Transcriptomics- and Genomics-Guided Drug Repurposing for the Treatment of Vesicular Hand Eczema
Abstract
:1. Introduction
2. Materials and Methods
2.1. Network Construction
2.2. Network Analysis and Clustering
2.3. Functional Enrichment Analyses
2.4. Drug–Gene Interactions
2.5. Drug Ranking System
3. Results
3.1. Network Construction
3.2. Network Analysis and Clustering
3.3. Functional Enrichment Analyses
3.4. Drug–Gene Interactions
3.5. Drug Ranking System
4. Discussion
4.1. Vitamin D Analogues
4.2. Retinoids
4.3. Immunomodulating Drugs
4.4. Hormones
4.5. Antihistamines
4.6. Statins
4.7. Antineoplastic Drugs
4.8. Vitamins and Minerals
4.9. Antibiotics and Antibacterials
4.10. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thyssen, J.P.; Schuttelaar, M.L.A.; Alfonso, J.H.; Andersen, K.E.; Angelova-Fischer, I.; Arents, B.W.M.; Bauer, A.; Brans, R.; Cannavo, A.; Christoffers, W.A.; et al. Guidelines for diagnosis, prevention, and treatment of hand eczema. Contact Dermat. 2022, 86, 357–378. [Google Scholar] [CrossRef]
- Voorberg, A.N.; Loman, L.; Schuttelaar, M.L.A. Prevalence and Severity of Hand Eczema in the Dutch General Population: A Cross-sectional, Questionnaire Study within the Lifelines Cohort Study. Acta Derm. Venereol. 2022, 102, adv00626. [Google Scholar] [CrossRef]
- Quaade, A.S.; Simonsen, A.B.; Halling, A.S.; Thyssen, J.P.; Johansen, J.D. Prevalence, incidence, and severity of hand eczema in the general population—A systematic review and meta-analysis. Contact Dermat. 2021, 84, 361–374. [Google Scholar] [CrossRef]
- Agner, T.; Elsner, P. Hand eczema: Epidemiology, prognosis and prevention. J. Eur. Acad. Dermatol. Venereol. 2020, 34 (Suppl. 1), 4–12. [Google Scholar] [CrossRef]
- Politiek, K.; Ofenloch, R.F.; Angelino, M.J.; van den Hoed, E.; Schuttelaar, M.L.A. Quality of life, treatment satisfaction, and adherence to treatment in patients with vesicular hand eczema: A cross-sectional study. Contact Dermat. 2020, 82, 201–210. [Google Scholar] [CrossRef]
- Cazzaniga, S.; Ballmer-Weber, B.K.; Grani, N.; Spring, P.; Bircher, A.; Anliker, M.; Sonntag, A.K.; Piletta, P.; Huber, C.; Borradori, L.; et al. Medical, psychological and socio-economic implications of chronic hand eczema: A cross-sectional study. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 628–637. [Google Scholar] [CrossRef]
- Politiek, K.; Oosterhaven, J.A.; Vermeulen, K.M.; Schuttelaar, M.L. Systematic review of cost-of-illness studies in hand eczema. Contact Dermat. 2016, 75, 67–76. [Google Scholar] [CrossRef]
- Oosterhaven, J.A.F.; Flach, P.A.; Bultmann, U.; Schuttelaar, M.L.A. Presenteeism in a Dutch hand eczema population-a cross-sectional survey. Contact Dermat. 2018, 79, 10–19. [Google Scholar] [CrossRef]
- Cheng, J.; Facheris, P.; Ungar, B.; Guttman-Yassky, E. Current emerging and investigational drugs for the treatment of chronic hand eczema. Expert Opin. Investig. Drugs 2022, 31, 843–853. [Google Scholar] [CrossRef]
- Christoffers, W.A.; Coenraads, P.J.; Svensson, A.; Diepgen, T.L.; Dickinson-Blok, J.L.; Xia, J.; Williams, H.C. Interventions for hand eczema. Cochrane Database Syst. Rev. 2019, 4, CD004055. [Google Scholar] [CrossRef]
