Modulating the Effect of β-Sitosterol Conjugated with Magnetic Nanocarriers to Inhibit EGFR and Met Receptor Cross Talk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Reagents, and Cell Lines
2.2. Synthesis of β-Sitosterol Conjugated SPIONS
2.3. Preparation of BS Conjugated SPIONs- PNIPAM (BS-SP) Polymeric Complex
2.4. Preparation of BS Conjugated SPIONs-PEG- PNIPAM (BS-SPP)
2.5. Characterization of SPIONs, BS-S, BS-SP, BS-SPP
2.6. In Vitro Adsorption of β-Sitosterol onto SPIONs
2.7. In Vitro Release of β-Sitosterol from SPIONs
2.8. Cell Viability Assay
2.9. Flow Cytometric Analysis
2.10. Statistical Analysis
3. Results
3.1. Synthesis and Characterization of BS-S, BS-SP, BS-SPP Conjugated Complexes
3.1.1. Hydrodynamic Size and Stability Studies of BS-S, BS-SP and BS-SPP
3.1.2. TEM and SEM Analysis of BS-S, BS-SP, and BS-SPP
3.2. In Vitro Adsorption of BS-S, BS-SP, and BS-SPP
3.3. In Vitro Release Profile of BS-S, BS-SP, and BS-SPP
3.4. Impact of BS-S, BS-SP, and BS-SPP on Cancer Cell Viability
3.5. BS-SPP Downregulate Expression of Both EGFR and MET Receptor in NCIH460 Cells
4. Discussion
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bin Sayeed, M.S.; Ameen, S.S. Beta-Sitosterol: A Promising but Orphan Nutraceutical to Fight Against Cancer. Nutr. Cancer 2015, 67, 1214–1220. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.; Kuppusamy, U.; Kanthimathi, M. Beta-Sitosterol Induces Apoptosis in MCF-7 Cells. Malays. J. Biochem. Mol. Biol. 2008, 16, 28–30. [Google Scholar]
- Imanaka, H.; Koide, H.; Shimizu, K.; Asai, T.; Kinouchi Shimizu, N.; Ishikado, A.; Makino, T.; Oku, N. Chemoprevention of Tumor Metastasis by Liposomal Beta-Sitosterol Intake. Biol. Pharm. Bull. 2008, 31, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Awad, A.B.; Chinnam, M.; Fink, C.S.; Bradford, P.G. β-Sitosterol Activates Fas Signaling in Human Breast Cancer Cells. Phytomedicine 2007, 14, 747–754. [Google Scholar] [CrossRef]
- Kawk, H.W.; Nam, G.-H.; Kim, M.J.; Kim, S.-Y.; Kim, Y.-M. Scaphium Affine Ethanol Extract Induces Anoikis by Regulating the EGFR/Akt Pathway in HCT116 Colorectal Cancer Cells. Front. Oncol. 2021, 11, 621346. [Google Scholar] [CrossRef]
- Ilangovan, S.S.; Sen, S. Simultaneous Inhibition of EGFR and MET Receptors with Phytochemical Conjugated Magnetic Nanocarriers: In Silico and in Vitro Study. RSC Adv. 2016, 6, 80121–80132. [Google Scholar] [CrossRef]
- Kumari, A.; Chauhan, A.K. Iron Nanoparticles as a Promising Compound for Food Fortification in Iron Deficiency Anemia: A Review. J. Food Sci. Technol. 2022, 59, 3319–3335. [Google Scholar] [CrossRef]
- Wei, H.; Hu, Y.; Wang, J.; Gao, X.; Qian, X.; Tang, M. Superparamagnetic Iron Oxide Nanoparticles: Cytotoxicity, Metabolism, and Cellular Behavior in Biomedicine Applications. Int. J. Nanomed. 2021, 16, 6097–6113. [Google Scholar] [CrossRef]
- Gupta, A.K.; Gupta, M. Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications. Biomaterials 2005, 26, 3995–4021. [Google Scholar] [CrossRef]
- Gupta, A.K.; Naregalkar, R.R.; Vaidya, V.D.; Gupta, M. Recent Advances on Surface Engineering of Magnetic Iron Oxide Nanoparticles and Their Biomedical Applications. Nanomedicine 2007, 2, 23–39. [Google Scholar] [CrossRef]
- Kandasamy, G.; Maity, D. Recent Advances in Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for in Vitro and in Vivo Cancer Nanotheranostics. Int. J. Pharm. 2015, 496, 191–218. [Google Scholar] [CrossRef]
