Effect of Drug Loading in Mesoporous Silica on Amorphous Stability and Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nitrogen Adsorption
2.2. Determination of the Monomolecular Loading Capacity and Pore Filling Capacity
2.3. X-ray Powder Diffraction (XRPD)
2.4. Non-Sink Dissolution Experiment
2.5. Stability and Storage Conditions
3. Results
3.1. Loading Capacity/Drug Loading
3.2. Storage Stability/Physical Stability
3.3. Drug Release
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sastry, S.V.; Nyshadham, J.R.; Fix, J.A. Recent technological advances in oral drug delivery—A review. Pharm. Sci. Technol. Today 2000, 3, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Stegemann, S.; Leveiller, F.; Franchi, D.; De Jong, H.; Lindén, H. When poor solubility becomes an issue: From early stage to proof of concept. Eur. J. Pharm. Sci. 2007, 31, 249–261. [Google Scholar] [CrossRef]
- Artursson, P.; Karlsson, J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun. 1991, 175, 880–885. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Engers, D.; Teng, J.; Jimenez-Novoa, J.; Gent, P.; Hossack, S.; Campbell, C.; Thomson, J.; Ivanisevic, I.; Templeton, A.; Byrn, S. A Solid-State Approach to Enable Early Development Compounds: Selection and Animsal Bioavailability Studies of an Itraconazole Amorphous Solid Dispersion. J. Pharm. Sci. 2010, 99, 3901–3922. [Google Scholar] [CrossRef] [PubMed]
- Bukara, K.; Schueller, L.; Rosier, J.; Martens, M.A.; Daems, T.; Verheyden, L.; Eelen, S.; Van Speybroeck, M.; Libanati, C.; Martens, J.A. Ordered mesoporous silica to enhance the bioavailability of poorly water-soluble drugs: Proof of concept in man. Eur. J. Pharm. Biopharm. 2016, 108, 220–225. [Google Scholar] [CrossRef]
- Newa, M.; Bhandari, K.H.; Oh, D.H.; Kim, Y.R.; Sung, J.H.; Kim, J.O.; Woo, J.S.; Choi, H.G.; Yong, C.S. Enhanced dissolution of ibuprofen using solid dispersion with poloxamer 407. Arch. Pharmacal Res. 2008, 31, 1497–1507. [Google Scholar] [CrossRef]
- Hong, S.; Shen, S.; Tan, D.C.T.; Ng, W.K.; Liu, X.; Chia, L.S.O.; Irwan, A.W.; Tan, R.; Nowak, S.A.; Marsh, K.; et al. High drug load, stable, manufacturable and bioavailable fenofibrate formulations in mesoporous silica: A comparison of spray drying versus solvent impregnation methods. Drug Deliv. 2016, 23, 316–327. [Google Scholar] [CrossRef]
- Mellaerts, R.; Mols, R.; Jammaer, J.A.; Aerts, C.A.; Annaert, P.; Van Humbeeck, J.; Van den Mooter, G.; Augustijns, P.; Martens, J.A. Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica. Eur. J. Pharm. Biopharm. 2008, 69, 223–230. [Google Scholar] [CrossRef]
- U.S. Food and Drug Adminstration. GRAS Substances (SCOGS) Database. 2015. Available online: https://www.fda.gov/food/generally-recognized-safe-gras/gras-substances-scogs-database (accessed on 17 January 2024).
- Christoforidou, T.; Giasafaki, D.; Andriotis, E.G.; Bouropoulos, N.; Theodoroula, N.F.; Vizirianakis, I.S.; Steriotis, T.; Charalambopoulou, G.; Fatouros, D.G. Oral drug delivery systems based on ordered mesoporous silica nanoparticles for modulating the release of aprepitant. Int. J. Mol. Sci. 2021, 22, 1896. [Google Scholar] [CrossRef]
- Rengarajan, G.T.; Enke, D.; Steinhart, M.; Beiner, M. Stabilization of the amorphous state of pharmaceuticals in nanopores. J. Mater. Chem. 2008, 18, 2537–2539. [Google Scholar] [CrossRef]
- Physical Chemistry Division Commission on Colloid; McCusker, L.; Liebau, F.; Engelhardt, G. Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts:(IUPAC recommendations 2001). Microporous Mesoporous Mater. 2003, 58, 3–13. [Google Scholar]
- Antonino, R.S.; Ruggiero, M.; Song, Z.; Nascimento, T.L.; Lima, E.M.; Bohr, A.; Knopp, M.M.; Löbmann, K. Impact of drug loading in mesoporous silica-amorphous formulations on the physical stability of drugs with high recrystallization tendency. Int. J. Pharm. X 2019, 1, 100026. [Google Scholar] [CrossRef] [PubMed]
