Tailoring Mesalazine Nanosuspension Using Chitosan Polyelectrolyte Complexes with Alginate and Alginate/Hydroxypropyl-Methylcellulose Phthalate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaluation of Mesalazine Solubility at Different pH Values
2.2. Preparation and Characterization of MSZ Nanosuspensions by Bottom–Up Process
2.2.1. Determination of the Percentage of Precipitated Particles
2.2.2. Size, Polydispersity Index, and Zeta Potential Analyses of Mesalazine Nanosuspensions
2.2.3. Evaluation of the Redispersibility of Nanosuspensions
2.3. Preparation and Characterization of MSZ Nanosuspensions Associated with Polyelectrolytes
2.3.1. Preparation of Polymeric Dispersions
2.3.2. Preparation of CS/ALG and CS/ALG/HP Systems Without the Drug
2.3.3. Development Systems with Addition of Solubilized Drug and in Nanosuspension Containing Polymeric Blend of CS/ALG and CS/ALG/HPMC
2.3.4. Preparation of Binary and Ternary Polymeric Systems with the Drug in Nanosuspension
2.3.5. Size, Polydispersity Index, and Zeta Potential Analyses of Mesalazine Nanosuspensions and Binary and Ternary Systems Without the Drug and with the Drug in Nanosuspension and Molecularly Dispersed
2.3.6. Evaluation of the Association Efficiency of Mesalazine in Molecular and Nanosuspension Forms to Polymeric Systems
2.3.7. Morphological Analysis
3. Results and Discussion
3.1. Development of MSZ Nanosuspensions
3.2. Nanosuspension Coated with CS/ALG or CS/ALG/HP Polymeric Blends
3.3. Stability in Binary and Ternary Systems
3.4. Comparison of Size Values (Intensity and Number) of Binary and Ternary Systems
3.5. Evaluation of the Association Efficiency of Solubilized Mesalazine and Nanosuspensions Incorporated in Binary (CS/ALG) and Ternary (CS/ALG/HP) Polymeric Systems
3.6. Morphological Analysis of Mesalazine and the Binary (CS/ALG) and Ternary (CS/ALG/HP) Polymeric Systems
4. Conclusions
- The magnitude of the size reduction in the NS was due to the increase in the CS proportion (at pH 4: ~1238 nm to 500 nm and 3720 to 424 nm for the binary and ternary systems, respectively; at pH 6.0: ~1358 nm to 276 nm and 1686 to 219 for the binary and ternary systems, respectively).
- The magnitude of the reduction in PDI of the NS was due to the increase in the CS proportion (at pH 4: ~0.9 to 0.6 for the binary system; at pH 6.0: ~0.9 to 0.5 and 1.0 to 0.5 for the binary and ternary systems, respectively).
- The charge inversion of the NS was due to the increase in the CS proportion (at pH 4: ~−30.8 mV to +31.9 mV and −28.4 mV to + 30.7 mV for the binary and ternary systems, respectively; at pH 6.0: ~−37.4 mV to + 24.6 mV and −36.2 to +30.6 for the binary and ternary systems, respectively).
- At pH 4, increasing CS proportions in the NS slightly increased the AE%: ~57.4% to 61.7% and ~56.2% to 59.5% for the binary and ternary systems, respectively. At pH 6.0, there was a decrease in the AE%: ~57.3% to 43.4% and ~50.9% to 43% for the binary and ternary systems, respectively.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, A.M.; Carvalho, S.G.; Meneguin, A.B.; Sábio, R.M.; Gremião, M.P.D.; Chorilli, M. Oral delivery of micro/nanoparticulate systems based on natural polysaccharides for intestinal diseases therapy: Challenges, advances and future perspectives. J. Control. Release 2021, 334, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Calderón, P.; Núñez, P.; Nos, P.; Quera, R. Personalised Therapy in Inflammatory Bowel Disease. Gastroenterol. Hepatol. 2024, 47, 763–770. [Google Scholar] [CrossRef]
- Kim, K.U.; Kim, J.; Kim, W.H.; Min, H.; Choi, C.H. Treatments of Inflammatory Bowel Disease toward Personalized Medicine. Arch. Pharm. Res. 2021, 44, 293–309. [Google Scholar] [CrossRef]