- Saxena, N.; Agraval, H.; Barick, K.C.; Ray, D.; Aswal, V.K.; Singh, A.; Yadav, U.C.S.; Dube, C.L. Thermal and Microwave Synthesized SPIONs: Energy Effects on the Efficiency of Nano Drug Carriers. Mater. Sci. Eng. C 2020, 111, 110792. [Google Scholar] [CrossRef] [PubMed]
- Bloemen, M.; Van Stappen, T.; Willot, P.; Lammertyn, J.; Koeckelberghs, G.; Geukens, N.; Gils, A.; Verbiest, T. Heterobifunctional PEG Ligands for Bioconjugation Reactions on Iron Oxide Nanoparticles. PLoS ONE 2014, 9, e109475. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Sun, D. Superparamagnetic Iron Oxide Nanoparticle “theranostics” for Multimodality Tumor Imaging, Gene Delivery, Targeted Drug and Prodrug Delivery. Expert. Rev. Clin. Pharmacol. 2010, 3, 117–130. [Google Scholar] [CrossRef]
- Gandhi, A.; Paul, A.; Sen, S.O.; Sen, K.K. Studies on Thermoresponsive Polymers: Phase Behaviour, Drug Delivery and Biomedical Applications. Asian J. Pharm. Sci. 2015, 10, 99–107. [Google Scholar] [CrossRef]
- Silva, V.A.J.; Andrade, P.L.; Silva, M.P.C.; Valladares, L.D.L.S.; Aguiar, J.A. Synthesis and Characterization of Fe3O4 Nanoparticles Coated with Fucan Polysaccharides. J. Magn. Magn. Mater. 2013, 343, 138–143. [Google Scholar] [CrossRef]
- Basuki, J.S.; Jacquemin, A.; Esser, L.; Li, Y.; Boyer, C.; Davis, T.P. A Block Copolymer-Stabilized Co-Precipitation Approach to Magnetic Iron Oxide Nanoparticles for Potential Use as MRI Contrast Agents. Polym. Chem. 2014, 5, 2611–2620. [Google Scholar] [CrossRef]
- Antoniraj, M.G.; Kumar, C.S.; Kandasamy, R. Synthesis and Characterization of Poly (N-Isopropylacrylamide)-g-Carboxymethyl Chitosan Copolymer-Based Doxorubicin-Loaded Polymeric Nanoparticles for Thermoresponsive Drug Release. Colloid. Polym. Sci. 2016, 294, 527–535. [Google Scholar] [CrossRef]
- Podila, R.; Brown, J.M. Toxicity of Engineered Nanomaterials: A Physicochemical Perspective. J. Biochem. Mol. Toxicol. 2013, 27, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.-Y.; Wu, D.-C.; Li, Z.-J.; Chen, G.-Q. Polymer Nanoparticles. Prog. Mol. Biol. Transl. Sci. 2011, 104, 299–323. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.B.; Carter, C.B. The Transmission Electron Microscope BT—Transmission Electron Microscopy: A Textbook for Materials Science; Springer US: Boston, MA, USA, 1996; pp. 3–17. ISBN 978-1-4757-2519-3. [Google Scholar]
- Prabha, G.; Raj, V. Formation and Characterization of β-Cyclodextrin (β-CD)—Polyethyleneglycol (PEG)—Polyethyleneimine (PEI) Coated Fe3O4 Nanoparticles for Loading and Releasing 5-Fluorouracil Drug. Biomed. Pharmacother. 2016, 80, 173–182. [Google Scholar] [CrossRef]
- Siami, F.; Ahmadpanahi, H.; Heidarinasab, A.; Moniri, E.; Akbarzadeh, A.; Shahmabadi, H.E. Investigation of Adsorption Kinetic of Doxorubicin onto Iron Oxide Magnetic Nanoparticles Functionalized with Poly(Acrylic Acid)/Allyl Alchohol. Int. J. Med. Res. Health Sci. 2016, 5, 88–93. [Google Scholar]
- Debrassi, A.; Bürger, C.; Rodrigues, C.A.; Nedelko, N.; Ślawska-Waniewska, A.; Dłużewski, P.; Sobczak, K.; Greneche, J.-M. Synthesis, Characterization and in Vitro Drug Release of Magnetic N-Benzyl-O-Carboxymethylchitosan Nanoparticles Loaded with Indomethacin. Acta Biomater. 2011, 7, 3078–3085. [Google Scholar] [CrossRef]