- Kramarczyk, D.; Knapik-Kowalczuk, J.; Smolka, W.; Monteiro, M.F.; Tajber, L.; Paluch, M. Inhibition of celecoxib crystallization by mesoporous silica–Molecular dynamics studies leading to the discovery of the stabilization origin. Eur. J. Pharm. Sci. 2022, 171, 106132. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.K.; Bogner, R.H. Spontaneous crystalline-to-amorphous phase transformation of organic or medicinal compounds in the presence of porous media, part 1: Thermodynamics of spontaneous amorphization. J. Pharm. Sci. 2011, 100, 2801–2815. [Google Scholar] [CrossRef]
- Limnell, T.; Santos, H.A.; Mäkilä, E.; Heikkilä, T.; Salonen, J.; Murzin, D.Y.; Kumar, N.; Laaksonen, T.; Peltonen, L.; Hirvonen, J. Drug delivery formulations of ordered and nonordered mesoporous silica: Comparison of three drug loading methods. J. Pharm. Sci. 2011, 100, 3294–3306. [Google Scholar] [CrossRef] [PubMed]
- Ahern, R.J.; Hanrahan, J.P.; Tobin, J.M.; Ryan, K.B.; Crean, A.M. Comparison of fenofibrate–mesoporous silica drug-loading processes for enhanced drug delivery. Eur. J. Pharm. Sci. 2013, 50, 400–409. [Google Scholar] [CrossRef]
- Mellaerts, R.; Aerts, C.A.; Humbeeck, J.V.; Augustijns, P.; Den Mooter, G.V.; Martens, J.A. Enhanced release of itraconazole from ordered mesoporous SBA-15 silica materials. Chem. Commun. 2007, 1375–1377. [Google Scholar] [CrossRef]
- Hempel, N.-J.; Brede, K.; Olesen, N.E.; Genina, N.; Knopp, M.M.; Lobmann, K. A fast and reliable DSC-based method to determine the monomolecular loading capacity of drugs with good glass-forming ability in mesoporous silica.(Report). Int. J. Pharm. 2018, 544, 153. [Google Scholar] [CrossRef]
- Bavnhøj, C.G.; Knopp, M.M.; Madsen, C.M.; Löbmann, K. The role interplay between mesoporous silica pore volume and surface area and their effect on drug loading capacity. Int. J. Pharm. X 2019, 1, 100008. [Google Scholar] [CrossRef]
- Brás, A.R.; Merino, E.G.; Neves, P.D.; Fonseca, I.M.; Dionísio, M.; Schönhals, A.; Correia, N.T. Amorphous ibuprofen confined in nanostructured silica materials: A dynamical approach. J. Phys. Chem. C 2011, 115, 4616–4623. [Google Scholar] [CrossRef]
- Le, T.-T.; Elzhry Elyafi, A.K.; Mohammed, A.R.; Al-Khattawi, A. Delivery of poorly soluble drugs via mesoporous silica: Impact of drug overloading on release and thermal profiles. Pharmaceutics 2019, 11, 269. [Google Scholar] [CrossRef]
- Noyes, A.A.; Whitney, W.R. The Rate of Solution of Solid Substances in Their Own Solutions. J. Am. Chem. Soc. 1897, 19, 930–934. [Google Scholar] [CrossRef]
- Riikonen, J.; Correia, A.; Kovalainen, M.; Näkki, S.; Lehtonen, M.; Leppänen, J.; Rantanen, J.; Xu, W.; Araújo, F.; Hirvonen, J. Systematic in vitro and in vivo study on porous silicon to improve the oral bioavailability of celecoxib. Biomaterials 2015, 52, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Dedroog, S.; Pas, T.; Vergauwen, B.; Huygens, C.; Van den Mooter, G. Solid-state analysis of amorphous solid dispersions: Why DSC and XRPD may not be regarded as stand-alone techniques. J. Pharm. Biomed. Anal. 2020, 178, 112937. [Google Scholar] [CrossRef] [PubMed]
- Andronis, V.; Yoshioka, M.; Zografi, G. Effects of Sorbed Water on the Crystallization of Indomethacin from the Amorphous State. J. Pharm. Sci. 1997, 86, 346–351. [Google Scholar] [CrossRef]
- Shamblin, S.L.; Zografi, G. The effects of absorbed water on the properties of amorphous mixtures containing sucrose. Pharm. Res. 1999, 16, 1119–1124. [Google Scholar] [CrossRef]
- Zhuravlev, L. Concentration of hydroxyl groups on the surface of amorphous silicas. Langmuir 1987, 3, 316–318. [Google Scholar] [CrossRef]
- Zharavlev, L. The surface chemistry of amorphous silica. Zhuravlev Model Colloids Surf. A 2000, 173, 1–38. [Google Scholar] [CrossRef]