- Ruzicka, T.; Lynde, C.W.; Jemec, G.B.; Diepgen, T.; Berth-Jones, J.; Coenraads, P.J.; Kaszuba, A.; Bissonnette, R.; Varjonen, E.; Hollo, P.; et al. Efficacy and safety of oral alitretinoin (9-cis retinoic acid) in patients with severe chronic hand eczema refractory to topical corticosteroids: Results of a randomized, double-blind, placebo-controlled, multicentre trial. Br. J. Dermatol. 2008, 158, 808–817. [Google Scholar] [CrossRef]
- Fowler, J.F.; Graff, O.; Hamedani, A.G. A phase 3, randomized, double-blind, placebo-controlled study evaluating the efficacy and safety of alitretinoin (BAL4079) in the treatment of severe chronic hand eczema refractory to potent topical corticosteroid therapy. J. Drugs Dermatol. 2014, 13, 1198–1204. [Google Scholar]
- Voorberg, A.N.; Niehues, H.; Oosterhaven, J.A.F.; Romeijn, G.L.E.; van Vlijmen-Willems, I.; van Erp, P.E.J.; Ederveen, T.H.A.; Zeeuwen, P.; Schuttelaar, M.L.A. Vesicular hand eczema transcriptome analysis provides insights into its pathophysiology. Exp. Dermatol. 2021, 30, 1775–1786. [Google Scholar] [CrossRef]
- Rosenberg, F.M.; Wardenaar, R.; Voorberg, A.N.; Spierings, D.C.J.; Schuttelaar, M.A. Transcriptional differences between vesicular hand eczema and atopic dermatitis. Contact Dermat. 2024, 90, 23–31. [Google Scholar] [CrossRef]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef]
- Rosenberg, F.M.; van der Most, P.J.; Loman, L.; Dittmar, D.; Snieder, H.; Schuttelaar, M.L.A. A Genome-Wide Association Study of Hand Eczema Identifies Locus 20q13.33 and Reveals Genetic Overlap with Atopic Dermatitis; Department of Dermatology and Epidemiology, University Medical Center Groningen: Groningen, The Netherlands, 2024; manuscript submitted for publication. [Google Scholar]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef]
- Sijtsma, A.; Rienks, J.; van der Harst, P.; Navis, G.; Rosmalen, J.G.M.; Dotinga, A. Cohort Profile Update: Lifelines, a three-generation cohort study and biobank. Int. J. Epidemiol. 2022, 51, e295–e302. [Google Scholar] [CrossRef]
- Consortium, G.T. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 2020, 369, 1318–1330. [Google Scholar] [CrossRef]
- Wu, G.; Feng, X.; Stein, L. A human functional protein interaction network and its application to cancer data analysis. Genome Biol. 2010, 11, R53. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Newman, M.E. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [Google Scholar] [CrossRef]
- Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J. Proteome Res. 2019, 18, 623–632. [Google Scholar] [CrossRef]
- Paysan-Lafosse, T.; Blum, M.; Chuguransky, S.; Grego, T.; Pinto, B.L.; Salazar, G.A.; Bileschi, M.L.; Bork, P.; Bridge, A.; Colwell, L.; et al. InterPro in 2022. Nucleic Acids Res. 2023, 51, D418–D427. [Google Scholar] [CrossRef]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Res. 2021, 49, D458–D460. [Google Scholar] [CrossRef]
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef]
- Binder, J.X.; Pletscher-Frankild, S.; Tsafou, K.; Stolte, C.; O’Donoghue, S.I.; Schneider, R.; Jensen, L.J. COMPARTMENTS: Unification and visualization of protein subcellular localization evidence. Database 2014, 2014, bau012. [Google Scholar] [CrossRef]
- Palasca, O.; Santos, A.; Stolte, C.; Gorodkin, J.; Jensen, L.J. TISSUES 2.0: An integrative web resource on mammalian tissue expression. Database 2018, 2018, bay028. [Google Scholar] [CrossRef]