- Lai, L.; Fu, Q.; Liu, Y.; Jiang, K.; Guo, Q.; Chen, Q.; Yan, B.; Wang, Q.; Shen, J. Piperine Suppresses Tumor Growth and Metastasis in Vitro and in Vivo in a 4T1 Murine Breast Cancer Model. Acta Pharmacol. Sin. 2012, 33, 523–530. [Google Scholar] [CrossRef]
- Jung, S.K.; Lee, M.-H.; Lim, D.Y.; Lee, S.Y.; Jeong, C.-H.; Kim, J.E.; Lim, T.G.; Chen, H.; Bode, A.M.; Lee, H.J.; et al. Butein, a Novel Dual Inhibitor of MET and EGFR, Overcomes Gefitinib-Resistant Lung Cancer Growth. Mol. Carcinog. 2015, 54, 322–331. [Google Scholar] [CrossRef]
- Minderman, H.; Suvannasankha, A.; O’Loughlin, K.L.; Scheffer, G.L.; Scheper, R.J.; Robey, R.W.; Baer, M.R. Flow Cytometric Analysis of Breast Cancer Resistance Protein Expression and Function. Cytometry 2002, 48, 59–65. [Google Scholar] [CrossRef]
- Wang, J.; Yang, S.; Cai, X.; Dong, J.; Chen, Z.; Wang, R.; Zhang, S.; Cao, H.; Lu, D.; Jin, T.; et al. Berberine Inhibits EGFR Signaling and Enhances the Antitumor Effects of EGFR Inhibitors in Gastric Cancer. Oncotarget 2016, 7, 76076–76086. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.-H.; Cheng, C.-Y.; Su, T.; Fu, X.-Q.; Guo, H.; Li, T.; Tse, A.K.-W.; Kwan, H.-Y.; Yu, H.; Yu, Z.-L. Quercetin Inhibits HGF/c-Met Signaling and HGF-Stimulated Melanoma Cell Migration and Invasion. Mol. Cancer 2015, 14, 103. [Google Scholar] [CrossRef] [PubMed]
- Bano, S.; Afzal, M.; Waraich, M.M.; Alamgir, K.; Nazir, S. Paclitaxel Loaded Magnetic Nanocomposites with Folate Modified Chitosan/Carboxymethyl Surface; a Vehicle for Imaging and Targeted Drug Delivery. Int. J. Pharm. 2016, 513, 554–563. [Google Scholar] [CrossRef]
- Ding, Y.; Shen, S.Z.; Sun, H.; Sun, K.; Liu, F.; Qi, Y.; Yan, J. Design and Construction of Polymerized-Chitosan Coated Fe3O4 Magnetic Nanoparticles and Its Application for Hydrophobic Drug Delivery. Mater. Sci. Eng. C 2015, 48, 487–498. [Google Scholar] [CrossRef]
- Shamim, N.; Hong, L.; Hidajat, K.; Uddin, M.S. Thermosensitive Polymer (N-Isopropylacrylamide) Coated Nanomagnetic Particles: Preparation and Characterization. Colloids Surf. B Biointerfaces 2007, 55, 51–58. [Google Scholar] [CrossRef]
- Takahashi, K.; Ozaki, Y.; Kuzuya, A.; Chi, Y. Impact of Core-Forming Segment Structure on Drug Loading in Biodegradable Polymeric Micelles Using PEG-b-Poly(Lactide-Co-Depsipeptide) Block Copolymers. BioMed Res. Int. 2014, 2014, 579212. [Google Scholar] [CrossRef]
- Xiao, R.Z.; Zeng, Z.W.; Zhou, G.L.; Wang, J.J.; Li, F.Z.; Wang, A.M. Recent Advances in PEG–PLA Block Copolymer Nanoparticles. Int. J. Nanomed. 2010, 5, 1057–1065. [Google Scholar] [CrossRef]
- Rodzinski, A.; Guduru, R.; Liang, P.; Hadjikhani, A.; Stewart, T.; Stimphil, E.; Runowicz, C.; Cote, R.; Altman, N.; Datar, R.; et al. Targeted and Controlled Anticancer Drug Delivery and Release with Magnetoelectric Nanoparticles. Sci. Rep. 2016, 6, 20867. [Google Scholar] [CrossRef]
- Rietscher, R.; Czaplewska, J.A.; Majdanski, T.C.; Gottschaldt, M.; Schubert, U.S.; Schneider, M.; Lehr, C.-M. Impact of PEG and PEG-b-PAGE Modified PLGA on Nanoparticle Formation, Protein Loading and Release. Int. J. Pharm. 2016, 500, 187–195. [Google Scholar] [CrossRef]
- Rajendran, K.; Karunagaran, V.; Mahanty, B.; Sen, S. Biosynthesis of Hematite Nanoparticles and Its Cytotoxic Effect on HepG2 Cancer Cells. Int. J. Biol. Macromol. 2015, 74, 376–381. [Google Scholar] [CrossRef]
