Computational Analysis of S1PR1 SNPs Reveals Drug Binding Modes Relevant to Multiple Sclerosis Treatment
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Empirical Parameter Optimization for LIE Calculations
3.2. SNP-Based Binding Modes
3.3. Ponesimod Pose Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Compston, A.; Coles, A. Multiple Sclerosis. Lancet 2008, 372, 1502–1517. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, M.M. Multiple Sclerosis Review. Pharm. Ther. 2012, 37, 175–184. [Google Scholar]
- Hauser, S.L.; Cree, B.A.C. Treatment of Multiple Sclerosis: A Review. Am. J. Med. 2020, 133, 1380–1390.e2. [Google Scholar] [CrossRef] [PubMed]
- Piehl, F. Current and Emerging Disease-Modulatory Therapies and Treatment Targets for Multiple Sclerosis. J. Intern. Med. 2021, 289, 771–791. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, C.; Dev, K.K. The Structure and Function of the S1P1 Receptor. Trends Pharmacol. Sci. 2013, 34, 401–412. [Google Scholar] [CrossRef]
- Hla, T.; Brinkmann, V. Sphingosine 1-Phosphate (S1P). Neurology 2011, 76, S3–S8. [Google Scholar] [CrossRef]
- Wang, W.; Huang, M.-C.; Goetzl, E.J. Type 1 Sphingosine 1-Phosphate G Protein-Coupled Receptor (S1P1) Mediation of Enhanced IL-4 Generation by CD4 T Cells from S1P1 Transgenic Mice1. J. Immunol. 2007, 178, 4885–4890. [Google Scholar] [CrossRef]
- Shastry, B.S. SNPs: Impact on Gene Function and Phenotype. In Single Nucleotide Polymorphisms: Methods and Protocols; Komar, A.A., Ed.; Humana Press: Totowa, NJ, USA, 2009; pp. 3–22. ISBN 978-1-60327-411-1. [Google Scholar]
- Schork, N.J.; Fallin, D.; Lanchbury, J.S. Single Nucleotide Polymorphisms and the Future of Genetic Epidemiology. Clin. Genet. 2000, 58, 250–264. [Google Scholar] [CrossRef]
- Martinez-Forero, I.; Pelaez, A.; Villoslada, P. Pharmacogenomics of Multiple Sclerosis: In Search for a Personalized Therapy. Expert Opin. Pharmacother. 2008, 9, 3053–3067. [Google Scholar] [CrossRef]
- Laing, R.E.; Hess, P.; Shen, Y.; Wang, J.; Hu, S.X. The Role and Impact of SNPs in Pharmacogenomics and Personalized Medicine. Curr. Drug Metab. 2011, 12, 460–486. [Google Scholar] [CrossRef]
- Alizadeh, A.A.; Jafari, B.; Dastmalchi, S. Drug Repurposing for Identification of S1P1 Agonists with Potential Application in Multiple Sclerosis Using In Silico Drug Design Approaches. Adv. Pharm. Bull. 2023, 13, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Selkirk, J.V.; Bortolato, A.; Yan, Y.G.; Ching, N.; Hargreaves, R. Competitive Binding of Ozanimod and Other Sphingosine 1-Phosphate Receptor Modulators at Receptor Subtypes 1 and 5. Front. Pharmacol. 2022, 13, 892097. [Google Scholar] [CrossRef] [PubMed]
