Buccal Permeation of Polysaccharide High Molecular Weight Compounds: Effect of Chemical Permeation Enhancers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Permeation Studies
Passive Diffusion Experiments
Pre-Treatment with Fatty Acid Permeation Experiments
Co-Administration Permeation Experiments
2.2.2. Analytical Method
2.2.3. Data Elaboration
2.2.4. Two Photon Microscopy
3. Results
3.1. Permeation Studies across Porcine Esophageal Mucosa: Effect of Dextran Molecular Weight and Comparison with Literature Data
3.2. Increasing the Permeability of Macromolecules across the Epithelum
3.2.1. Bile Salts
3.2.2. Fatty Acids
3.3. Two-Photon Microscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montenegro-Nicolini, M.; Morales, J.O. Overview and Future Potential of Buccal Mucoadhesive Films as Drug Delivery Systems for Biologics. AAPS PharmSciTech 2017, 18, 3–14. [Google Scholar] [CrossRef]
- Guo, R.; Chen, M.; Ding, Y.; Yang, P.; Wang, M.; Zhang, H.; He, Y.; Ma, H. Polysaccharides as Potential Anti-tumor Biomacromolecules—A Review. Front. Nutr. 2022, 9, 838179. [Google Scholar] [CrossRef]
- Iyire, A.; Alaayedi, M.; Mohammed, A.R. Pre-formulation and systematic evaluation of amino acid assisted permeability of insulin across in vitro buccal cell layers. Sci. Rep. 2016, 6, 32498. [Google Scholar] [CrossRef] [PubMed]
- Veillard, M.M.; Longer, M.A.; Martens, T.W.; Robinson, J.R. Preliminary studies of oral mucosal delivery of peptide drugs. J. Control. Release 1987, 6, 123–131. [Google Scholar] [CrossRef]
- Junginger, H.E.; Hoogstraate, J.A.; Verhoef, J.C. Recent advances in buccal drug delivery and absorption - in vitro and in vivo studies. J. Control. Release 1999, 62, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Paderni, C.; Compilato, D.; Giannola, L.I.; Campisi, G. Oral local drug delivery and new perspectives in oral drug formulation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, e25–e34. [Google Scholar] [CrossRef]
- Puratchikody, A.; Prasanth, V.; Mathew, S.; Kumar, B. Buccal Drug Delivery: Past, Present and Future—A Review. Int. J. Drug Deliv. 2011, 3, 171–184. [Google Scholar]
- Brayden, D.J.; Stuettgen, V. Sodium glycodeoxycholate and sodium deoxycholate as epithelial permeation enhancers: In vitro and ex vivo intestinal and buccal bioassays. Eur. J. Pharm. Sci. 2021, 159, 105737. [Google Scholar] [CrossRef] [PubMed]
- Cummins, J.M.; Beilharz, M.W.; Krakowka, S. Oral use of interferon. J. Interferon Cytokine Res. 1999, 19, 853–857. [Google Scholar] [CrossRef] [Green Version]
- Cui, Z.; Mumper, R.J. Bilayer films for mucosal (genetic) immunization via the buccal route in rabbits. Pharm. Res. 2002, 19, 947–953. [Google Scholar] [CrossRef]
- Zhang, J.; Niu, S.; Ebert, C.; Stanley, T.H. An in vivo dog model for studying recovery kinetics of the buccal mucosa permeation barrier after exposure to permeation enhancers: Apparent evidence of effective enhancement without tissue damage. Int. J. Pharm. 1994, 101, 15–22. [Google Scholar] [CrossRef]
- Xue, X.Y.; Zhou, Y.; Chen, Y.Y.; Meng, J.R.; Jia, M.; Hou, Z.; Bai, H.; Mao, X.G.; Luo, X.X. Promoting effects of chemical permeation enhancers on insulin permeation across TR146 cell model of buccal epithelium in vitro. Drug Chem. Toxicol. 2012, 35, 199–207. [Google Scholar] [CrossRef]