- Aleksander, S.A.; Balhoff, J.; Carbon, S.; Cherry, J.M.; Drabkin, H.J.; Ebert, D.; Feuermann, M.; Gaudet, P.; Harris, N.L.; Hill, D.P.; et al. The Gene Ontology knowledgebase in 2023. Genetics 2023, 224, iyad031. [Google Scholar] [CrossRef]
- Gillespie, M.; Jassal, B.; Stephan, R.; Milacic, M.; Rothfels, K.; Senff-Ribeiro, A.; Griss, J.; Sevilla, C.; Matthews, L.; Gong, C.Q.; et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022, 50, D687–D692. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef] [PubMed]
- Grissa, D.; Junge, A.; Oprea, T.I.; Jensen, L.J. DISEASES 2.0: A weekly updated database of disease-gene associations from text mining and data integration. Database 2022, 2022, baac019. [Google Scholar] [CrossRef]
- Shefchek, K.A.; Harris, N.L.; Gargano, M.; Matentzoglu, N.; Unni, D.; Brush, M.; Keith, D.; Conlin, T.; Vasilevsky, N.; Zhang, X.M.A.; et al. The Monarch Initiative in 2019: An integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res. 2020, 48, D704–D715. [Google Scholar] [CrossRef] [PubMed]
- Bateman, A.; Martin, M.J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Cukura, A.; Denny, P.; et al. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef]
- Clinicaltrials.gov. Available online: https://clinicaltrials.gov/ (accessed on 1 December 2023).
- PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/ (accessed on 1 December 2023).
- World Health Organization Model List of Essential Medicines. 2023. Available online: https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2023.02 (accessed on 1 December 2023).
- KNMP Kennisbank. Available online: https://kennisbank.knmp.nl/ (accessed on 1 December 2023).
- WHO ATC/DDD Index. Available online: https://www.whocc.no/atc_ddd_index/ (accessed on 1 December 2023).
- Farmacotherapeutisch Kompas. Available online: https://www.farmacotherapeutischkompas.nl/ (accessed on 1 December 2023).
- Common Terminology Criteria for Adverse Events (CTCAE). Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcae_v5_quick_reference_5x7.pdf (accessed on 1 December 2023).
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Yousef, H.; Alhajj, M.; Sharma, S. Anatomy, Skin (Integument), Epidermis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Korver, J.E.; Vissers, W.H.; van Rens, D.W.; Pasch, M.C.; van Erp, P.E.; Boezeman, J.B.; van De Kerkhof, P.C. A double-blind, randomized quantitative comparison of calcitriol ointment and calcipotriol ointment on epidermal cell populations, proliferation and differentiation. Br. J. Dermatol. 2007, 156, 130–137. [Google Scholar] [CrossRef]
- Patel, R.T.; Gay, J.J.; Fagan, K.K.; Eikenberg, J.D. Non-psoriatic uses of calcipotriol: A concise updated review. Dermatol. Online J. 2023, 29, 1. [Google Scholar] [CrossRef]
- Daniel, C.; Sartory, N.A.; Zahn, N.; Radeke, H.H.; Stein, J.M. Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile. J. Pharmacol. Exp. Ther. 2008, 324, 23–33. [Google Scholar] [CrossRef]
- Chakraborty, D.; Aggarwal, K. Comparative evaluation of efficacy and safety of calcipotriol versus calcitriol ointment, both in combination with narrow-band ultraviolet B phototherapy in the treatment of stable plaque psoriasis. Photodermatol. Photoimmunol. Photomed. 2023, 39, 512–519. [Google Scholar] [CrossRef]
- Egawa, K. Topical vitamin D3 derivatives in treating hyperkeratotic palmoplantar eczema: A report of five patients. J. Dermatol. 2005, 32, 381–386. [Google Scholar] [CrossRef]