- Xu, H.; Cheng, L.; Wang, C.; Ma, X.; Li, Y.; Liu, Z. Polymer Encapsulated Upconversion Nanoparticle/Iron Oxide Nanocomposites for Multimodal Imaging and Magnetic Targeted Drug Delivery. Biomaterials 2011, 32, 9364–9373. [Google Scholar] [CrossRef]
- Lu, W.; Shen, Y.; Xie, A.; Zhang, W. Preparation and Drug-Loading Properties of Fe3O4/Poly(Styrene-Co-Acrylic Acid) Magnetic Polymer Nanocomposites. J. Magn. Magn. Mater. 2013, 345, 142–146. [Google Scholar] [CrossRef]
- Adan, A.; Alizada, G.; Kiraz, Y.; Baran, Y.; Nalbant, A. Flow Cytometry: Basic Principles and Applications. Crit. Rev. Biotechnol. 2017, 37, 163–176. [Google Scholar] [CrossRef]
- Zaritskaya, L.; Shurin, M.R.; Sayers, T.J.; Malyguine, A.M. New Flow Cytometric Assays for Monitoring Cell-Mediated Cytotoxicity. Expert. Rev. Vaccines 2010, 9, 601–616. [Google Scholar] [CrossRef]
- Kulkarni, N.S.; Vaidya, B.; Gupta, V. Nano-Synergistic Combination of Erlotinib and Quinacrine for Non-Small Cell Lung Cancer (NSCLC) Therapeutics—Evaluation in Biologically Relevant in-Vitro Models. Mater. Sci. Eng. C 2021, 121, 111891. [Google Scholar] [CrossRef]
- Torchilin, V. Tumor Delivery of Macromolecular Drugs Based on the EPR Effect. Adv. Drug Deliv. Rev. 2011, 63, 131–135. [Google Scholar] [CrossRef]
- Cheng, L.-C.; Jiang, X.; Wang, J.; Chen, C.; Liu, R.-S. Nano-Bio Effects: Interaction of Nanomaterials with Cells. Nanoscale 2013, 5, 3547–3569. [Google Scholar] [CrossRef] [PubMed]
- De Las Heras Alarcón, C.; Pennadam, S.; Alexander, C. Stimuli Responsive Polymers for Biomedical Applications. Chem. Soc. Rev. 2005, 34, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ji, H.; Qiao, O.; Li, Z.; Pecoraro, L.; Zhang, X.; Han, X.; Wang, W.; Zhang, X.; Man, S.; et al. Nanoparticle Conjugation of Ginsenoside Rb3 Inhibits Myocardial Fibrosis by Regulating PPARα Pathway. Biomed. Pharmacother. 2021, 139, 111630. [Google Scholar] [CrossRef] [PubMed]
- Stolnik, S.; Illum, L.; Davis, S.S. Long Circulating Microparticulate Drug Carriers. Adv. Drug Deliv. Rev. 1995, 16, 195–214. [Google Scholar] [CrossRef]
- Kaczynska, K.; Wouters, A.G.B.; Delcour, J.A. Impact of Chitosan and/or Transglutaminase Treatment on the Colloidal Stability and Air-Water Interfacial Properties of Gliadin Based Nanoparticles. Food Hydrocoll. 2023, 141, 108734. [Google Scholar] [CrossRef]
- Gupta, J.; Quadros, M.; Momin, M. Mesoporous Silica Nanoparticles: Synthesis and Multifaceted Functionalization for Controlled Drug Delivery. J. Drug Deliv. Sci. Technol. 2023, 81, 104305. [Google Scholar] [CrossRef]
- Zaichik, S.; Steinbring, C.; Jelkmann, M.; Bernkop-Schnürch, A. Zeta Potential Changing Nanoemulsions: Impact of PEG-Corona on Phosphate Cleavage. Int. J. Pharm. 2020, 581, 119299. [Google Scholar] [CrossRef]
- Chatterjee, K.; Sarkar, S.; Jagajjanani Rao, K.; Paria, S. Core/Shell Nanoparticles in Biomedical Applications. Adv. Colloid. Interface Sci. 2014, 209, 8–39. [Google Scholar] [CrossRef]
- Genta, I.; Costantini, M.; Asti, A.; Conti, B.; Montanari, L. Influence of Glutaraldehyde on Drug Release and Mucoadhesive Properties of Chitosan Microspheres. Carbohydr. Polym. 1998, 36, 81–88. [Google Scholar] [CrossRef]
