasian (86%) Others (14%) (USA) | Yes | De novo: 75Secondary: 25 | Ara C + ANT |
| |
Kim YK et al., 2010 [66] | 94 | 38 (17–79) | Asian (South Korea) | NR | De novo (t (8,21) and inv (16)) | Ara C + IDA +BH-AC |
| |
Green et al., 2012 [57] | 100 | 63 (20–85) | Caucasian (Europe) | Yes | De novo (normal karyotype) | Ara C + ANT or MIT +/or Others |
| |
Falk et al., 2014 [59] 3 | 201 | 59 (18–85) | Caucasian (Sweden) | Yes | De novo (normal karyotype) | Ara C + DAUNO or IDA ± ETOP +/or Others |
| |
He et al., 2014 [60] | 215 | 43.6 (14–57) | Asian (China) | Yes | De novo | Ara C (high doses) |
| |
He et al., 2015 [61] | 263 | 45.4 (14–58) | Asian (China) | Yes | De novo (intermediate cytogenetic risk) | Ara C + DAUNO ± MIT |
| |
Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA |
| |
Rafiee et al., 2019 [63] | 942 | 9.7 (0–30) | Caucasian (81%) Black (13%) Asian (5%) Others (1%) | Yes | De novo | Ara C + IDA + ETOP ± GO |
| |
C1236T rs1128503 | Illmer et al., 2002 [51] | 405 | 53 (17–78) | Caucasian (Germany) | Yes | De novo | Ara C+ MIT + ETOP + AMSA |
|
Van der Holt et al., 2006 [54] 1 | 150 (115) | 67 (60–85) | Caucasian (Netherlands) | Yes | De novo: 79Secondary: 21 | Ara C + DAUNO |
| |
Hampras et al., 2010 [56] | 261 | 61.5 (20–85) | Caucasian (86%) Others (14%) (USA) | Yes | De novo: 75Secondary: 25 | Ara C + ANT |
| |
Kim YK et al., 2010 [66] | 94 | 38 (17–79) | Asian (South Korea) | NR | De novo (t (8,21) and inv (16)) | Ara C + IDA +BH-AC |
| |
Green et al., 2012 [57] | 100 | 63 (20–85) | Caucasian (Europe) | Yes | De novo (normal karyotype) | Ara C + ANT or MIT +/or Others |
| |
Scheiner et al., 2012 [58] 2 | 109(44) | 34 (<1–86) | Others: White (69.7%) Non-white (30,3%) | Yes | De novo: 72.5Secondary: 18.3 | Ara C + IDA |
| |
Falk et al., 2014 [59] 3 | 201 | 59 (18–85) | Caucasian (Sweden) | Yes | De novo (normal karyotype) | Ara C + DAUNO or IDA ± ETOP +/or Others |
| |
He et al., 2014 [60] | 215 | 43.6 (14–57) | Asian (China) | No | De novo | Ara C (high doses) |
| |
He et al., 2015 [61] | 263 | 45.4 (14–58) | Asian (China) | Yes | De novo (intermediate cytogenetic risk) | Ara C + DAUNO ± MIT |
| |
Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA |
| |
Rafiee et al., 2019 [63] | 942 | 9.7 (0–30) | Caucasian (81%) Black (13%) Asian (5%) Others (1%) | Yes | De novo | Ara C + IDA + ETOP ± GO |
| |
Short et al., 2020 [64] | 104 | 68 (24–88) | Caucasian (86%) Black (13%) | NR | AML 82De novo: 43.9Secondary: 56.1 | GO + DAC |
| |
G1199A rs2229109 | Green et al., 2012 [57] | 100 | 63 (20–85) | Caucasian (Europe) | Yes | De novo (normal karyotype) | Ara C + ANT or MIT +/or Others |
|
Falk et al., 2014 [59] 3 | 201 | 59 (18–85) | Caucasian (Sweden) | Yes | De novo (normal karyotype) | Ara C + DAUNO or IDA ± ETOP +/or Others |
| |
C174967T rs6980101 | Kim YK et al., 2007 [67] | 49 | 37 (17–69) | Asian (South Korea) | NR | De novo (t (8,21) and inv (16)) | Ara C + IDA |
|
