Fe-Based Metal Organic Frameworks (Fe-MOFs) for Bio-Related Applications
Abstract
:1. Introduction
2. Treatment Principles of Fe-MOFs
2.1. Fenton’s-like Reaction Induces Ferroptosis
2.1.1. Ferroptosis Dominated by ROS
2.1.2. Ferroptosis Regulated by Related Proteins
2.2. Chemical Kinetics of Fe-Drug
3. Classification of Fe-Based MOFs
3.1. Fe-Based MIL Series
3.2. Fe-Based PCN Series
3.3. Bimetallic MOFs (Iron Doped)
3.4. Combined MOFs
3.4.1. Mutually Independent Core-Shell Structure
3.4.2. MOF-on-MOF
3.5. Magnetic MOFs Based on Fe3O4/Fe2O3
3.5.1. Fe3O4@MOF
3.5.2. Pyrolytic Derivatives of Fe-MOFs
3.6. Others
3.6.1. Fe-TCPP
3.6.2. Fe-BTC
3.6.3. Fe-soc-MOF
4. Synthesis Method
4.1. Solvothermal Method
4.2. Microwave-Assisted Method
4.3. Ultrasonic-Assisted Method
4.4. One-Pot Method
4.5. Liquid–Solid-Solution (LSS) Method
4.6. Pyrolysis Method
5. Characteristics of Fe-MOFs
5.1. High Safety
5.2. Good Stability
5.3. High Drug-Loading Capacity
5.4. Flexible Structure
6. Surface Modification of Fe-MOFs
6.1. To Enhance Stability
6.2. To increase Biocompatibility and Prolong Blood Circulation
6.3. To Give Slow and Controlled Release Performance
6.4. For Other Purposes
7. Bio-Related Applications of Fe-MOFs
7.1. Chemotherapy
7.1.1. Tumor Therapy
7.1.2. Antibacterial, Antifungal, Antiviral and Anti-Parasitic Therapy
7.1.3. Other Diseases
7.2. Phototherapy
7.2.1. Intrinsic Phototherapy Fe-MOFs
7.2.2. Phototherapy Based on Photosensitizers(PS)
7.3. Immunotherapy
7.4. Biosensor
7.5. Bioimage
7.6. Other Applications
8. Challenges of Fe-MOFs
8.1. The Safety of Fe-MOFs Remains to Be Considered
8.2. The Applications of Fe-MOFs Remains to Be Expanded
8.3. The Synthesis Method of Fe-MOFs Remains to Be Optimized
8.4. The Research on New Fe-MOFs Must Be Deepened
8.5. The Therapeutic Mechanisms of Fe-MOFs Remain to Be Further Studied
9. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Yaghi, O.; Li, G.; Li, H. Selective binding and removal of guests in a microporous metal–organic frame-work. Nature 1995, 378, 703–706. [Google Scholar] [CrossRef]
- Lee, G.; Yoo, D.K.; Ahmed, I.; Lee, H.J.; Jhung, S.H. Metal-organic frameworks composed of nitro groups: Preparation and applications in adsorption and catalysis. Chem. Eng. J. 2023, 451, 138538. [Google Scholar] [CrossRef]
- Ma, D.; Huang, X.; Zhang, Y.; Wang, L.; Wang, B. Metal-organic frameworks: Synthetic methods for industrial production. Nano Res. 2023, 5441. [Google Scholar] [CrossRef]
- Giménez-Marqués, M.; Hidalgo, T.; Serre, C.; Horcajada, P. Nanostructured metal–organic frameworks and their bio-related applications. Coord. Chem. Rev. 2015, 307, 342–360. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y. Metal-Organic Frameworks for Biomedical Applications. Small 2020, 16, e1906846. [Google Scholar] [CrossRef]
- Taylor-Pashow, K.; Della Rocca, J.; Xie, Z.; Tran, S.; Lin, W. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 2009, 131, 14261–14263. [Google Scholar] [CrossRef]
- Cui, R.; Zhao, P.; Yan, Y.; Bao, G.; Damirin, A.; Liu, Z. Outstanding Drug-Loading/Release Capacity of Hollow Fe-Metal-Organic Framework-Based Microcapsules: A Potential Multifunctional Drug-Delivery Platform. Inorg. Chem. 2021, 60, 1664–1671. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wu, H.; Sun, K. A novel pH-responsive Fe-MOF system for enhanced cancer treatment mediated by the Fenton reaction. New J. Chem. 2021, 45, 3271–3279. [Google Scholar] [CrossRef]
- Alshorifi, F.; El Dafrawy, S.; Ahmed, A. Fe/Co-MOF Nanocatalysts: Greener Chemistry Approach for the Removal of Toxic Metals and Catalytic Applications. ACS Omega 2022, 7, 23421–23444. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, W.; Rao, C.; Li, B.; Wang, X.; Liu, D.; Pan, Y.; Liu, J. Recent Advances in Fe-MOF Compositions for Biomedical Applications. Curr. Med. Chem. 2021, 28, 6179–6198. [Google Scholar] [CrossRef]
- Hassannia, B.; Vandenabeele, P.; Vanden Berghe, T. Targeting Ferroptosis to Iron Out Cancer. Cancer Cell 2019, 35, 830–849. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Zhang, Y.; Xie, X. Mechanism of Ferroptosis and Its Regulatory Role in Idiopathic Pulmonary Fibrosis: A Review. Pharmacol. Clin. Chin. Mater. Med. 2023, 1–11. [Google Scholar]
- Xu, P.; Chen, B.; Kankala, R. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy. Chem. Ind. Eng. Prog. 2022, 1–12. [Google Scholar]
- Xu, X.; Chen, Y.; Zhang, Y.; Yao, Y.; Ji, P. Highly stable and biocompatible hyaluronic acid-rehabilitated nanoscale MOF-Fe2+ induced ferroptosis in breast cancer cells. J. Mater. Chem. B 2020, 8, 9129–9138. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, Y.; Chi, B.; Lin, C.; Tian, F.; Xu, M.; Wang, Y.; Xu, Z.; Li, L.; Wang, J. Synthesis of ‘dual-key-and-lock’ drug carriers for imaging and improved drug release. Nanotechnology 2020, 31, 445102. [Google Scholar] [CrossRef]
- Zhong, H. Design and Synthesis of Iron-Based MOF Nanocomposites and Their Applications in Cancer Therapy; Shandong Normal University: Jinan, China, 2019. [Google Scholar]
- Zhao, X.; Zhang, N.; Yang, T.; Liu, D.; Jing, X.; Wang, D.; Yang, Z.; Xie, Y.; Meng, L. Bimetallic Metal-Organic Frameworks: Enhanced Peroxidase-like Activities for the Self-Activated Cascade Reaction. ACS Appl. Mater. Interfaces 2021, 13, 36106–36116. [Google Scholar] [CrossRef]
- Wan, X.; Song, L.; Pan, W.; Zhong, H.; Li, N.; Tang, B. Tumor-Targeted Cascade Nanoreactor Based on Metal-Organic Frameworks for Synergistic Ferroptosis-Starvation Anticancer Therapy. ACS Nano 2020, 14, 11017–11028. [Google Scholar] [CrossRef]