- Hua, S.; Marks, E.; Schneider, J.J.; Keely, S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue. Nanomedicine 2015, 11, 1117–1132. [Google Scholar] [CrossRef] [PubMed]
- Boni, F.I.; Cury, B.S.F.; Ferreira, N.N.; Teixeira, D.A.; Gremião, M.P.D. Computational and experimental approaches for chitosan-based nanoPECs design: Insights on a deeper comprehension of nanostructure formation. Carbohydr. Polym. 2021, 254, 117444. [Google Scholar] [CrossRef]
- Viscido, A.; Capannolo, A.; Latella, G.; Caprilli, R.; Frieri, G. Nanotechnology in the treatment of inflammatory bowel diseases. J. Crohn’s Colitis 2014, 8, 903–918. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.M.; Carvalho, F.C.; Teixeira, D.A.; Azevedo, D.L.; de Barros, W.M.; Gremião, M.P.D. Computational and experimental approaches for development of methotrexate nanosuspensions by botton-up nanoprecipitation. Int. J. Pharm. 2017, 524, 330–338. [Google Scholar] [CrossRef]
- Chen, H.; Wan, J.; Wang, Y.; Mou, D.; Liu, H.; Xu, H.; Yang, X. A facile nanoaggregation strategy for oral delivery of hydrophobic drugs by utilizing acid-base neutralization reactions. Nanotechnology 2008, 19, 375104. [Google Scholar] [CrossRef] [PubMed]
- Rabinow, B. Nanosuspensions in drug delivery. Nat. Rev. Drug Discov. 2004, 3, 785–796. [Google Scholar] [CrossRef]
- Hameedat, F.; Pinto, S.; Marques, J.; Dias, S.; Sarmento, B. Functionalized zein nanoparticles targeting neonatal Fc receptor to enhance lung absorption of peptides. Drug Deliv. Transl. Res. 2023, 13, 1699–1715. [Google Scholar] [CrossRef]
- Carvalho, S.G.; Haddad, F.F.; Dos Santos, A.M.; Scarim, C.B.; Ferreira, L.M.B.; Meneguin, A.B.; Chorilli, M.; Gremião, M.P.D. Chitosan surface modification modulates the mucoadhesive, permeation and anti-angiogenic properties of gellan gum/bevacizumab nanoparticles. Int. J. Biol. Macromol. 2024, 1, 130272. [Google Scholar] [CrossRef]
- Ferreira, L.M.B.; Cardoso, V.M.O.; dos Santos Pedriz, I.; Souza, M.P.C.; Ferreira, N.N.; Chorilli, M.; Gremião, M.P.D.; Zucolotto, V. Understanding Mucus Modulation Behavior of Chitosan Oligomers and Dextran Sulfate Combining Light Scattering and Calorimetric Observations. Carbohydr. Polym. 2023, 306, 120613. [Google Scholar] [CrossRef]
- Isadora Boni, F.; Noronha Ferreira, N.; Fernanda Rodero, C.; Franciane Leão, A.; Stringhetti Ferreira Cury, B.; Palmira Daflon Gremião, M. Multilayered Polymer Coating Modulates Mucoadhesive and Biological Properties of Camptothecin-Loaded Lipid Nanocapsules. Int. J. Pharm. 2023, 635, 122792. [Google Scholar] [CrossRef]
- Schaffazick, S.R.; Guterres, S.S.; Freitas, L.D.L.; Ohlmann, A.R. Caracterização e estabilidade físico-química de sistemas poliméricos nanoparticulados para administração de fármacos. Química Nova 2003, 26, 726–737. [Google Scholar] [CrossRef]
- Gülbağ, S.; Oktay, P.A.N.; Karaküçük, A.E.; Çelebi, N. Formulation Strategies of Nanosuspensions for Various Administration Routes. Pharmaceutics 2023, 15, 1520. [Google Scholar] [CrossRef]
- Rossier, B.; Jordan, O.; Allémann, E.; Rodríguez-Nogales, C. Nanocrystals and Nanosuspensions: An Exploration from Classic Formulations to Advanced Drug Delivery Systems. Drug Deliv. Transl. Res. 2024, 14, 3438–3451. [Google Scholar] [CrossRef]
- Liu, T.; Yu, X.; Yin, H. Study of Top-down and Bottom-up Approaches by Using Design of Experiment (DoE) to Produce Meloxicam Nanocrystal Capsules. AAPS PharmSciTech 2020, 21, 79. [Google Scholar] [CrossRef]