- Faissner, S.; Gold, R. Efficacy and Safety of Multiple Sclerosis Drugs Approved Since 2018 and Future Developments. CNS Drugs 2022, 36, 803–817. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Ikuta, T.; Kawakami, K.; Kise, R.; Qian, Y.; Xia, R.; Sun, M.-X.; Zhang, A.; Guo, C.; Cai, X.-H.; et al. Structural Basis of Sphingosine-1-Phosphate Receptor 1 Activation and Biased Agonism. Nat. Chem. Biol. 2022, 18, 281–288. [Google Scholar] [CrossRef]
- Parrill, A.L.; Wang, D.; Bautista, D.L.; Brocklyn, J.R.V.; Lorincz, Z.; Fischer, D.J.; Baker, D.L.; Liliom, K.; Spiegel, S.; Tigyi, G. Identification of Edg1 Receptor Residues That Recognize Sphingosine 1-Phosphate. J. Biol. Chem. 2000, 275, 39379–39384. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Osborne, D.A.; Walker, M.D.; Wang, D.; Bautista, D.A.; Liliom, K.; Brocklyn, J.R.V.; Parrill, A.L.; Tigyi, G. Identification of the Hydrophobic Ligand Binding Pocket of the S1P1 Receptor. J. Biol. Chem. 2007, 282, 2374–2385. [Google Scholar] [CrossRef]
- Aqvist, J.; Medina, C.; Samuelsson, J.E. A New Method for Predicting Binding Affinity in Computer-Aided Drug Design. Protein Eng. 1994, 7, 385–391. [Google Scholar] [CrossRef]
- Almlöf, M.; Carlsson, J.; Åqvist, J. Improving the Accuracy of the Linear Interaction Energy Method for Solvation Free Energies. J. Chem. Theory Comput. 2007, 3, 2162–2175. [Google Scholar] [CrossRef]
- Mitrovič, M.; Patsopoulos, N.A.; Beecham, A.H.; Dankowski, T.; Goris, A.; Dubois, B.; D’hooghe, M.B.; Lemmens, R.; Damme, P.V.; Søndergaard, H.B.; et al. Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell 2018, 175, 1679–1687.e7. [Google Scholar] [CrossRef]
- Everest, E.; Ahangari, M.; Uygunoglu, U.; Tutuncu, M.; Bulbul, A.; Saip, S.; Duman, T.; Sezerman, U.; Reich, D.S.; Riley, B.P.; et al. Investigating the Role of Common and Rare Variants in Multiplex Multiple Sclerosis Families Reveals an Increased Burden of Common Risk Variation. Sci. Rep. 2022, 12, 16984. [Google Scholar] [CrossRef]
- Lešnik, S.; Bren, U.; Domratcheva, T.; Bondar, A.-N. Fentanyl and the Fluorinated Fentanyl Derivative NFEPP Elicit Distinct Hydrogen-Bond Dynamics of the Opioid Receptor. J. Chem. Inf. Model. 2023, 63, 4732–4748. [Google Scholar] [CrossRef] [PubMed]
- Lešnik, S.; Bren, U. Mechanistic Insights into Biological Activities of Polyphenolic Compounds from Rosemary Obtained by Inverse Molecular Docking. Foods 2022, 11, 67. [Google Scholar] [CrossRef] [PubMed]
- Ngo, S.T.; Mai, B.K.; Derreumaux, P.; Vu, V.V. Adequate Prediction for Inhibitor Affinity of Aβ40 Protofibril Using the Linear Interaction Energy Method. RSC Adv. 2019, 9, 12455–12461. [Google Scholar] [CrossRef] [PubMed]
- Ngo, S.T.; Hong, N.D.; Anh, L.H.Q.; Hiep, D.M.; Tung, N.T. Effective Estimation of the Inhibitor Affinity of HIV-1 Protease via a Modified LIE Approach. RSC Adv. 2020, 10, 7732–7739. [Google Scholar] [CrossRef] [PubMed]
- Jukič, M.; Škrlj, B.; Tomšič, G.; Pleško, S.; Podlipnik, Č.; Bren, U. Prioritisation of Compounds for 3CLpro Inhibitor Development on SARS-CoV-2 Variants. Molecules 2021, 26, 3003. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A Web-Based Graphical User Interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef]