- Hu, C.; Wang, J.; Liu, S.; Cai, L.; Zhou, Y.; Liu, X.; Wang, M.; Liu, Z.; Pang, M. Urchin-Shaped Metal Organic/Hydrogen-Bonded Framework Nanocomposite as a Multifunctional Nanoreactor for Catalysis-Enhanced Synergetic Therapy. ACS Appl. Mater. Interfaces 2021, 13, 4825–4834. [Google Scholar] [CrossRef]
- He, H.; Du, L.; Guo, H. Redox Responsive Metal Organic Framework Nanoparticles Induces Ferroptosis for Cancer Therapy. Small 2020, 16, e2001251. [Google Scholar] [CrossRef]
- Li, K.; Lin, C.; Li, M. Multienzyme-like Reactivity Cooperatively Impairs Glutathione Peroxidase 4 and Ferroptosis Suppressor Protein 1 Pathways in Triple-Negative Breast Cancer for Sensitized Ferroptosis Therapy. ACS Nano 2022, 16, 2381–2398. [Google Scholar] [CrossRef]
- Ji, P.; Wang, L.; Wang, S.; Zhang, Y.; Qi, X.; Tao, J.; Wu, Z. Hyaluronic acid-coated metal-organic frameworks benefit the ROS-mediated apoptosis and amplified anticancer activity of artesunate. J. Drug Target. 2020, 28, 1096–1109. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Hu, M. Quercetin Promotes TFEB Nuclear Translocation and Activates Lysosomal Degradation of Ferritin to Induce Ferroptosis in Breast Cancer Cells. Comput. Intell. Neurosci. 2022, 2022, 5299218. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Yang, A.; Chen, X. Effect of Huaier aqueous extract on growth and metastasis of human non-small cell lung cancer NCI-H1299 cells and its underlying mechanisms. China J. Chin. Mater. Med. 2020, 45, 3700–3706. [Google Scholar]
- Xu, W.; Li, C.; Jiang, T. Ferroptosis pathway and its intervention regulated by Chinese materia medica. China J. Chin. Mater. Med. 2018, 43, 4019–4026. [Google Scholar]
- Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J.; Heurtaux, D.; Clayette, P.; Kreuz, C.; et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Riou-Cavellec, M.; Lesaint, C.; Noguès, M.; Grenèche, J.; Férey, G. Synthesis, structure, and Mössbauer study of [Fe(H2O)(2)(C(9)O(6)H4)].H2O: A two-dimensional iron(II) trimellitate (MIL-67). Inorg. Chem. 2003, 42, 5669–5674. [Google Scholar] [CrossRef] [PubMed]
- Wezendonk, T.; Warringa, Q.; Santos, V.; Chojecki, A.; Ruitenbeek, M.; Meima, G.; Makkee, M.; Kapteijn, F.; Gascon, J. Structural and elemental influence from various MOFs on the performance of Fe@C catalysts for Fischer-Tropsch synthesis. Faraday Discuss. 2017, 197, 225–242. [Google Scholar] [CrossRef]
- Lu, Z. Based on Fe-MOFs (MIL-68 and MIL-53) to Construct Highly Effective Fenton-like AOPs for Degrading Organic Pollutants in Water. Master’s Thesis, Northwest University, Xi’an, China, 2021. [Google Scholar]
- Zhao, D.; Liu, J.; Zhang, L.; Zhou, Y.; Zhong, Y.; Yang, Y.; Huang, C.; Wang, Y. Loading and Sustained Release of Pralidoxime Chloride from Swellable MIL-88B(Fe) and Its Therapeutic Performance on Mice Poisoned by Neurotoxic Agents. Inorg. Chem. 2022, 61, 1512–1520. [Google Scholar] [CrossRef]
- Dawood, S.; Shaji, S.; Pathiraja, G.; Mo, Y.; Rathnayake, H. Molecular magnetism in nanodomains of isoreticular MIL-88(Fe)-MOFs. Phys. Chem. Chem. Phys. PCCP 2021, 23, 21677–21689. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, J.; Zhu, X.; Li, J.; Wu, D. 7-Connected FeIII3-Based Bio-MOF: Pore Space Partition and Gas Separations. Inorg. Chem. 2020, 59, 16829–16832. [Google Scholar] [CrossRef]
- Hu, Z. Fabrication and Sensing Properties of Metal-Organic Frameworks Photonic Film. Master’s Thesis, School of National University of Defense Technology, Changsha, China, 2014. [Google Scholar]
- Cutrone, G.; Li, X.; Casas-Solvas, J.; Menendez-Miranda, M.; Qiu, J.; Benkovics, G.; Constantin, D.; Malanga, M.; Moreira-Alvarez, B.; Costa-Fernandez, J.; et al. Design of Engineered Cyclodextrin Derivatives for Spontaneous Coating of Highly Porous Metal-Organic Framework Nanoparticles in Aqueous Media. Nanomaterials 2019, 9, 1103. [Google Scholar] [CrossRef] [PubMed]
- Botet-Carreras, A.; Tamames-Tabar, C.; Salles, F.; Rojas, S.; Imbuluzqueta, E.; Lana, H.; Blanco-Prieto, M.; Horcajada, P. Improving the genistein oral bioavailability via its formulation into the metal-organic framework MIL-100(Fe). J. Mater. Chem. B 2021, 9, 2233–2239. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Jia, X.; Zhen, W.; Zhang, M.; Jiang, X. Small-Sized MOF-Constructed Multifunctional Diagnosis and Therapy Platform for Tumor. ACS Biomater. Sci. Eng. 2019, 5, 4435–4441. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wan, D.; Wang, Y. Study on C3H8/C3H6 reverse adsorption and separation performance of metal-organic framework MIL-126(Fe). J. Taiyuan Univ. Technol. 2022, volume, 1–14. [Google Scholar]
- Denise, C.; Mouna, B.; Shaun, H.; Stuart, R.; Hubert, C.; Erik, E.; Guillaume, M.; Patricia, H.; Serre, C. Rationale of drug encapsulation and release from biocompatible porous metal–organic frameworks. Chem. Mater. 2013, 25, 2767–2776. [Google Scholar]
- Sarker, M.; Shin, S.; Jeong, J.H.; Jhung, S.H. Mesoporous metal-organic framework PCN-222(Fe): Promising adsorbent for removal of big anionic and cationic dyes from water. Chem. Eng. J. 2019, 371, 252–259. [Google Scholar] [CrossRef]
- Usov, P.; Huffman, B.; Epley, C.; Kessinger, M.; Zhu, J.; Maza, W.; Morris, A. Study of Electrocatalytic Properties of Metal-Organic Framework PCN-223 for the Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2017, 9, 33539–33543. [Google Scholar] [CrossRef]
- Chen, Y.; Qiao, Z.; Huang, J.; Wu, H.; Xiao, J.; Xia, Q.; Xi, H.; Hu, J.; Zhou, J.; Li, Z. Unusual Moisture-Enhanced CO2 Capture within Microporous PCN-250 Frameworks. ACS Appl. Mater. Interfaces 2018, 10, 38638–38647. [Google Scholar] [CrossRef]