- Creighton, R.L.; Woodrow, K.A. Microneedle-Mediated Vaccine Delivery to the Oral Mucosa. Adv. Healthc Mater. 2019, 8, e1801180. [Google Scholar] [CrossRef]
- Berka, P.; Stranska, D.; Semecky, V.; Berka, K.; Dolezal, P. In vitro testing of flash-frozen sublingual membranes for storage and reproducible permeability studies of macromolecular drugs from solution or nanofiber mats. Int. J. Pharm. 2019, 572, 118711. [Google Scholar] [CrossRef]
- Patel, M.P.; Churchman, S.T.; Cruchley, A.T.; Braden, M.; Williams, D.M. Delivery of macromolecules across oral mucosa from polymeric hydrogels is enhanced by electrophoresis (iontophoresis). Dent Mate.r 2013, 29, e299–e307. [Google Scholar] [CrossRef]
- Telo, I.; Tratta, E.; Guasconi, B.; Nicoli, S.; Pescina, S.; Govoni, P.; Santi, P.; Padula, C. In-vitro characterization of buccal iontophoresis: The case of sumatriptan succinate. Int. J. Pharm. 2016, 506, 420–428. [Google Scholar] [CrossRef]
- Nicolazzo, J.A.; Reed, B.L.; Finnin, B.C. Buccal penetration enhancers—How do they really work? J. Control. Release 2005, 105, 1–15. [Google Scholar] [CrossRef]
- Maher, S.; Casettari, L.; Illum, L. Transmucosal Absorption Enhancers in the Drug Delivery Field. Pharmaceutics 2019, 11, 339. [Google Scholar] [CrossRef] [Green Version]
- Diaz Del Consuelo, I.; Pizzolato, G.P.; Falson, F.; Guy, R.H.; Jacques, Y. Evaluation of pig esophageal mucosa as a permeability barrier model for buccal tissue. J. Pharm. Sci. 2005, 94, 2777–2788. [Google Scholar] [CrossRef]
- Diaz-Del Consuelo, I.; Jacques, Y.; Pizzolato, G.P.; Guy, R.H.; Falson, F. Comparison of the lipid composition of porcine buccal and esophageal permeability barriers. Arch. Oral Biol. 2005, 50, 981–987. [Google Scholar] [CrossRef]
- Padula, C.; Pescina, S.; Nicoli, S.; Santi, P. New Insights on the Mechanism of Fatty Acids as Buccal Permeation Enhancers. Pharmaceutics 2018, 10, 201. [Google Scholar] [CrossRef] [PubMed]
- Caon, T.; Simoes, C.M. Effect of freezing and type of mucosa on ex vivo drug permeability parameters. AAPS PharmSciTech 2011, 12, 587–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, A.; Bredno, J.; Wendland, M.; Derugin, N.; Ohara, P.; Wintermark, M. High and Low Molecular Weight Fluorescein Isothiocyanate (FITC)-Dextrans to Assess Blood-Brain Barrier Disruption: Technical Considerations. Transl. Stroke Res. 2011, 2, 106–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, J.; Jouanmiqueou, B.; Rols, M.P.; Flahaut, E.; Golzio, M. Transdermal Delivery of Macromolecules Using Two-in-One Nanocomposite Device for Skin Electroporation. Pharmaceutics 2021, 13, 1805. [Google Scholar] [CrossRef]
- Fein, K.C.; Gleeson, J.P.; Newby, A.N.; Whitehead, K.A. Intestinal permeation enhancers enable oral delivery of macromolecules up to 70 kDa in size. Eur. J. Pharm. Biopharm. 2022, 170, 70–76. [Google Scholar] [CrossRef]
- Taverner, A.; Dondi, R.; Almansour, K.; Laurent, F.; Owens, S.E.; Eggleston, I.M.; Fotaki, N.; Mrsny, R.J. Enhanced paracellular transport of insulin can be achieved via transient induction of myosin light chain phosphorylation. J. Control. Release 2015, 210, 189–197. [Google Scholar] [CrossRef] [Green Version]