- Wu, E.L.; Cheng, X.; Jo, S.; Rui, H.; Song, K.C.; Dávila-Contreras, E.M.; Qi, Y.; Lee, J.; Monje-Galvan, V.; Venable, R.M.; et al. CHARMM-GUI Membrane Builder toward Realistic Biological Membrane Simulations. J. Comput. Chem. 2014, 35, 1997–2004. [Google Scholar] [CrossRef]
- Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B.L.; Grubmüller, H.; MacKerell, A.D. CHARMM36m: An Improved Force Field for Folded and Intrinsically Disordered Proteins. Nat. Methods 2017, 14, 71–73. [Google Scholar] [CrossRef]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable Molecular Dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef]
- Phillips, J.C.; Hardy, D.J.; Maia, J.D.C.; Stone, J.E.; Ribeiro, J.V.; Bernardi, R.C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; et al. Scalable Molecular Dynamics on CPU and GPU Architectures with NAMD. J. Chem. Phys. 2020, 153, 044130. [Google Scholar] [CrossRef]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef]
- Huang, D.; Caflisch, A. Efficient Evaluation of Binding Free Energy Using Continuum Electrostatics Solvation. J. Med. Chem. 2004, 47, 5791–5797. [Google Scholar] [CrossRef] [PubMed]
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the Scope of the Protein–Ligand Interaction Profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, W530–W534. [Google Scholar] [CrossRef] [PubMed]
- Hale, J.J.; Neway, W.; Mills, S.G.; Hajdu, R.; Ann Keohane, C.; Rosenbach, M.; Milligan, J.; Shei, G.-J.; Chrebet, G.; Bergstrom, J.; et al. Potent S1P Receptor Agonists Replicate the Pharmacologic Actions of the Novel Immune Modulator FTY720. Bioorg. Med. Chem. Lett. 2004, 14, 3351–3355. [Google Scholar] [CrossRef]
- Saha, A.K.; Yu, X.; Lin, J.; Lobera, M.; Sharadendu, A.; Chereku, S.; Schutz, N.; Segal, D.; Marantz, Y.; McCauley, D.; et al. Benzofuran Derivatives as Potent, Orally Active S1P1 Receptor Agonists: A Preclinical Lead Molecule for MS. ACS Med. Chem. Lett. 2011, 2, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.; Foley, D.; Naylor, C.; Robinson, C.; Riley, J.; Epemolu, O.; Scullion, P.; Shishikura, Y.; Katz, E.; McLean, W.H.I.; et al. Discovery of Super Soft-Drug Modulators of Sphingosine-1-Phosphate Receptor 1. Bioorg. Med. Chem. Lett. 2018, 28, 3255–3259. [Google Scholar] [CrossRef] [PubMed]
- Evindar, G.; Bernier, S.G.; Kavarana, M.J.; Doyle, E.; Lorusso, J.; Kelley, M.S.; Halley, K.; Hutchings, A.; Wright, A.D.; Saha, A.K.; et al. Synthesis and Evaluation of Alkoxy-Phenylamides and Alkoxy-Phenylimidazoles as Potent Sphingosine-1-Phosphate Receptor Subtype-1 Agonists. Bioorg. Med. Chem. Lett. 2009, 19, 369–372. [Google Scholar] [CrossRef]