- Yang, C.; Jiang, Z.; Wu, Q.; Hu, C.; Huang, C.; Li, Y.; Zhen, S. One-component nano-metal-organic frameworks with superior multienzyme-mimic activities for 1,4-dihydropyridine metabolism. J. Colloid Interface Sci. 2022, 605, 214–222. [Google Scholar] [CrossRef]
- Jia, M.; Zhu, Y.; Guo, D.; Bi, X.; Hou, X. Surface molecularly imprinted polymer based on core-shell Fe3O4@MIL-101(Cr) for selective extraction of phenytoin sodium in plasma. Anal. Chim. Acta 2020, 1128, 211–220. [Google Scholar] [CrossRef]
- Yu, S.; Wan, J.; Chen, K. A facile synthesis of superparamagnetic Fe3O4 supraparticles@MIL-100(Fe) core-shell nanostructures: Preparation, characterization and biocompatibility. J. Colloid Interface Sci. 2016, 461, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Qian, G.; Zhang, L.; Li, X.; Shuai, C.; Wang, X. Construction of Fe3O4-Loaded Mesoporous Carbon Systems for Controlled Drug Delivery. ACS Appl. Bio Mater. 2021, 4, 5304–5311. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, Q.; Li, Y.; Zhang, X.; Huang, Y. 2D bimetallic Ni/Fe MOF nanosheet composites as a peroxidase-like nanozyme for colorimetric assay of multiple targets. Anal. Methods Adv. Methods Appl. 2021, 13, 2066–2074. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Hu, M.; Li, Z.; He, L.; Song, Y.; Jia, Q.; Zhang, Z.; Du, M. Construction of Tb-MOF-on-Fe-MOF conjugate as a novel platform for ultrasensitive detection of carbohydrate antigen 125 and living cancer cells. Biosens. Bioelectron. 2019, 142, 111536. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, X.; Zhang, A.; Liao, C. Preparation of Fe-Co based MOF-74 and its effective adsorption of arsenic from aqueous solution. J. Environ. Sci. 2019, 80, 197–207. [Google Scholar] [CrossRef]
- Palanisamy, S.; Senthil Raja, D.; Subramani, B.; Wu, T.; Wang, Y. Label-Free Bimetallic In Situ-Grown 3D Nickel-Foam-Supported NH2-MIL-88B(Fe2Co)-MOF-based Impedimetric Immunosensor for the Detection of Cardiac Troponin I. ACS Appl. Mater. Interfaces 2020, 12, 32468–32476. [Google Scholar] [CrossRef]
- Lin, C.; Chi, B.; Xu, C.; Zhang, C.; Tian, F.; Xu, Z.; Li, L.; Whittaker, A.; Wang, J. Multifunctional drug carrier on the basis of 3d-4f Fe/La-MOFs for drug delivery and dual-mode imaging. J. Mater. Chem. B 2019, 7, 6612–6622. [Google Scholar] [CrossRef]
- Wang, B. Tumor Microenvironment Responsive Porphyrin- Metal Coordination Polymers Nanoparticles: Synthesis and their Application in Tumor Thersnostics; Nanjing University of Posts and Telecommunications: Nanjing, China, 2021. [Google Scholar]
- Hu, X.; Lou, X.; Li, C.; Ning, Y.; Liao, Y.; Chen, Q.; Mananga, E.; Shen, M.; Hu, B. Facile synthesis of the Basolite F300-like Nanoscale Fe-BTC Framework and its Lithium Storage Properties. RSC Adv. 2016, 6, 114483–114490. [Google Scholar] [CrossRef]
- Fan, G.; Dundas, C.; Zhang, C.; Lynd, N.; Keitz, B. Sequence-Dependent Peptide Surface Functionalization of Metal-Organic Frameworks. ACS Appl. Mater. Interfaces 2018, 10, 18601–18609. [Google Scholar] [CrossRef]
- Cai, X.; Liu, B.; Pang, M.; Lin, J. Interfacially synthesized Fe-soc-MOF nanoparticles combined with ICG for photothermal/photodynamic therapy. Dalton Trans. 2018, 47, 16329–16336. [Google Scholar] [CrossRef]
- Levine, D.; Runčevski, T.; Kapelewski, M.; Keitz, B.; Oktawiec, J.; Reed, D.; Mason, J.; Jiang, H.; Colwell, K.; Legendre, C.; et al. Olsalazine-Based Metal-Organic Frameworks as Biocompatible Platforms for H2 Adsorption and Drug Delivery. J. Am. Chem. Soc. 2016, 138, 10143–10150. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Liu, D.; Yang, Q. Structure-Activity Relationship and Design of Metal-Organic Frameworks Materials; Science Press: Beijing, China, 2014; pp. 8–9. [Google Scholar]
- Liu, X.; Liang, T.; Zhang, R.; Ding, Q.; Wu, S.; Li, C.; Lin, Y.; Ye, Y.; Zhong, Z.; Zhou, M. Iron-Based Metal-Organic Frameworks in Drug Delivery and Biomedicine. ACS Appl. Mater. Interfaces 2021, 13, 9643–9655. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Kang, R.; Xia, J.; Yu, G.; Deng, S. Understanding the adsorption of sulfonamide antibiotics on MIL-53s: Metal dependence of breathing effect and adsorptive performance in aqueous solution. J. Colloid Interface Sci. 2019, 535, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Leng, X.; Dong, X.; Wang, W.; Sa, N.; Yang, C.; You, L.; Huang, H.; Yin, X.; Ni, J. Biocompatible Fe-Based Micropore Metal-Organic Frameworks as Sustained-Release Anticancer Drug Carriers. Molecules 2018, 23, 2490. [Google Scholar] [CrossRef]
- Im, S.; Park, C.; Huh, B.; Lee, S.; Min, C.; Lee, Y.; Kim, Y.; Park, K.; Choy, Y. Metal-organic frameworks, NH2-MIL-88(Fe), as carriers for ophthalmic delivery of brimonidine. Acta Biomater. 2018, 79, 344–353. [Google Scholar]
- Simon, M.; Anggraeni, E.; Soetaredjo, F.; Santoso, S.; Irawaty, W.; Thanh, T.; Hartono, S.; Yuliana, M.; Ismadji, S. Hydrothermal Synthesize of HF-Free MIL-100(Fe) for Isoniazid-Drug Delivery. Sci. Rep. 2019, 9, 16907. [Google Scholar] [CrossRef]
- Nikam, A.; Pandey, A.; Nannuri, S.; Fernandes, G.; Kulkarni, S.; Padya, B.; Birangal, S.; Shenoy, G.; George, S.; Mutalik, S. Hyaluronic Acid-Protein Conjugate Modified Iron-Based MOFs (MIL-101 (Fe)) for Efficient Therapy of Neuroblastoma: Molecular Simulation, Stability and Toxicity Studies. Crystals 2022, 12, 1484. [Google Scholar] [CrossRef]
- Serre, C.; Surblé, S.; Mellot-Draznieks, C.; Filinchuk, Y.; Férey, G. Evidence of flexibility in the nanoporous iron(iii) carboxylate MIL-89. Dalton Trans. 2008, 40, 5462–5464. [Google Scholar] [CrossRef]