- De Araujo, J.S.M.; Volpato, M.C.; Muniz, B.V.; Xavier, G.G.A.; Martinelli, C.C.M.; Lopez, R.F.V.; Groppo, F.C.; Franz-Montan, M. Resistivity Technique for the Evaluation of the Integrity of Buccal and Esophageal Epithelium Mucosa for In Vitro Permeation Studies: Swine Buccal and Esophageal Mucosa Barrier Models. Pharmaceutics 2021, 13, 643. [Google Scholar] [CrossRef]
- Diaz Del Consuelo, I.; Falson, F.; Guy, R.H.; Jacques, Y. Transport of fentanyl through pig buccal and esophageal epithelia in vitro: Influence of concentration and vehicle pH. Pharm. Res. 2005, 22, 1525–1529. [Google Scholar] [CrossRef]
- Wang, S.; Zuo, A.; Guo, J. Types and evaluation of in vitro penetration models for buccal mucosal delivery. J. Drug Deliv. Sci. Technol. 2021, 61, 102122. [Google Scholar] [CrossRef]
- Do Couto, R.O.; Cubayachi, C.; Duarte, M.P.F.; Lopez, R.F.V.; Pedrazzi, V.; De Gaitani, C.M.; de Freitas, O. Towards the advance of a novel iontophoretic patch for needle-free buccal anesthesia. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 122, 111778. [Google Scholar] [CrossRef]
- Giordani, B.; Abruzzo, A.; Prata, C.; Nicoletta, F.P.; Dalena, F.; Cerchiara, T.; Luppi, B.; Bigucci, F. Ondansetron buccal administration for paediatric use: A comparison between films and wafers. Int. J. Pharm. 2020, 580, 119228. [Google Scholar] [CrossRef]
- Majid, H.; Puzik, A.; Maier, T.; Eberhard, D.; Bartel, A.; Mueller, H.C.; Burckhardt, B.B. Exploring the transmucosal permeability of cyclobenzaprine: A comparative preformulation by standardized and controlled ex vivo and in vitro permeation studies. Int. J. Pharm. 2021, 601, 120574. [Google Scholar] [CrossRef]
- Paprikar, A.; Soni, A.; Kaushal, N.; Lin, S. Sublingual insulin administration: Application of hydroxypropyl beta-cyclodextrin and poloxamer188 as permeation enhancers. Pharm. Dev. Technol. 2021, 26, 233–242. [Google Scholar] [CrossRef]
- Valetti, S.; Riaz, A.; Doko, A.; Sultana, K.; Eskandari, M.; Prgomet, Z.; Feiler, A.; Ronn, R.; Dahlstrom, B.; Engblom, J.; et al. Oral transmucosal delivery of eletriptan for neurological diseases. Int. J. Pharm. 2022, 627, 122222. [Google Scholar] [CrossRef]
- Zhao, W.; Du, Y.; Ashfaq, S.; Ali, S.; Alanazi, A.M.; Santi, M. Evaluation of the Efficacy, Biocompatibility, and Permeation of Bupivacaine-Loaded Poly(epsilon-caprolactone) Nano-Capsules as an Anesthetic. J. Biomed. Nanotechnol. 2022, 18, 268–276. [Google Scholar] [CrossRef]
- Tabboon, P.; Pongjanyakul, T.; Limpongsa, E.; Jaipakdee, N. Mucosal Delivery of Cannabidiol: Influence of Vehicles and Enhancers. Pharmaceutics 2022, 14, 1687. [Google Scholar] [CrossRef]
- Wanasathop, A.; Patel, P.B.; Choi, H.A.; Li, S.K. Permeability of Buccal Mucosa. Pharmaceutics 2021, 13, 1814. [Google Scholar] [CrossRef]
- Narang, N.; Sharma, J. Sublingual mucosa as a route for systemic drug delivery. Int. J. Pharm. Pharm. Sci. 2011, 3, 18–22. [Google Scholar]
- Twarog, C.; Fattah, S.; Heade, J.; Maher, S.; Fattal, E.; Brayden, D.J. Intestinal Permeation Enhancers for Oral Delivery of Macromolecules: A Comparison between Salcaprozate Sodium (SNAC) and Sodium Caprate (C10). Pharmaceutics 2019, 11, 78. [Google Scholar] [CrossRef] [Green Version]
- Rossi, S.; Sandri, G.; Caramella, C.M. Buccal drug delivery: A challenge already won? Drug Discov. Today Technol. 2005, 2, 59–65. [Google Scholar] [CrossRef]
- Available online: https://www.micromedexsolutions.com/micromedex2/librarian (accessed on 15 October 2022).