G146792C rs10256836 | Kim YK et al., 2007 [67] | 49 | 37 (17–69) | Asian (South Korea) | NR | De novo (t (8,21) and inv (16)) | Ara C + IDA |
|
T134575A rs17327442 | Kim YK et al., 2007 [67] | 49 | 37 (17–69) | Asian (South Korea) | NR | De novo (t (8,21) and inv (16)) | Ara C + IDA |
|
A113516G rs4148732 | Kim YK et al., 2007 [67] | 49 | 37 (17–69) | Asian (South Korea) | NR | De novo (t (8,21) and inv (16)) | Ara C + IDA |
|
C193T rs121918619 | Monzo et al., 2006 [67] | 110 | 44 (16–60) | Caucasian (Spain) | Yes | De novo (intermediate cytogenetic risk) | Ara C + IDA + ETOP |
|
Illet144Met | Monzo et al., 2006 [68] | 110 | 44 (16–60) | Caucasian (Spain) | NR | De novo (intermediate cytogenetic risk) | Ara C + IDA + ETOP |
|
rs3842 (A>G) | Cao et al., 2017 [20] | 206 | 67.2 (22–98) | Asian (China) | Yes | De novo | Ara C + ANT |
|
rs2235015 (G>T) | Rafiee et al., 2019 [63] | 942 | 9.7 (0–30) | Caucasian (81%) Black (13%) Asian (5%) Others (1%) | Yes | De novo | Ara C + IDA + ETOP ± GO |
|
rs2235033 (T>C) | Rafiee et al., 2019 [63] | 942 | 9.7 (0–30) | Caucasian (81%) Black (13%) Asian (5%) Others (1%) | Yes | De novo | Ara C + IDA + ETOP ± GO |
|
rs1922242 (A>T) | Rafiee et al., 2019 [63] | 942 | 9.7 (0–30) | Caucasian (81%) Black (13%) Asian (5%) Others (1%) | Yes | De novo | Ara C + IDA + ETOP ± GO |
|
rs1922240 (T>C) | Rafiee et al., 2019 [63] | 942 | 9.7 (0–30) | Caucasian (81%) Black (13%) Asian (5%) Others (1%) | Yes | De novo | Ara C + IDA + ETOP ± GO |
|
rs1989830 (C>T) | Rafiee et al., 2019 [63] | 942 | 9.7 (0–30) | Caucasian (81%) Black (13%) Asian (5%) Others (1%) | Yes | De novo | Ara C + IDA + ETOP ± GO |
|
rs2235040 (G>A) | Rafiee et al., 2019 [63] | 942 | 9.7 (0–30) | Caucasian (81%) Black (13%) Asian (5%) Others (1%) | Yes | De novo | Ara C + IDA + ETOP ± GO |
|
ABCB11 | ||||||||
rs4668115 (G>A) | Drenberg et al., 2016 [13] 4 | 164 | 9.1 (0–21) | White (70%) Black (20%) Others (10%) | Yes | De novo | Ara C + DAUNO + ETOP + MIT |
|
ABCC1 | ||||||||
T2684C | Mahjoubi et al., 2008 [82] | 111 | NR | Arabs (Iran) | NR | 52 AMLNR | NR |
|
C2007T rs2301666 | Mahjoubi et al., 2008 [82] | 111 | NR | Arabs (Iran) | NR | 52 AMLNR | NR |
|
G2012T rs45511401 | Mahjoubi et al., 2008 [82] | 111 | NR | Arabs (Iran) | NR | 52 AMLNR | NR |
|
C2665T | Mahjoubi et al., 2008 [82] | 111 | NR | Arabs (Iran) | NR | 52 AMLNR | NR |
|
T825C rs246221 | Hampras et al., 2010 [56] | 261 | 61.5 (20–85) | Caucasian (86%) Others (14%) (USA) | Yes | De novo: 75Secondary: 25 | Ara C + ANT |
|
T1062C rs35587 | Hampras et al., 2010 [56] | 261 | 61.5 (20–85) | Caucasian (86%) Others (14%) (USA) | Yes | De novo: 75Secondary: 25 | Ara C + ANT |
|
G4002A rs2230671 | Hampras et al., 2010 [56] | 261 | 61.5 (20–85) | Caucasian (86%) Others (14%) (USA) | Yes | De novo: 75Secondary: 25 | Ara C + ANT |
|
rs4148350 (G>T) | Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA |
|
rs129081 (C>G) | Kunadt et al., 2020 [83] 5 | 160 | 46 (18–60) | Caucasian (Germany) | Yes | NK AMLDe novo: 93.1Secondary: 6.9 | Ara C + DAUNO |
|