- Mohamed, N.; Davies, R.; Lickiss, P.; Ahmetaj-Shala, B.; Reed, D.; Gashaw, H.; Saleem, H.; Freeman, G.; George, P.; Wort, S.; et al. Chemical and biological assessment of metal organic frameworks (MOFs) in pulmonary cells and in an acute in vivo model: Relevance to pulmonary arterial hypertension therapy. Pulm. Circ. 2017, 7, 643–653. [Google Scholar] [CrossRef]
- Pongsajanukul, P.; Parasuk, V.; Chokbunpiam, T. Theoretical study of carbon dioxide adsorption and diffusion in MIL-127(Fe) Metal Organic Framework. Chem. Phys. 2017, 491, 118–125. [Google Scholar] [CrossRef]
- Feng, D.; Wang, K.; Wei, Z.; Chen, Y.; Simon, C.; Arvapally, R.; Martin, R.; Bosch, M.; Liu, T.; Fordham, S.; et al. Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal-organic frameworks. Nat. Commun. 2014, 5, 5723. [Google Scholar] [CrossRef] [PubMed]
- Surblé, S.; Serre, C.; Mellot-Draznieks, C.; Millange, F.; Férey, G. A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. Chem. Commun. 2006, 3, 284–286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Gao, Y.; Sheng, K.; Xu, X.; Jing, W.; Bao, T.; Wang, S. Ferric iron loaded porphyrinic zirconium MOFs on corncob for the enhancement of diuretics extraction. Chemosphere 2022, 301, 134694. [Google Scholar] [CrossRef]
- Gan, L.; Wang, L.; Xu, L.; Fang, X.; Pei, C.; Wu, Y.; Lu, H.; Han, S.; Cui, J.; Shi, J.; et al. Fe3C-porous carbon derived from Fe2O3 loaded MOF-74(Zn) for the removal of high concentration BPA: The integrations of adsorptive/catalytic synergies and radical/non-radical mechanisms. J. Hazard. Mater. 2021, 413, 125305. [Google Scholar] [CrossRef]
- Cai, X.; Deng, X.; Xie, Z.; Shi, Y.; Pang, M.; Lin, J. Controllable synthesis of highly monodispersed nanoscale Fe-soc-MOF and the construction of Fe-soc-MOF@Polypyrrole core-shell nanohybrids for cancer therapy. Chem. Eng. J. 2018, 358, 369–378. [Google Scholar] [CrossRef]
- Kim, D.; Lee, G.; Oh, S.; Oh, M. Unbalanced MOF-on-MOF growth for the production of a lopsided core-shell of MIL-88B@MIL-88A with mismatched cell parameters. Chem. Commun. 2018, 55, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Omolbanin, A.; Fatemeh, A.; Svetlana, D.; Narendra, P.; Ghasem, S. An efficient ultrasonic assisted reverse micelle synthesis route for Fe3O4@Cu-MOF/core-shell nanostructures and its antibacterial activities. J. Solid State Chem. 2021, 294, 121897. [Google Scholar]
- Isazad, M.; Amirzehni, M.; Akhgari, M. Highly efficient dispersive liquid-liquid microextraction assisted by magnetic porous carbon composite-based dispersive micro solid-phase extraction for determination of tramadol and methadone in urine samples by gas chromatography-mass spectrometry. J. Chromatogr. A 2022, 1670, 462989. [Google Scholar] [CrossRef]
- Yang, C. The Copper and Iron-Based Metal-Organic Framewoks as Enzyme-Mimics and Their Analytical Application; Southwest University: Chongqing, China, 2021. [Google Scholar]
- Bikiaris, N.; Ainali, N.; Christodoulou, E.; Kostoglou, M.; Kehagias, T.; Papasouli, E.; Koukaras, E.; Nanaki, S. Dissolution Enhancement and Controlled Release of Paclitaxel Drug via a Hybrid Nanocarrier Based on mPEG-PCL Amphiphilic Copolymer and Fe-BTC Porous Metal-Organic Framework. Nanomaterials 2020, 10, 2490. [Google Scholar] [CrossRef]
- Yu, G.; Song, X.; Zheng, S.; Zhao, Q.; Yang, D.; Zhao, J. A facile and sensitive tetrabromobisphenol-a sensor based on biomimetic catalysis of a metal-organic framework: PCN-222(Fe). Anal. Methods 2018, 10, 4275–4281. [Google Scholar] [CrossRef]
- Ahmadi, M.; Ayyoubzadeh, S.; Ghorbani-Bidkorbeh, F.; Shahhosseini, S.; Dadashzadeh, S.; Asadian, E.; Mosayebnia, M.; Siavashy, S. An investigation of affecting factors on MOF characteristics for biomedical applications: A systematic review. Heliyon 2021, 7, e06914. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Yang, X.; Chen, J. A novel route to size-controlled MIL-53(Fe) metal-organic frameworks for combined chemodynamic therapy and chemotherapy for cancer. RSC Adv. 2021, 11, 10540–10547. [Google Scholar] [CrossRef]
- Ennas, G.; Gedanken, A.; Mannias, G.; Kumar, V.; Scano, A.; Porat, Z. Formation of iron (iii) trimesate xerogel by ultrasonic irradiation. Eur. J. Inorg. Chem. 2022, 2022, e202101082. [Google Scholar] [CrossRef]
- Zhang, X.; Peng, F.; Wang, D. MOFs and MOF-Derived Materials for Antibacterial Application. J. Funct. Biomater. 2022, 13, 215. [Google Scholar] [CrossRef]
- Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Leng, X.; Luo, J.; You, L.; Qu, C.; Dong, X.; Huang, H.; Yin, X.; Ni, J. In Vitro Toxicity Study of a Porous Iron(III) Metal—Organic Framework. Molecules 2019, 24, 1211. [Google Scholar] [CrossRef]
- Tamames-Tabar, C.; Cunha, D.; Imbuluzqueta, E.; Ragon, F.; Serre, C.; Blanco-Prieto, M.; Horcajada, P. Cytotoxicity of nanoscaled metal-organic frameworks. J. Mater. Chem. B 2014, 2, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Grall, R.; Hidalgo, T.; Delic, J.; Garcia-Marquez, A.; Chevillard, S.; Horcajada, P. In vitro biocompatibility of mesoporous metal (III.; Fe, Al, Cr) trimesate MOF nanocarriers. J. Mater. Chem. B 2015, 3, 8279–8292. [Google Scholar] [CrossRef]
- Wang, J.; Chen, D.; Li, B.; He, J.; Duan, D.; Shao, D.; Nie, M. Fe-MIL-101 exhibits selective cytotoxicity and inhibition of angiogenesis in ovarian cancer cells via downregulation of MMP. Sci. Rep. 2016, 6, 26126. [Google Scholar] [CrossRef]
- Mckinlay, A.; Eubank, J.; Wuttke, S.; Xiao, B.; Morris, R. Nitric oxide adsorption and delivery in flexible MIL-88(Fe) metal–organic frameworks. Chem. Mater. 2013, 25, 1592–1599. [Google Scholar] [CrossRef]