- Veuillez, F.; Kalia, Y.N.; Jacques, Y.; Deshusses, J.; Buri, P. Factors and strategies for improving buccal absorption of peptides. Eur. J. Pharm. Biopharm. 2001, 51, 93–109. [Google Scholar] [CrossRef] [PubMed]
- Caon, T.; Jin, L.; Simoes, C.M.; Norton, R.S.; Nicolazzo, J.A. Enhancing the buccal mucosal delivery of peptide and protein therapeutics. Pharm. Res. 2015, 32, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Moghimipour, E.; Ameri, A.; Handali, S. Absorption-Enhancing Effects of Bile Salts. Molecules 2015, 20, 14451–14473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoogstraate, A.J.; Senel, S.; Cullander, C.; Verhoef, J.; Junginger, H.E.; Bodde, H.E. Effects of bile salts on transport rates and routes of FITC-labelled compounds across porcine buccal epithelium in vitro. J. Control. Release 1996, 40, 211–221. [Google Scholar] [CrossRef]
- Senel, S.; Hoogstraate, A.J.; Spies, F.; Verhoef, J.C.; Bos-van Geest, A.; Junginger, H.E.; Boddé, H.E. Enhancement of in vitro permeability of porcine buccal mucosa by bile salts: Kinetic and histological studies. J. Control. Release 1194, 32, 45–56. [Google Scholar] [CrossRef]
- Mahalingam, R.; Ravivarapu, H.; Redkar, S.; Li, X.; Jasti, B.R. Transbuccal delivery of 5-aza-2 -deoxycytidine: Effects of drug concentration, buffer solution, and bile salts on permeation. AAPS PharmSciTech 2007, 8, E55. [Google Scholar] [CrossRef] [Green Version]
- Bekisz, J.; Schmeisser, H.; Pontzer, C.; Zoon, K.C. Interferons: α, β, ω, and τ. In Encyclopedia of Hormones; Henry, H.L., Norman, A.W., Eds.; Academic Press: Cambridge, MA, USA, 2003; pp. 397–405. [Google Scholar]
- Steward, A.; Bayley, D.L.; Howes, C. The Effect of Enhancers on the Buccal Absorption of Hybrid (Bdbb) Alpha-Interferon. Int. J. Pharm. 1994, 104, 145–149. [Google Scholar] [CrossRef]
- Bachmann, M.F.; Jennings, G.T. Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 2010, 10, 787–796. [Google Scholar] [CrossRef]
- Morales, J.O.; McConville, J.T. Novel strategies for the buccal delivery of macromolecules. Drug Dev. Ind. Pharm. 2014, 40, 579–590. [Google Scholar] [CrossRef]
- Turunen, T.M.; Urtti, A.; Paronen, P.; Audus, K.L.; Rytting, J.H. Effect of some penetration enhancers on epithelial membrane lipid domains: Evidence from fluorescence spectroscopy studies. Pharm. Res. 1994, 11, 288–294. [Google Scholar] [CrossRef]
- Krug, S.M.; Amasheh, M.; Dittmann, I.; Christoffel, I.; Fromm, M.; Amasheh, S. Sodium caprate as an enhancer of macromolecule permeation across tricellular tight junctions of intestinal cells. Biomaterials 2013, 34, 275–282. [Google Scholar] [CrossRef]
- Dittmann, I.; Amasheh, M.; Krug, S.M.; Markov, A.G.; Fromm, M.; Amasheh, S. Laurate permeabilizes the paracellular pathway for small molecules in the intestinal epithelial cell model HT-29/B6 via opening the tight junctions by reversible relocation of claudin-5. [Corrected]. Pharm. Res. 2014, 31, 2539–2548. [Google Scholar] [CrossRef]