- Truong-Thi, N.-H.; Nguyen, N.H.; Nguyen, D.T.D.; Tang, T.N.; Nguyen, T.H.; Nguyen, D.H. PH-Responsive Delivery of Platinum-Based Drugs through the Surface Modification of Heparin on Mesoporous Silica Nanoparticles. Eur. Polym. J. 2023, 185, 111818. [Google Scholar] [CrossRef]
- Rana, K.; Kumar Pandey, S.; Chauhan, S.; Preet, S. Anticancer Therapeutic Potential of 5-Fluorouracil and Nisin Co-Loaded Chitosan Coated Silver Nanoparticles against Murine Skin Cancer. Int. J. Pharm. 2022, 620, 121744. [Google Scholar] [CrossRef]
- Maeda, H.; Sawa, T.; Konno, T. Mechanism of Tumor-Targeted Delivery of Macromolecular Drugs, Including the EPR Effect in Solid Tumor and Clinical Overview of the Prototype Polymeric Drug SMANCS. J. Control. Release 2001, 74, 47–61. [Google Scholar] [CrossRef]
- Ravindra, S.; Mulaba-Bafubiandi, A.F.; Rajinikanth, V.; Varaprasad, K.; Narayana Reddy, N.; Mohana Raju, K. Development and Characterization of Curcumin Loaded Silver Nanoparticle Hydrogels for Antibacterial and Drug Delivery Applications. J. Inorg. Organomet. Polym. Mater. 2012, 22, 1254–1262. [Google Scholar] [CrossRef]
- Kumar, P.; Agnihotri, S.; Roy, I. Synthesis of Dox Drug Conjugation and Citric Acid Stabilized Superparamagnetic Iron-Oxide Nanoparticles for Drug Delivery. Biochem. Physiol. 2016, 5, 194. [Google Scholar] [CrossRef]
- Parsian, M.; Unsoy, G.; Mutlu, P.; Yalcin, S.; Tezcaner, A.; Gunduz, U. Loading of Gemcitabine on Chitosan Magnetic Nanoparticles Increases the Anti-Cancer Efficacy of the Drug. Eur. J. Pharmacol. 2016, 784, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Liechty, W.B.; Kryscio, D.R.; Slaughter, B.V.; Peppas, N.A. Polymers for Drug Delivery Systems. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 149–173. [Google Scholar] [CrossRef] [PubMed]
Nanoparticle | DLS Mean (nm) | Polydispersity INDEX (PI) | Standard Deviation (SD) | Zeta (mV) |
---|---|---|---|---|
SPIONs | 90.3 | 0.373 | 14.4 | −15.8 |
BS-S | 113 | 0 | 4.2 | 48.7 |
BS-SP | 162.3 | 0 | 4.8 | −54.2 |
BS-SPP | 381.8 | 0 | 54.3 | −64.2 |
Cancer Cell Lines | IC50 Value (µg/mL) of BS-S | IC50 Value (µg/mL) of BS-SP | IC50 Value (µg/mL) of BS-SPP | IC50 Value (µg/mL) of BS | IC50 Value (µg/mL) of Butein |
---|---|---|---|---|---|
MCF7 | 197 | 168 | 149 | 242 | 163 |
HEPG2 | 261 | 233 | 207 | 274 | 298 |
NCIH460 | 185 | 175 | 164 | 191 | 178 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilangovan, S.S.; Mahanty, B.; Perumal, V.; Sen, S. Modulating the Effect of β-Sitosterol Conjugated with Magnetic Nanocarriers to Inhibit EGFR and Met Receptor Cross Talk. Pharmaceutics 2023, 15, 2158. https://doi.org/10.3390/pharmaceutics15082158
Ilangovan SS, Mahanty B, Perumal V, Sen S. Modulating the Effect of β-Sitosterol Conjugated with Magnetic Nanocarriers to Inhibit EGFR and Met Receptor Cross Talk. Pharmaceutics. 2023; 15(8):2158. https://doi.org/10.3390/pharmaceutics15082158
Chicago/Turabian StyleIlangovan, Shanmuga Sundari, Biswanath Mahanty, Venkatesan Perumal, and Shampa Sen. 2023. "Modulating the Effect of β-Sitosterol Conjugated with Magnetic Nanocarriers to Inhibit EGFR and Met Receptor Cross Talk" Pharmaceutics 15, no. 8: 2158. https://doi.org/10.3390/pharmaceutics15082158
APA StyleIlangovan, S. S., Mahanty, B., Perumal, V., & Sen, S. (2023). Modulating the Effect of β-Sitosterol Conjugated with Magnetic Nanocarriers to Inhibit EGFR and Met Receptor Cross Talk. Pharmaceutics, 15(8), 2158. https://doi.org/10.3390/pharmaceutics15082158