- Bi, Y.; Liu, J.; Wang, J.; Hao, J.; Li, F.; Wang, T.; Sun, H.W.; Guo, F. Particle Size Control and the Interactions between Drug and Stabilizers in an Amorphous Nanosuspension System. J. Drug Deliv. Sci. Technol. 2015, 29, 167–172. [Google Scholar] [CrossRef]
- Mahesh, K.V.; Singh, S.K.; Gulati, M. A Comparative Study of Top-down and Bottom-up Approaches for the Preparation of Nanosuspensions of Glipizide. Powder Technol. 2014, 256, 436–449. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Y.; Zhang, L.; Wang, Q.; Zhang, D. Stability of Nanosuspensions in Drug Delivery. J. Control. Release 2013, 172, 1126–1141. [Google Scholar] [CrossRef]
- Ferreira, L.M.B.; Dos Santos, A.M.; Boni, F.I.; Dos Santos, K.C.; Robusti, L.M.G.; de Souza, M.P.; Ferreira, N.N.; Carvalho, S.G.; Cardoso, V.M.; Chorilli, M.; et al. Design of chitosan-based particle systems: A review of the physicochemical foundations for tailored properties. Carbohydr. Polym. 2020, 250, 116968. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Wang, Y.; Shen, Y.; Ao, H.; Guo, Y.; Han, M.; Wang, X. Preparation of High Drug-Loading Celastrol Nanosuspensions and Their Anti-Breast Cancer Activities in Vitro and in Vivo. Sci. Rep. 2020, 10, 8851. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.M.B.; Zucolotto, V. Chitosan-Based Nanomedicines: A Review of the Main Challenges for Translating the Science of Polyelectrolyte Complexation into Innovative Pharmaceutical Products. Carbohydr. Polym. Technol. Appl. 2024, 7, 100441. [Google Scholar] [CrossRef]
pH | Concentration (mg/mL) | Size (nm) | PDI | Zeta Potential (mV) |
---|---|---|---|---|
4 | 1.66 | 366.2 ± 27.3 | 0.4 ± 0.2 | −8.00 ± 2.9 |
6 | 1.66 | 390.8 ± 11.2 | 0.6 ± 0.2 | −1.9 ±0.42 |
Sample | Time (h) | Percentage of MSZ in Precipitate (%) |
---|---|---|
NS pH 4 | 0 | 24.5 |
24 | 61.6 | |
168 | 67.1 | |
NS pH 6 | 0 | 48 |
24 | 44 | |
168 | 45.1 |
pH of Preparation | Association Efficiency (%) | |
---|---|---|
MSZ | ||
Solubilized MSZ (0.8 m/mL) | NS (1.66 mg/mL) | |
Without Polyelectrolytes | ||
4 | - | 65.1 |
6 | - | 44 |
Binary system: CS/ALG (ratio 2:8) | ||
4 | 30.5 | 57.4 |
6 | 29.5 | 57.3 |
Binary system: CS/ALG (ratio 8:2) | ||
4 | 28.3 | 61.7 |
6 | 29.5 | 43.4 |
Ternary system: CS/ALG/HP (2:4:4) | ||
4 | 30.6 | 56.2 |
6 | 28.3 | 50.9 |
Ternary system: CS/ALG/HP (8:1:1) | ||
4 | 29.1 | 59.5 |
6 | 28.4 | 43.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, A.A.R.; Aparecida, J.V.M.; Ramalho, M.E.; Ferreira, L.M.B.; Gremião, M.P.D. Tailoring Mesalazine Nanosuspension Using Chitosan Polyelectrolyte Complexes with Alginate and Alginate/Hydroxypropyl-Methylcellulose Phthalate. Pharmaceutics 2024, 16, 1489. https://doi.org/10.3390/pharmaceutics16121489
Pereira AAR, Aparecida JVM, Ramalho ME, Ferreira LMB, Gremião MPD. Tailoring Mesalazine Nanosuspension Using Chitosan Polyelectrolyte Complexes with Alginate and Alginate/Hydroxypropyl-Methylcellulose Phthalate. Pharmaceutics. 2024; 16(12):1489. https://doi.org/10.3390/pharmaceutics16121489
Chicago/Turabian StylePereira, Amélia Aparecida Rocca, José Vitor Melchiades Aparecida, Maria Eduarda Ramalho, Leonardo Miziara Barboza Ferreira, and Maria Palmira Daflon Gremião. 2024. "Tailoring Mesalazine Nanosuspension Using Chitosan Polyelectrolyte Complexes with Alginate and Alginate/Hydroxypropyl-Methylcellulose Phthalate" Pharmaceutics 16, no. 12: 1489. https://doi.org/10.3390/pharmaceutics16121489
APA StylePereira, A. A. R., Aparecida, J. V. M., Ramalho, M. E., Ferreira, L. M. B., & Gremião, M. P. D. (2024). Tailoring Mesalazine Nanosuspension Using Chitosan Polyelectrolyte Complexes with Alginate and Alginate/Hydroxypropyl-Methylcellulose Phthalate. Pharmaceutics, 16(12), 1489. https://doi.org/10.3390/pharmaceutics16121489