- Durymanov, M.; Permyakova, A.; Sene, S.; Guo, A.; Kroll, C.; Giménez-Marqués, M.; Serre, C.; Reineke, J. Cellular Uptake, Intracellular Trafficking, and Stability of Biocompatible Metal-Organic Framework (MOF) Particles in Kupffer Cells. Mol. Pharm. 2019, 16, 2315–2325. [Google Scholar] [CrossRef] [PubMed]
- Karimi Alavijeh, R.; Akhbari, K. Biocompatible MIL-101(Fe) as a Smart Carrier with High Loading Potential and Sustained Release of Curcumin. Inorg. Chem. 2020, 59, 3570–3578. [Google Scholar] [CrossRef]
- Pham, H.; Ramos, K.; Sua, A.; Acuna, J.; Slowinska, K.; Nguyen, T.; Bui, A.; Weber, M.; Tian, F. Tuning Crystal Structures of Iron-Based Metal-Organic Frameworks for Drug Delivery Applications. ACS Omega 2020, 5, 3418–3427. [Google Scholar] [CrossRef] [PubMed]
- Nouar, F.; Devic, T.; Chevreau, H.; Guillou, N.; Gibson, E.; Clet, G.; Daturi, M.; Vimont, A.; Grenèche, J.; Breeze, M.; et al. Tuning the breathing behaviour of MIL-53 by cation mixing. Chem. Commun. 2012, 48, 10237–10239. [Google Scholar] [CrossRef] [PubMed]
- Zimpel, A.; Preiss, T.; Roder, R.; Engelke, H.; Ingrisch, M.; Peller, M.; Radler, J.O.; Wagner, E.; Bein, T.; Lachelt, U.; et al. Imparting Functionality to MOF Nanoparticles by External Surface Selective Covalent Attachment of Polymers. Chem. Mater. 2016, 28, 3318–3326. [Google Scholar] [CrossRef]
- Ding, S.; Wan, J.; Ma, Y.; Wang, Y.; Pu, M.; Li, X.; Sun, J. Water stable SiO2-coated Fe-MOF-74 for aqueous dimethyl phthalate degradation in PS activated medium. J. Hazard. Mater. 2021, 411, 125194. [Google Scholar] [CrossRef]
- Pooresmaeil, M.; Namazi, H. Facile preparation of pH-sensitive chitosan microspheres for delivery of curcumin; characterization, drug release kinetics and evaluation of anticancer activity. Int. J. Biol. Macromol. 2020, 162, 501–511. [Google Scholar] [CrossRef]
- Fang, Z.; Yang, E.; Du, Y.; Gao, D.; Wu, G.; Zhang, Y.; Shen, Y. Biomimetic smart nanoplatform for dual imaging-guided synergistic cancer therapy. J. Mater. Chem. B 2022, 10, 966–976. [Google Scholar] [CrossRef]
- Barjasteh, M.; Vossoughi, M.; Bagherzadeh, M.; Pooshang Bagheri, K. Green synthesis of PEG-coated MIL-100(Fe) for controlled release of dacarbazine and its anticancer potential against human melanoma cells. Int. J. Pharm. 2022, 618, 121647. [Google Scholar] [CrossRef]
- Yang, Y.; Xia, F.; Yang, Y.; Gong, B.; Xie, A.; Shen, Y.; Zhu, M. Litchi-like Fe3O4@Fe-MOF capped with HAp gatekeepers for pH-triggered drug release and anticancer effect. J. Mater. Chem. B 2017, 5, 8600–8606. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, S.; He, L.; Feng, X. A brief review of polysialic acid-based drug delivery systems. Int. J. Biol. Macromol. 2023, 230, 123151. [Google Scholar] [CrossRef]
- Shakil, M.S.; Bhuiya, M.S.; Morshed, M.R. Cobalt Ferrite Nanoparticle’s Safety in Biomedical and Agricultural Applications: A Review of Recent Progress. Curr. Med. Chem. 2023, 30, 1756–1775. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, W.; Zhao, L. Multifunctional AIE Nanosphere-Based “Nanobomb” for Trimodal Imaging-Guided Photothermal/Photodynamic/Pharmacological Therapy of Drug-Resistant Bacterial Infections. ACS Nano 2023, 17, 4601–4618. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; et al. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. 2022, 135, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Gu, N.; Zhao, D.; Gao, J. Preparation of sustained drug delivery system by loading levamisole with MIL-101(Fe). Mod. Chem. Ind. 2022, 42, 196–201. [Google Scholar]
- Zhou, J.; Wang, K.; Ding, S.; Zeng, L.; Miao, J.; Cao, Y.; Zhang, X.; Tian, G.; Bian, X. Anti-VEGFR2-labeled enzyme-immobilized metal-organic frameworks for tumor vasculature targeted catalytic therapy. Acta Biomater. 2022, 141, 364–373. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, M.; Zheng, W.; Xu, T.; Deng, H.; Liu, J. Se/Ru-Decorated Porous Metal-Organic Framework Nanoparticles for The Delivery of Pooled siRNAs to Reversing Multidrug Resistance in Taxol-Resistant Breast Cancer Cells. ACS Appl. Mater. Interfaces 2017, 9, 6712–6724. [Google Scholar] [CrossRef]
- Zeng, X.; Chen, B.; Song, Y.; Lin, X.; Zhou, S.; Zhan, G. Fabrication of Versatile Hollow Metal-Organic Framework Nanoplatforms for Folate-Targeted and Combined Cancer Imaging and Therapy. ACS Appl. Bio Mater. 2021, 4, 6417–6429. [Google Scholar] [CrossRef]
- Yao, Y.; Jin, Y.; Jia, X.; Yang, Y. Construction of Hyaluronic Acid-Covered Hierarchically Porous MIL-nanoMOF for Loading and Controlled Release of Doxorubicin. Chemistry 2021, 27, 2987–2992. [Google Scholar] [CrossRef]
- Nejadshafiee, V.; Naeimi, H.; Goliaei, B.; Bigdeli, B.; Sadighi, A.; Dehghani, S.; Lotfabadi, A.; Hosseini, M.; Nezamtaheri, M.; Amanlou, M.; et al. Magnetic bio-metal-organic framework nanocomposites decorated with folic acid conjugated chitosan as a promising biocompatible targeted theranostic system for cancer treatment. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 805–815. [Google Scholar] [CrossRef]
- Xu, M.; Li, X.; Zheng, H.; Chen, J.; Ye, X.; Liu, T. Anti-Influenza Virus Study of Composite Material with MIL-101(Fe)-Adsorbed Favipiravir. Molecules 2022, 27, 2288. [Google Scholar] [CrossRef]