rs212090 (A>T) | Cao et al., 2017 [20] | 206 | 67.2 (22–98) | Asian (China) | Yes | De novo | Ara C + ANT |
|
Kunadt et al., 2020 [83] 5 | 160 | 46 (18–60) | Caucasian (Germany) | Yes | NK AMLDe novo: 93.1Secondary: 6.9 | Ara C + DAUNO |
| |
rs212091 (A>G) | Cao et al., 2017 [20] | 206 | 67.2 (22–98) | Asian (China) | Yes | De novo | Ara C + ANT |
|
Kunadt et al., 2020 [83] 5 | 160 | 46 (18–60) | Caucasian (Germany) | Yes | NK AMLDe novo: 93.1Secondary: 6.9 | Ara C + DAUNO |
| |
rs3743527 (C>T) | Cao et al., 2017 [20] | 206 | 67.2 (22–98) | Asian (China) | Yes | De novo | Ara C + ANT |
|
rs4148380 (G>A) | Cao et al., 2017 [20] | 206 | 67.2 (22–98) | Asian (China) | Yes | De novo | Ara C + ANT |
|
ABCC2 | ||||||||
G4544A rs8187710 | Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA |
|
ABCC3 | ||||||||
45 + 1226 (T>G) rs4148405 | Yee et al., 2013 [16] 6 | 154 | NR | Caucasian (Europe) | NR | NR | Ara C + ETOP + BUSUL (pre-TX) |
|
Butrym et al., 2021 [85] | 95 | 61 (22–90) | Caucasian (Poland) | Yes | De novo | Ara C + DAUNO or low dose Ara C or AZA |
| |
rs1989983 (G>A) | Yee et al., 2013 [16] 6 | 54 | NR | Caucasian (Europe) | NR | NR | Ara C + ETOP + BUSUL (pre-TX) |
|
rs2301835 (C>T) | Yee et al., 2013 [16] 6 | 154 | NR | Caucasian (Europe) | NR | NR | Ara C + ETOP + BUSUL (pre-TX) |
|
rs2277624 (A>G) | Yee et al., 2013 [16] 6 | 154 | NR | Caucasian (Europe) | NR | NR | Ara C + ETOP + BUSUL (pre-TX) |
|
rs8079740 (A>G) | Yee et al., 2013 [16] 6 | 154 | NR | Caucasian (Europe) | NR | NR | Ara C + ETOP + BUSUL (pre-TX) |
|
rs757420 (T>C) | Yee et al., 2013 [16] 6 | 154 | NR | Caucasian (Europe) | NR | NR | Ara C + ETOP + BUSUL (pre-TX) |
|
C211T rs4793665 | Müller et al., 2008 [18] | 139 | 46.3 (15–86) | Jews (61.2%) Arabs (38.8%) | Yes | De novo | Ara C + ANT ± FLUDA ± MIT |
|
Butrym et al., 2021 [88] | 95 | 61 (22–90) | Caucasian (Poland) | Yes | De novo | Ara C + DAUNO or low dose Ara C or AZA |
| |
ABCG2 | ||||||||
G34A rs2231137 | Hampras et al., 2010 [56] | 261 | 61.5 (20–85) | Caucasian (86%) Others (14%) (USA) | NR | De novo: 75Secondary: 25 | Ara C + ANT |
|
Wang et al., 2011 [97] | 141 | 32 (5–70) | Asian (China) | NR | De novoMixed with ALL | Ara C + DAUNO/MITO |
| |
Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA |
| |
C421A rs2231142 | Müller et al., 2008 [18] | 139 | 46.3 (15–86) | Jews (61.2%) Arabs (38.8%) | Yes | De novo | Ara C + ANT ± FLUDA ± MIT |
|
Hampras et al., 2010 [56] | 261 | 61.5 (20–85) | Caucasian (86%) Others (14%) (USA) | Yes | De novo: 75Secondary: 25 | Ara C + ANT |
| |
Wang et al., 2011 [97] | 141 | 32 (5–70) | Asian (China) | NR | De novoMixed with ALL | Ara C + DAUNO/MITO |
| |
Tiribelli et al., 2013 [98] | 125 | 59.2 (20–84) | Caucasian (Italy) | Yes | NR | Ara C + IDA + FLUDA ± ETOP |
| |
Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA |
| |
Ile619Ile (C>T) | Wang et al., 2011 [97] | 141 | 32 (5–70) | Asian (China) | NR | De novoMixed with ALL | Ara C + DAUNO/MITO |
|