- He, X.; Wang, L.; Zheng, Z.; Xiao, J.; Zhong, W.; Li, S. Novel Immunomodulators Based on an Oxazolin-2-One-4-Carboxamide Scaffold. Bioorg. Med. Chem. Lett. 2012, 22, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Hale, J.J.; Lynch, C.L.; Neway, W.; Mills, S.G.; Hajdu, R.; Keohane, C.A.; Rosenbach, M.J.; Milligan, J.A.; Shei, G.-J.; Parent, S.A.; et al. A Rational Utilization of High-Throughput Screening Affords Selective, Orally Bioavailable 1-Benzyl-3-Carboxyazetidine Sphingosine-1-Phosphate-1 Receptor Agonists. J. Med. Chem. 2004, 47, 6662–6665. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, H.; Yu, Y.; Gropler, R.J.; Klein, R.S.; Tu, Z. Synthesis and Evaluation of Highly Selective Quinazoline-2,4-Dione Ligands for Sphingosine-1-Phosphate Receptor 2. RSC Med. Chem. 2022, 13, 202–207. [Google Scholar] [CrossRef]
- Luo, Z.; Yue, X.; Yang, H.; Liu, H.; Klein, R.S.; Tu, Z. Design and Synthesis of Pyrazolopyridine Derivatives as Sphingosine 1-Phosphate Receptor 2 Ligands. Bioorg. Med. Chem. Lett. 2018, 28, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.; Rosenberg, A.; Liu, H.; Han, J. Compositions for Binding Sphingosine-1-Phosphate Receptor 1 (S1P1), Imaging of S1P1, and Methods of Use Thereof. US10676467B2, 9 June 2020. [Google Scholar]
- Rifai, E.A.; van Dijk, M.; Vermeulen, N.P.E.; Yanuar, A.; Geerke, D.P. A Comparative Linear Interaction Energy and MM/PBSA Study on SIRT1–Ligand Binding Free Energy Calculation. J. Chem. Inf. Model. 2019, 59, 4018–4033. [Google Scholar] [CrossRef] [PubMed]
SNPs | |||
---|---|---|---|
Reference SNP | Variant | Frequency | Potential Impact |
rs1299231517 | M1243.32T | 0.000004 | possibly damaging |
rs1323297044 | V1323.40M | 0.000004 | probably damaging |
rs1223284736 | F2055.42L | 0.000004 | possibly damaging |
rs1202284551 | T2075.44I | 0.00011 | benign |
rs1209378712 | T2115.48P | 0.000008 | possibly damaging |
rs201200746 | A2937.35T | 0.000004 | benign |
rs1461490142 | A2937.35V | 0.000007 | benign |
Ligand | Variant | Purpose |
---|---|---|
S1P | water | To obtain non-bound ligand energies (LIE calculations) |
fingolimod | ||
siponimod | ||
ozanimod | ||
ponesimod | ||
S1P | WT | Optimization of α and β parameters (S1P, fingolimod, ponesimod), comparison of the mutation impact (all) |
fingolimod | ||
siponimod | ||
ozanimod | ||
ponesimod | ||
S1P | N1012.60I | Validation of optimized α and β parameters |
N1012.60K | ||
E1213.29A | ||
E1213.29Q | ||
W2696.48A | ||
W2696.48E | ||
R2927.34A | ||
R2927.34V | ||
M1243.32T | Investigated SNPs | |
S1P | V1323.40M | |
fingolimod | F2055.42L | |
siponimod | T2075.44I | |
ozanimod | T2115.48P | |
ponesimod | A2937.35T | |
A2937.35V |
S1P | Fingolimod Phosphate | Ponesimod | |||
---|---|---|---|---|---|
IC50 [M] | ΔGexp [kcal/mol] | IC50 [M] | ΔGexp [kcal/mol] | IC50 [M] | ΔGexp [kcal/mol] |
1.60 x 10-10 [35] | −13.90 | 2.80 x 10-10 [36] | −13.56 | 1.30 x 10-8 [37] | −11.19 |
4.70 x 10-10 [38] | −13.24 | 2.10 x 10-9 [39] | −12.31 | ||