- Li, Y.; Yu, C.; Yang, B.; Liu, Z.; Xia, P.; Wang, Q. Target-catalyzed hairpin assembly and metal-organic frameworks mediated nonenzymatic co-reaction for multiple signal amplification detection of miR-122 in human serum. Biosens. Bioelectron. 2018, 102, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Liu, Y.; Wang, J.; Jiang, Q.; She, D.; Guo, H.; Sun, N.; Pang, Z.; Deng, C.; Yang, W.; et al. On-demand CO release for amplification of chemotherapy by MOF functionalized magnetic carbon nanoparticles with NIR irradiation. Biomaterials 2019, 195, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, Q.; Wu, J.; Kirk, T.; Xu, J.; Liu, Z.; Xue, W. Reduction-Responsive Codelivery System Based on a Metal-Organic Framework for Eliciting Potent Cellular Immune Response. ACS Appl. Mater. Interfaces 2018, 10, 12463–12473. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, N.; Zhang, C.; Meng, Z. Metal-Organic Framework as a Microreactor for in Situ Fabrication of Multifunctional Nanocomposites for Photothermal-Chemotherapy of Tumors in Vivo. ACS Appl. Mater. Interfaces 2018, 10, 38729–38738. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Qu, X.; Zhao, Y.; Weng, Y.; Waterhouse, G.; Yan, H.; Guan, S.; Zhou, S. Exploiting Single Atom Iron Centers in a Porphyrin-like MOF for Efficient Cancer Phototherapy. ACS Appl. Mater. Interfaces 2019, 11, 35228–35237. [Google Scholar] [CrossRef]
- Golmohamadpour, A.; Bahramian, B.; Khoobi, M.; Pourhajibagher, M.; Barikani, H.; Bahador, A. Antimicrobial photodynamic therapy assessment of three indocyanine green-loaded metal-organic frameworks against Enterococcus faecalis. Photodiagnosis Photodyn. Ther. 2018, 23, 331–338. [Google Scholar] [CrossRef]
- Guo, A.; Durymanov, M.; Permyakova, A.; Sene, S.; Serre, C.; Reineke, J. Metal Organic Framework (MOF) Particles as Potential Bacteria-Mimicking Delivery Systems for Infectious Diseases: Characterization and Cellular Internalization in Alveolar Macrophages. Pharm. Res. 2019, 36, 53. [Google Scholar] [CrossRef]
- Darvishi, S.; Javanbakht, S.; Heydari, A.; Kazeminava, F.; Gholizadeh, P.; Mahdipour, M.; Shaabani., A. Ultrasound-assisted synthesis of MIL-88(Fe) coordinated to carboxymethyl cellulose fibers: A safe carrier for highly sustained release of tetracycline. Int. J. Biol. Macromol. 2021, 181, 937–944. [Google Scholar] [CrossRef]
- Liu, X.; Yan, Z.; Zhang, Y.; Liu, Z.; Sun, Y.; Ren, J.; Qu, X. Two-Dimensional Metal-Organic Framework/Enzyme Hybrid Nanocatalyst as a Benign and Self-Activated Cascade Reagent for in Vivo Wound Healing. ACS Nano 2019, 13, 5222–5230. [Google Scholar] [CrossRef]
- Chung, C.; Liao, B.; Huang, S.; Chiou, S.; Chang, C.; Lin, S.; Chen, B.; Liu, W.; Hu, S.; Chuang, Y.; et al. Magnetic Responsive Release of Nitric Oxide from an MOF-Derived Fe3O4@PLGA Microsphere for the Treatment of Bacteria-Infected Cutaneous Wound. ACS Appl. Mater. Interfaces 2022, 14, 6343–6357. [Google Scholar] [CrossRef] [PubMed]
- Pourmadadi, M.; Ostovar, S.; Eshaghi, M.M.; Rajabzadeh-Khosroshahi, M.; Safakhah, S.; Ghotekar, S.; Rahdar, A.; Diez-Pascual, A.M. Nanoscale metallic-organic frameworks as an advanced tool for medical applications: Challenges and recent progress. Appl. Organomet. Chem. 2023, 37, e6982. [Google Scholar] [CrossRef]
- Abazari, R.; Mahjoub, A.; Molaie, S.; Ghaffarifar, F.; Ghasemi, E.; Slawin, A.; Carpenter-Warren, C. The effect of different parameters under ultrasound irradiation for synthesis of new nanostructured Fe3O4@bio-MOF as an efficient anti-leishmanial in vitro and in vivo conditions. Ultrason. Sonochemistry 2018, 43, 248–261. [Google Scholar] [CrossRef] [PubMed]
- El-Shafey, A.; Hegab, M.; Seliem, M.; Barakat, A.; Mostafa, N.; Abdel-Maksoud, H.; Abdelhameed. R. Curcumin@metal organic frameworks nano-composite for treatment of chronic toxoplasmosis. Journal of materials science. Mater. Med. 2020, 31, 90. [Google Scholar] [CrossRef] [PubMed]
- Wyszogrodzka, G.; Dorożyński, P.; Gil, B.; Roth, W.; Strzempek, M.; Marszałek, B.; Węglarz, W.P.; Menaszek, E.; Strzempek, W.; Kulinowski, P. Iron-Based Metal-Organic Frameworks as a Theranostic Carrier for Local Tuberculosis Therapy. Pharm. Res. 2018, 35, 144. [Google Scholar] [CrossRef]
- Pinna, A.; Ricco, R.; Migheli, R.; Rocchitta, G.; Serra, P.; Falcaro, P.; Malfatti, L.; Innocenzi, P. A MOF-based carrier for in situ dopamine delivery. RSC Adv. 2018, 8, 25664–25672. [Google Scholar] [CrossRef]
- Taherzade, S.; Rojas, S.; Soleimannejad, J.; Horcajada, P. Combined Cutaneous Therapy Using Biocompatible Metal-Organic Frameworks. Nanomaterials 2020, 10, 2296. [Google Scholar] [CrossRef]
- Zheng, Q.; Liu, X.; Zheng, Y.; Yeung, K.; Cui, Z.; Lian, Y.; Li, Z.; Zhu, S.; Wang, X.; Wu, S. The recent progress on metal-organic frameworks for phototherapy. Chem. Soc. Rev. 2021, 50, 5086–5125. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Niu, H.; Wang, Y.; Wu, A.; Shu, C.; Zhu, Y.; Bian, Y.; Lin, K. Metal-Organic Framework-Based Nanoagents for Effective Tumor Therapy by Dual Dynamics-Amplified Oxidative Stress. ACS Appl. Mater. Interface 2021, 13, 45201–45213. [Google Scholar] [CrossRef]
- Wan, X.; Zhong, H.; Pan, W.; Li, Y.; Chen, Y.; Li, N.; Tang, B. Programmed Release of Dihydroartemisinin for Synergistic Cancer Therapy Using a CaCO3 Mineralized Metal-Organic Framework. Angew. Chem. 2019, 58, 14134–14139. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, J.; Cai, X.; Ding, P.; Lv, H.; Pei, R. Metal-Organic Frameworks with Enhanced Photodynamic Therapy: Synthesis, Erythrocyte Membrane Camouflage, and Aptamer-Targeted Aggregation. ACS Appl. Mater. Interfaces 2020, 12, 23697–23706. [Google Scholar] [CrossRef]
- Mo, Z.; Pan, X.; Pan, X.; Ye, L.; Hu, H.; Xu, Q.; Hu, X.; Xu, Z.; Xiong, J.; Liao, G.; et al. MOF(Fe)-derived composites as a unique nanoplatform for chemo-photodynamic tumor therapy. J. Mater. Chem. B 2022, 10, 8760–8770. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, L.; Lei, J.; Shen, H.; Ju, H. Multifunctional Metal-Organic Framework Nanoprobe for Cathepsin B-Activated Cancer Cell Imaging and Chemo-Photodynamic Therapy. ACS Appl. Mater. Interfaces 2017, 9, 2150–2158. [Google Scholar] [CrossRef] [PubMed]