- Palmelund, H.; Madsen, C.M.; Plum, J.; Mullertz, A.; Rades, T. Studying the Propensity of Compounds to Supersaturate: A Practical and Broadly Applicable Approach. J Pharm Sci 2016, 105, 3021–3029. [Google Scholar] [CrossRef]
- Zhu, W.; Zhao, Q.; Sun, C.; Zhang, Z.; Jiang, T.; Sun, J.; Li, Y.; Wang, S. Mesoporous carbon with spherical pores as a carrier for celecoxib with needle-like crystallinity: Improve dissolution rate and bioavailability. Mater. Sci. Eng. C 2014, 39, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Hancock, B.C.; Zografi, G. The Relationship Between the Glass Transition Temperature and the Water Content of Amorphous Pharmaceutical Solids. Pharm. Res. 1994, 11, 471–477. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, C.A.; Ahern, R.J.; Dontireddy, R.; Ryan, K.B.; Crean, A.M. Mesoporous silica formulation strategies for drug dissolution enhancement: A review. Expert Opin. Drug Deliv. 2016, 13, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Chirravuri, S.S.; Shastri, N.R. Impact of surface area of silica particles on dissolution rate and oral bioavailability of poorly water soluble drugs: A case study with aceclofenac. Int. J. Pharm. 2014, 461, 459–468. [Google Scholar] [CrossRef]
CCX | Tg, ∆Cp | 59.0 °C, 0.41 J∙g−1∙°C−1 |
Tm, ∆Hm | 162.4 °C, 95.9 J∙g−1 | |
Solubility | 1.1 ± 0.1 µg∙mL−1 | |
Mw | 381.4 g∙mol−1 | |
ρamorphous | 1.35 a g∙cm−3 | |
Min. proj. area | 0.57 b nm2 | |
Max. proj. area | 0.99 b nm2 | |
tMLC, min/max | 22.2/33.1 wt.% | |
tPFC | 48.4 wt.% | |
xMLC | 33.5 (31.7–35.1) wt.% | |
SLC | Surface area c | 443.68 m2∙g−1 |
Particle size d | Approx. 10 µm | |
Pore volume d | 0.73 cm3∙g−1 |
Loading Degree (wt.%) | Day “0” | 18 Months, 40 °C, 0% RH | 18 Months, 40 °C, 75% RH | |||
---|---|---|---|---|---|---|
Tg | Tm | Tg | Tm | Tg | Tm | |
PFC | + | ÷ | + | + | ÷ | + |
MLC-PFC | + | ÷ | + | ÷ | ÷ | + |
MLC | ÷ | ÷ | ÷ | ÷ | ÷ | + |
<MLC | ÷ | ÷ | ÷ | ÷ | ÷ | + |
CCX Loading | Cmax (µg/mL) | Tmax (min) | Diss. Rate (µg/mL/min) |
---|---|---|---|
PFC (day 0) | 6.0 ± 0.5 | 7.2 ± 0.3 | 1.9 ± 0.2 |
40 °C/0% RH 18 mo. | 2.3 ± 0.4 | 32.7 ± 10.2 | 0.5 ± 0.1 |
40 °C/75% RH, 18 mo. | 1.0 ± 0.2 | 58.7 ± 2.4 | Not detectable |
MLC-PFC (day 0) | 15.4 ± 0.7 | 5.9 ± 0.5 | 5.0 ± 0.1 |
40 °C/0% RH 18 mo. | 13.8 ± 1.6 | 5.8 ± 0.6 | 4.7 ± 0.6 |
40 °C/75% RH, 18 mo. | 2.6 ± 0.2 | 4.8 ± 0.5 | 1.3 ± 0.0 |
MLC (day 0) | 16.1 ± 0.7 | 4.9 ± 0.3 | 6.8 ± 0.4 |
40 °C/0%RH 18 mo. | 17.3 ± 1.9 | 5.3 ± 1.3 | 7.1 ± 1.1 |
40 °C/75% RH, 18 mo. | 4.9 ± 0.7 | 3.7 ± 0.3 | 2.6 ± 0.4 |
<MLC (day 0) | 17.3 ± 0.6 | 4.4 ± 0.5 | 8.7 ± 0.2 |
40 °C/0% RH 18 mo. | 17.6 ± 0.6 | 4.1 ± 0.6 | 9.1 ± 1.1 |
40 °C/75% RH, 18 mo. | 11.1 ± 0.9 | 3.4 ± 0.3 | 6.0 ± 0.8 |
Amorphous CCX (day 0) | 3.6 ± 0.5 | 20.2 ± 2.0 | 0.8 ± 0.0 |
Crystalline CCX | 1.1 ± 0.1 | Not determined | Not determined |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bavnhøj, C.G.; Knopp, M.M.; Löbmann, K. Effect of Drug Loading in Mesoporous Silica on Amorphous Stability and Performance. Pharmaceutics 2024, 16, 163. https://doi.org/10.3390/pharmaceutics16020163
Bavnhøj CG, Knopp MM, Löbmann K. Effect of Drug Loading in Mesoporous Silica on Amorphous Stability and Performance. Pharmaceutics. 2024; 16(2):163. https://doi.org/10.3390/pharmaceutics16020163
Chicago/Turabian StyleBavnhøj, Christoffer G., Matthias M. Knopp, and Korbinian Löbmann. 2024. "Effect of Drug Loading in Mesoporous Silica on Amorphous Stability and Performance" Pharmaceutics 16, no. 2: 163. https://doi.org/10.3390/pharmaceutics16020163
APA StyleBavnhøj, C. G., Knopp, M. M., & Löbmann, K. (2024). Effect of Drug Loading in Mesoporous Silica on Amorphous Stability and Performance. Pharmaceutics, 16(2), 163. https://doi.org/10.3390/pharmaceutics16020163