6.70 x 10-10 [40] | −13.02 | 2.20 x 10-9 [39] | −12.29 | ||
1.40 x 10-9 [41] | −12.56 | ||||
1.40 x 10-9 [42] | −12.56 | ||||
1.40 x 10-9 [43] | −12.56 | ||||
average | −12.97 | average | −12.72 | ||
st. dev. | 0.49 | st. dev. | 0.59 |
Variant | Average Binding Free Energy [kcal/mol] | Standard Deviation |
---|---|---|
WT | −13.76 | 1.42 |
N1012.60I | −12.11 | 1.66 |
N1012.60K | −13.59 | 0.84 |
E1213.29A | −11.58 | 3.32 |
E1213.29Q | −12.24 | 3.11 |
W2696.48A | −11.18 | 0.94 |
W2696.48E | −14.15 | 2.14 |
R2927.34A | −13.48 | 1.72 |
R2927.34V | −13.23 | 1.77 |
Variant | S1P | Fingolimod | Siponimod | Ozanimod | Ponesimod | |||||
---|---|---|---|---|---|---|---|---|---|---|
Average | St. dev. | Average | St. dev. | Average | St. dev. | Average | St. dev. | Average | St. dev. | |
WT | −13.76 | 1.42 | −11.60 | 2.00 | −14.62 | 0.37 | −8.22 | 0.54 | −11.25 | 0.40 |
M1243.32T | −13.56 | 1.03 | −11.29 | 0.68 | −15.99 | 0.62 | −12.72 | 0.26 | −13.18 | 0.50 |
V1323.40M | −12.82 | 0.85 | −10.95 | 0.67 | −16.12 | 1.01 | −12.76 | 0.57 | −13.47 | 0.46 |
F2055.42L | −13.51 | 1.54 | −10.83 | 1.19 | −16.72 | 0.49 | −12.56 | 0.74 | −13.90 | 0.95 |
T2075.44I | −13.29 | 0.98 | −11.36 | 1.00 | −16.55 | 0.55 | −11.85 | 0.54 | −14.06 | 0.32 |
T2115.48P | −13.24 | 0.43 | −11.88 | 0.85 | −15.98 | 0.79 | −12.37 | 0.76 | −13.12 | 0.46 |
A2937.35T | −12.50 | 1.40 | −11.87 | 0.87 | −16.71 | 0.92 | −12.31 | 0.42 | −14.09 | 0.56 |
A2937.35V | −12.67 | 0.78 | −11.72 | 0.99 | −16.52 | 0.44 | −12.38 | 0.69 | −14.21 | 0.52 |
S1P | Fingolimod | Siponimod | Ozanimod | ||||
---|---|---|---|---|---|---|---|
Energy [kJ/mol] | RMSD [Å] | Energy [kJ/mol] | RMSD [Å] | Energy [kJ/mol] | RMSD [Å] | Energy [kJ/mol] | RMSD [Å] |
−12.52 | 3.43 | −8.40 | 4.09 | −24.00 | 1.09 | −18.45 | 1.25 |
−11.98 | 3.32 | −8.26 | 2.71 | −22.95 | 0.97 | −18.15 | 2.61 |
−11.54 | 2.41 | −8.14 | 2.46 | −21.07 | 1.32 | −17.70 | 1.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kores, K.; Lešnik, S.; Bren, U. Computational Analysis of S1PR1 SNPs Reveals Drug Binding Modes Relevant to Multiple Sclerosis Treatment. Pharmaceutics 2024, 16, 1413. https://doi.org/10.3390/pharmaceutics16111413
Kores K, Lešnik S, Bren U. Computational Analysis of S1PR1 SNPs Reveals Drug Binding Modes Relevant to Multiple Sclerosis Treatment. Pharmaceutics. 2024; 16(11):1413. https://doi.org/10.3390/pharmaceutics16111413
Chicago/Turabian StyleKores, Katarina, Samo Lešnik, and Urban Bren. 2024. "Computational Analysis of S1PR1 SNPs Reveals Drug Binding Modes Relevant to Multiple Sclerosis Treatment" Pharmaceutics 16, no. 11: 1413. https://doi.org/10.3390/pharmaceutics16111413
APA StyleKores, K., Lešnik, S., & Bren, U. (2024). Computational Analysis of S1PR1 SNPs Reveals Drug Binding Modes Relevant to Multiple Sclerosis Treatment. Pharmaceutics, 16(11), 1413. https://doi.org/10.3390/pharmaceutics16111413