- Shang, W.; Peng, L.; Guo, P.; Hui, H.; Yang, X.; Tian, J. Metal-Organic Frameworks as a Theranostic Nanoplatform for Combinatorial Chemophotothermal Therapy Adapted to Different Administration. ACS Biomater. Sci. Eng. 2020, 6, 1008–1016. [Google Scholar] [CrossRef]
- Lu, J.; Yang, J.; Yang, D.; Hu, S.; Sun, Q.; Yang, G.; Gai, S.; Wang, Z.; Yang, P. CuFeSe2-based thermo-responsive multifunctional nanomaterial initiated by a single NIR light for hypoxic cancer therapy. J. Mater. Chem. B 2021, 9, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, B.; Sun, Q.; Feng, L.; He, F.; Yang, P.; Gai, S.; Quan, Z.; Lin, J. Upconverted Metal-Organic Framework Janus Architecture for Near-Infrared and Ultrasound Co-Enhanced High Performance Tumor Therapy. ACS Nano 2021, 15, 12342–12357. [Google Scholar] [CrossRef] [PubMed]
- Phipps, J.; Haseli, M.; Pinzon-Herrera, L.; Wilson, B.; Corbitt, J.; Servoss, S.; Almodovar, J. Delivery of Immobilized IFN-γ with PCN-333 and Its Effect on Human Mesenchymal Stem Cells. ACS Biomater. Sci. Eng. 2023, 9, 671–679. [Google Scholar] [CrossRef]
- Yodsin, N.; Sriphumrat, K.; Mano, P.; Kongpatpanich, K.; Namuangruk, S. Metal-organic framework MIL-100(Fe) as a promising sensor for COVID-19 biomarkers detection. Microporous Mesoporous Mater. Off. J. Int. Zeolite Assoc. 2022, 343, 112187. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, C.; Gao, Y.; Li, Z.; Xing, J.; Ren, W.; Zhang, L.; Li, A.; Lu, G.; Wu, A.; et al. ZD2-Engineered Gold Nanostar@Metal-Organic Framework Nanoprobes for T1 -Weighted Magnetic Resonance Imaging and Photothermal Therapy Specifically Toward Triple-Negative Breast Cancer. Adv. Healthc. Mater. 2018, 7, e1801144. [Google Scholar] [CrossRef]
- Gao, X.; Cui, R.; Song, L.; Liu, Z. Hollow structural metal-organic frameworks exhibit high drug loading capacity, targeted delivery and magnetic resonance/optical multimodal imaging. Dalton Trans. 2019, 48, 17291–17297. [Google Scholar] [CrossRef]
- Xiang, Z.; Qi, Y.; Lu, Y.; Hu, Z.; Wang, X.; Jia, W.; Hu, J.; Ji, J.; Lu, W. MOF-derived novel porous Fe3O4@C nanocomposites as smart nanomedical platforms for combined cancer therapy: Magnetic-triggered synergistic hyperthermia and chemotherapy. J. Mater. Chem. B 2020, 8, 8671–8683. [Google Scholar] [CrossRef] [PubMed]
- Kulandaivel, S.; Lin, C.; Yeh, Y. The bi-metallic MOF-919 (Fe-Cu) nanozyme capable of bifunctional enzyme-mimicking catalytic activity. Chem. Commun. 2022, 58, 569–572. [Google Scholar] [CrossRef] [PubMed]
- Qileng, A.; Liu, T.; Wang, J. Self-triggered fluorescent metal-organic framework mimic enzyme for competitive immunoassay of hypoglycemic drug in functional tea. Colloids Surf. B Biointerfaces 2022, 215, 112527. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Cai, X.; Jiang, H. Improving MOF stability: Approaches and applications. Chem. Sci. 2019, 10, 10209–10230. [Google Scholar] [CrossRef]
- Sun, L.; Xu, Y.; Gao, Y.; Huang, X.; Feng, S.; Chen, J.; Wang, X.; Guo, L.; Li, M.; Meng, X.; et al. Synergistic Amplification of Oxidative Stress-Mediated Antitumor Activity via Liposomal Dichloroacetic Acid and MOF-Fe2. Small 2019, 15, e1901156. [Google Scholar] [CrossRef]
Category | MOFs Names | Raw Material | Synthetic Method | Particle Size | Pore Size/Pore Volume | Application Fields | References | |
---|---|---|---|---|---|---|---|---|
MIL series | MIL-53 | FeCl3; terephthalic acid | Solvothermal method | 350 nm | 8.6 Å | Drug delivery, bioimaging, photocatalysis, adsorption | [26] | |
MIL-67 | Iron powder;1,2,4-benzenetricarboxylic (or trimellitic) acid | Hydrothermal method | >50 μm | — | — | [27] | ||
MIL-68 | FeCl3·6H2O;Terephthalic acid | Solvothermal method | 0.06–0.18 μm | 6–16 Å | Catalyzing, biosensing | [28,29] | ||
MIL-88(ABCD) | 88A | FeCl3·6H2O;fumaric acid | Solvothermal method | 150 nm | 6 Å | Drug delivery, adsorption, biosensing | [26] | |
88B | FeCl3·6H2O; tannic acid (TA) | Solvothermal method | 500 nm | 6–15 Å | Drug delivery, bioimaging, catalyzing | [30] | ||
88C | FeCl3·6H2O;2,6-naphthalenedicarboxylic (2,6-NDC) | Solvothermal method | 400 nm | 5.9 nm | — | [31] | ||
88D | FeCl3·6H2O;4,4′-biphenyldicarboxylic (4,4′-BPDC) | Solvothermal method | — | 10–20 Å | Adsorption | [32] | ||
NbU-12 | MIL-88D was selected as a primary framework, and adenine connected two independent MIL-88D samples to form a self-interpenetrated structure. | — | — | 5–6 Å | Gas storage | [32] | ||
MIL-89 | Fe(OAc)3;trans,trans-muconic acid(MA) | Solvothermal method | 50–100 nm | 11 Å | Biosensing, drug delivery | [26,33] | ||
MIL-100 | FeCl3·6H2O;trimesic acid | Microwave-assisted solvothermal method | 231 ± 14 nm | 5.6, 8.6 Å 2.5, 2.9 nm | Adsorption, biosensing Drug delivery, bioimaging | [34,35] | ||
MIL-101 | FeCl3·6H2O; terephthalic acid(H3BDC) | Solvothermal method | 90 nm | 2.8 nm | Drug delivery, bioimaging Antibiosis, adsorption, catalyzing | [36] | ||
MIL-126 | FeCl3; BPDC | Solvothermal method | nanosheet >20 μm | 10.01, 10.9, 11.79 Å | Adsorption | [37] | ||
MIL-127 | Fe, 3,3′,5,5′- azobenzenetetracarboxylate | Solvothermal method | — | 4–6 Å (only water and H2 allowed in) | Adsorption, extraction, drug delivery | [38] | ||
PCN series | PCN-222 | ZrCl4, Fe-(TCPP)Cl and benzoic acid | Solvothermal method | — | 3 nm | Adsorption, biosensing, stored energy | [39] | |
PCN-223 | ZrCl4,Fe(III)TCPP | Solvothermal method | 806 nm | 0.6 cm3/g | Biosensing | [40] | ||
PCN-250 | Fe2Co(μ3- O)(CH3COO)6, glacial acetic acid | Solvothermal method | 50 μm | 0.573 cm3/g | Gas adsorption | [41] | ||