rs2231149 (C>T) | Wang et al., 2011 [97] | 141 | 32 (5–70) | Asian (China) | NR | De novoMixed with ALL | Ara C + DAUNO/MITO |
|
rs2231162 (C>T) | Wang et al., 2011 [97] | 141 | 32 (5–70) | Asian (China) | NR | De novoMixed with ALL | Ara C + DAUNO/MITO |
|
rs2231164 (C>T) | Wang et al., 2011 [97] | 141 | 32 (5–70) | Asian (China) | NR | De novoMixed with ALL | Ara C + DAUNO/MITO |
|
SNP | Study | n | Age (Range) | Ethnia (Country) | HWE | LMA Status (%) | Chemotherapy Scheme | Clinical Outcomes |
---|---|---|---|---|---|---|---|---|
ABCB1 + SLC | ||||||||
ABCB1 C3435T rs1045642 SLCO1B1 rs4149056 (T>C) | Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA |
|
ABCB1 C3435T rs1045642 SLC22A16 rs12210538 (A>G) | Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA |
|
ABCB1 G2677T/A rs2032582 SLCO1B1 rs4149056 (T>C) | Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA |
|
ABCB1 G2677T/A rs2032582 SLC22A16 rs12210538 (A>G) | Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA |
|
ABCB1 G2677T/A rs2032582 SLC22A16rs714368 (A>G) | Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA |
|
ABCB1 C1236T rs1128503 SLCO1B1 rs4149056 (T>C) | Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA |
|
ABCB1 haplotype 1 SLCO1B1 rs4149056 (T>C) | Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA |
|
ABCB1 haplotype 1 SLC22A16 rs12210538 (A>G) | Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA |
|
ABCB1 haplotype 1 SLC22A16 rs714368 (A>G) | Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA |
|
ABCC1 + SLC | ||||||||
ABCC1 rs4148350 SLCO1B1/SLC22A16 | Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA |
|
ABCC2 + SLC | ||||||||
ABCC2 rs8187710 SLCO1B1/SLC22A16 | Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA |
|
ABCG2 + SLC | ||||||||
ABCG2 rs2231142 (C>A) SLC22A16 rs714368 (A>G) | Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Megías-Vericat, J.E.; Martínez-Cuadrón, D.; Solana-Altabella, A.; Poveda, J.L.; Montesinos, P. Systematic Review of Pharmacogenetics of ABC and SLC Transporter Genes in Acute Myeloid Leukemia. Pharmaceutics 2022, 14, 878. https://doi.org/10.3390/pharmaceutics14040878
Megías-Vericat JE, Martínez-Cuadrón D, Solana-Altabella A, Poveda JL, Montesinos P. Systematic Review of Pharmacogenetics of ABC and SLC Transporter Genes in Acute Myeloid Leukemia. Pharmaceutics. 2022; 14(4):878. https://doi.org/10.3390/pharmaceutics14040878
Chicago/Turabian StyleMegías-Vericat, Juan Eduardo, David Martínez-Cuadrón, Antonio Solana-Altabella, José Luis Poveda, and Pau Montesinos. 2022. "Systematic Review of Pharmacogenetics of ABC and SLC Transporter Genes in Acute Myeloid Leukemia" Pharmaceutics 14, no. 4: 878. https://doi.org/10.3390/pharmaceutics14040878
APA StyleMegías-Vericat, J. E., Martínez-Cuadrón, D., Solana-Altabella, A., Poveda, J. L., & Montesinos, P. (2022). Systematic Review of Pharmacogenetics of ABC and SLC Transporter Genes in Acute Myeloid Leukemia. Pharmaceutics, 14(4), 878. https://doi.org/10.3390/pharmaceutics14040878