- Fasano, A. Pathological and Therapeutical Implications of Macromolecule Passage through the Tight Junction. In Tight Junctions; Cereijido, M., Anderson, J., Eds.; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Zuo, L.; Kuo, W.T.; Turner, J.R. Tight Junctions as Targets and Effectors of Mucosal Immune Homeostasis. Cell Mol. Gastroenterol. Hepatol. 2020, 10, 327–340. [Google Scholar] [CrossRef]
- Helmchen, F.; Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2005, 2, 932–940. [Google Scholar] [CrossRef]
Dextran | Enhancer | Administration Mode a | Flux (µg/cm2 h) | Permeability Coefficient × 10−4 (cm/h) | EF | Number of Replicates c |
---|---|---|---|---|---|---|
FD-4 | None | - | 0.06 ± 0.02 | 0.30 ± 0.12 | - | 7 |
C8 | Pre-treatment | 13.36 ± 1.96 *** | 66.78 ± 9.78 | 219 | 5 | |
NaTC | Co-administration | 5.84 ± 1.01 *** | 29.21 ± 5.06 | 96 | 7 | |
FD-20 | None | - | 0.02 ± 0.01 | 0.12 ± 0.09 | - | 6 |
C8 | Pre-treatment | 4.24 ± 0.47 *** | 21.22 ± 2.37 | 171 | 6 | |
C10 | Pre-treatment | 0.13 ± 0.06 | 0.64 ± 0.29 | 5 | 3 | |
C12 | Pre-treatment | 0.39 ± 0.14 | 1.93 ± 0.69 | 16 | 11 | |
NaTC | Co-administration | 1.20 ± 0.21 *** | 5.99 ± 1.34 | 48 | 6 | |
FD-40 | None | - | 0.016 ± 0.003 | 0.08 ± 0.03 | - | 7 |
C8 | Pre-treatment | 1.10 ± 0.07 *** | 5.49 ± 0.35 | 68 | 6 | |
NaTC | Co-administration | 0.8 ± 0.05 ** | 4.00 ± 0.26 | 49 | 11 | |
FD-70 | None | - | n.d. b | - | - | 4 |
C8 | Pre-treatment | 0.80 ± 0.03 | 3.99 ± 0.13 | - | 4 | |
NaTC | Co-administration | 0.46 ± 0.04 | 2.29 ± 0.22 | - | 9 | |
FD-150 | None | - | n.d. b | - | - | 6 |
C8 | Pre-treatment | 0.59 ± 0.06 | 2.95 ± 0.29 | - | 4 | |
NaTC | Co-administration | 0.40 ± 0.03 | 2.01 ± 0.15 | - | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fantini, A.; Giulio, L.; Delledonne, A.; Pescina, S.; Sissa, C.; Nicoli, S.; Santi, P.; Padula, C. Buccal Permeation of Polysaccharide High Molecular Weight Compounds: Effect of Chemical Permeation Enhancers. Pharmaceutics 2023, 15, 129. https://doi.org/10.3390/pharmaceutics15010129
Fantini A, Giulio L, Delledonne A, Pescina S, Sissa C, Nicoli S, Santi P, Padula C. Buccal Permeation of Polysaccharide High Molecular Weight Compounds: Effect of Chemical Permeation Enhancers. Pharmaceutics. 2023; 15(1):129. https://doi.org/10.3390/pharmaceutics15010129
Chicago/Turabian StyleFantini, Adriana, Luca Giulio, Andrea Delledonne, Silvia Pescina, Cristina Sissa, Sara Nicoli, Patrizia Santi, and Cristina Padula. 2023. "Buccal Permeation of Polysaccharide High Molecular Weight Compounds: Effect of Chemical Permeation Enhancers" Pharmaceutics 15, no. 1: 129. https://doi.org/10.3390/pharmaceutics15010129
APA StyleFantini, A., Giulio, L., Delledonne, A., Pescina, S., Sissa, C., Nicoli, S., Santi, P., & Padula, C. (2023). Buccal Permeation of Polysaccharide High Molecular Weight Compounds: Effect of Chemical Permeation Enhancers. Pharmaceutics, 15(1), 129. https://doi.org/10.3390/pharmaceutics15010129