Fe-PCN | FeTCP, benzoic acid, ZrOCl2·8H2O | Solvothermal method | 136.8 nm | 7.5 nm | Biosensor, catalyzing | [42] | ||
Magnetic MOFs based on Fe3O4/Fe2O3 | Fe3O4@MIL-101(Cr) | Fe3O4eCOOH, Cr (NO3)3·9H2O, H2BDC | Solvothermal method | 250 nm | 1.57 cm3/g | Drug concentration detection | [43] | |
Fe3O4@MIL-100(Fe) | Fe3O4 SPs, FeCl3·6H2O | Solvothermal method | 236 nm | 21 Å, 25 Å | Nano-carrier | [44] | ||
Fe3O4/carbon (MIL-88B) | F127, FeCl3·6H2O, H2N-BDC, glacial acetic acid | Pyrolysis method | 300–600 nm (Different acetic acid volumes) | mesopore | Drug delivery | [45] | ||
Combined MOFs | NiFe2 MOF | FeCl3·6H2O, NiCl2·6H2O, terephthalic acid | Ultrasound-assisted method | nanosheet | — | Catalytic colorimetry | [46] | |
Bimetallic MOFs(Iron doped) | Tb-MOF-on-Fe-MOF | Fe-MOF, TbCl3·6H2O | Solvothermal method | 300 nm | — | Biosensing | [47] | |
Fe2Co1 MOF-74 | Co(NO3)26H2O; FeCl2·4H2O; terephthalic acid | Solvothermal method | 60–80 nm | 0.058 cm3/g, | Adsorption | [48] | ||
NH2-MIL-88B(Fe2Co)-MOF | Fe2Co cluster, H2BDC-NH2 | Solvothermal method | 200 nm | 1.1, 1.4 nm | Biosensing | [49] | ||
3d–4f Fe/La-MOFs | Ferric chloride, lanthanum nitrate, trimesic acid | Solvothermal method | 141 nm | 1.87 cm3/g | Drug delivery, bioimaging | [50] | ||
Others | Fe-TCPP | FeCl3·6H2O; TCPP | Solvothermal method | 145 ± 20 nm | 3.1 nm | Drug delivery, bioimaging | [51] | |
Fe-BTC | H3BTC, FeCl3·6H2O | One-pot method | 200 nm | 0.61cm3/g | Antitumor effects, enzyme- immobilized vector | [52,53] | ||
Fe-soc-MOF | FeCl3, H4-ABTC | Liquid–solid solution (LSS) method | 100 nm | Minimal aperture | Antitumor effects | [54] | ||
Fe-MOF-74 | FeCl2,olsalazine (H4olz) | One-pot method | — | 27Å | Drug delivery, adsorption | [55] |
Fe-MOFs | Related Drug | Application | Target | Reference |
---|---|---|---|---|
MIL-53 | Polypyrrole, doxorubicin | Phototherapy, bioimaging | 4T1 | [111] |
MIL-88A | Mannose (coated) | Antibacterial | - | [114] |
Dopamine | Parkinson’s disease | Pc12 | [122] | |
MIL-88 | Tetracycline | Antibacterial | Escherichia coli and Staphylococcus aureus | [115] |
MIL-88-NH2 | Brimonidine | Eye diseases | PCS-700-010 | [60] |
PdNPs | Biosensing | microRNA-122 | [108] | |
NH2-MIL-88B(Fe2Co) | - | Biosensing | Cardiac troponin | [49] |
MIL-88B(Fe)@ZIF-8 | Adriamycin | Tumor therapy | MCF-7 and HepG2 | [104] |
Fe3O4@C(MIL-88B) | - | Antibacterial | Escherichia coli and Staphylococcus aureus | [117] |
MIL-100(Fe) | GOx | Tumor therapy | 4T1 | [18] |
Mannose (coated) | Antibacterial | - | [114] | |
Genistein | Oral antitumor medicine | - | [35] | |
CuFeSe2 | phototherapy | HeLa, U14 (Mouse cervical cancer cells) | [131] | |
- | Biosensing | biomarkers for COVID-19 | [136] | |
Dihydroartemisinin, methyleneblue | Tumor therapy, bioimaging | HeLa | [36] | |
MIL-101(Fe) | Levamisole | Tumor therapy | MCF-7 | [101] |
siRNAs | Tumor therapy | MCF-7/T | [103] | |
Favipiravir | Antibacterial | Staphylococcus aureus | [107] | |
TCPP | Phototherapy | MDA-MB-231 | [125] | |
Au NPs | Phototherapy, bioimaging | MDA-MB-435, MDA-MB-468, and MCF-7 | [135] | |
MIL-101-NH2 | Doxorubicin | Tumor therapy | - | [105] |
Isoniazid | Phthisis | TB bacterium | [121] | |
Ce6 | phototherapy | 4T1 | [128] | |
Camptothecin, Ce6 | Phototherapy, bioimaging | HeLa | [129] | |
ovalbumin (OVA), unmethylated cytosine-phosphate-guanine oligonucleotide (CpG) | Immunotherapy | APCs | [110] | |
MIL-127 | Rhododendronic acid and niacinamide | Skin diseases | skin | [123] |
PCN-224 | UCNPs, biotin | Phototherapy, bioimaging | HeLa | [132] |
PCN-333 | Interferon-gamma (IFN-γ) | Immunotherapy | hMSCs | [133] |
Fe3O4@Bio-MOF-Fc | 5-FU | Tumor therapy | MDA-MB-231 | [106] |
Fe3O4@Bio-MOF | - | Antiparasitic | leishmanian | [119] |
Fe-BTC | Enzyme glucose oxidase | Tumor therapy | A549 | [102] |
Au NPs, doxorubicin, gemcitabine | Phototherapy | MDA-MB-231, MCF-7, 5637, PANC-1 | [130] | |
CuTCPP(Fe) | GOx | Antibacterial | Escherichia coli and Staphylococcus aureus | [116] |
Fe-TCPP | Dihydroartemisinin | Phototherapy | 4T1 | [126] |
FeTCPP/Fe2O3 | - | Phototherapy | KB cell (Human oral epidermoid cancer cells) | [127] |
P-MOF(porphyrin-like Fe-MOF) | - | Phototherapy, bioimaging | HeLa | [112] |
Fe-MOF | Curcumin | Antiparasitic | toxoplasma | [120] |
Fe-MOF@ZIF-8 | Doxorubicin | Tumor therapy, MRI | HeLa | [15] |
3d–4f Fe/La-MOFs | DOX | Tumor therapy, bioimaging | 4T1 | [50] |
MOF-919 (Fe-Cu) | - | Nanoenzymes, biosensing | - | [138] |
Au@Fe-MIL-88B | - | Nanoenzymes, biosensing | - | [139] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, R.; Cai, M.; Fu, T.; Yin, D.; Peng, H.; Liao, S.; Du, Y.; Kong, J.; Ni, J.; Yin, X. Fe-Based Metal Organic Frameworks (Fe-MOFs) for Bio-Related Applications. Pharmaceutics 2023, 15, 1599. https://doi.org/10.3390/pharmaceutics15061599
Zhu R, Cai M, Fu T, Yin D, Peng H, Liao S, Du Y, Kong J, Ni J, Yin X. Fe-Based Metal Organic Frameworks (Fe-MOFs) for Bio-Related Applications. Pharmaceutics. 2023; 15(6):1599. https://doi.org/10.3390/pharmaceutics15061599
Chicago/Turabian StyleZhu, Rongyue, Mengru Cai, Tingting Fu, Dongge Yin, Hulinyue Peng, Shilang Liao, Yuji Du, Jiahui Kong, Jian Ni, and Xingbin Yin. 2023. "Fe-Based Metal Organic Frameworks (Fe-MOFs) for Bio-Related Applications" Pharmaceutics 15, no. 6: 1599. https://doi.org/10.3390/pharmaceutics15061599
APA StyleZhu, R., Cai, M., Fu, T., Yin, D., Peng, H., Liao, S., Du, Y., Kong, J., Ni, J., & Yin, X. (2023). Fe-Based Metal Organic Frameworks (Fe-MOFs) for Bio-Related Applications. Pharmaceutics, 15(6), 1599. https://doi.org/10.3390/pharmaceutics15061599