- Yang, M.; Chang, J.M. Successful treatment of refractory chronic hand eczema with calcipotriol/betamethasone ointment: A report of three cases. Exp. Ther. Med. 2015, 10, 1943–1946. [Google Scholar] [CrossRef]
- Juntongjin, P.; Pongprasert, R. Calcipotriol ointment shows comparable efficacy to topical steroids in chronic hand eczema. Dermatol. Ther. 2019, 32, e12956. [Google Scholar] [CrossRef] [PubMed]
- Schindler, M.; Drozdenko, G.; Kuhl, A.A.; Worm, M. Immunomodulation in patients with chronic hand eczema treated with oral alitretinoin. Int. Arch. Allergy Immunol. 2014, 165, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Kislat, A.; Olah, P.; Kuchner, M.; Gerber, P.A.; Schrader, J.; Meller, S.; Homey, B. The Endogenous Dual Retinoid Receptor Agonist Alitretinoin Exhibits Immunoregulatory Functions on Antigen-Presenting Cells. Int. J. Mol. Sci. 2023, 24, 9654. [Google Scholar] [CrossRef]
- Kolli, S.S.; Pecone, D.; Pona, A.; Cline, A.; Feldman, S.R. Topical Retinoids in Acne Vulgaris: A Systematic Review. Am. J. Clin. Dermatol. 2019, 20, 345–365. [Google Scholar] [CrossRef] [PubMed]
- Christoffers, W.A.; Politiek, K.; Coenraads, P.J.; van der Schaft, J.; de Bruin-Weller, M.S.; Schuttelaar, M.L. Drug survival of cyclosporine in the treatment of hand eczema: A multicentre, daily use study. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, S.; Sarkar, R. Sulfasalazine in dermatology: A lesser explored drug with broad therapeutic potential. Int. J. Women’s Dermatol. 2020, 6, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Oosterhaven, J.A.; Politiek, K.; Schuttelaar, M.A. Azathioprine treatment and drug survival in patients with chronic hand eczema—Results from daily practice. Contact Dermat. 2017, 76, 304–307. [Google Scholar] [CrossRef] [PubMed]
- Politiek, K.; van der Schaft, J.; Christoffers, W.A.; Coenraads, P.J.; van den Reek, J.M.; de Jong, E.M.; de Bruin-Weller, M.S.; Schuttelaar, M.L. Drug survival of methotrexate treatment in hand eczema patients: Results from a retrospective daily practice study. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 1405–1407. [Google Scholar] [CrossRef]
- Voorberg, A.N.; Kamphuis, E.; Christoffers, W.A.; Romeijn, G.L.E.; Oosterhaven, J.A.F.; Schuttelaar, M.L.A. Efficacy and safety of oral alitretinoin versus oral azathioprine in patients with severe chronic hand eczema: Results from a prematurely discontinued randomized controlled trial. Contact Dermat. 2022, 87, 366–368. [Google Scholar] [CrossRef]
- Valenzuela, F.; Korman, N.J.; Bissonnette, R.; Bakos, N.; Tsai, T.F.; Harper, M.K.; Ports, W.C.; Tan, H.; Tallman, A.; Valdez, H.; et al. Tofacitinib in patients with moderate-to-severe chronic plaque psoriasis: Long-term safety and efficacy in an open-label extension study. Br. J. Dermatol. 2018, 179, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Papp, K.A.; Krueger, J.G.; Feldman, S.R.; Langley, R.G.; Thaci, D.; Torii, H.; Tyring, S.; Wolk, R.; Gardner, A.; Mebus, C.; et al. Tofacitinib, an oral Janus kinase inhibitor, for the treatment of chronic plaque psoriasis: Long-term efficacy and safety results from 2 randomized phase-III studies and 1 open-label long-term extension study. J. Am. Acad. Dermatol. 2016, 74, 841–850. [Google Scholar] [CrossRef] [PubMed]
- McInnes, I.B.; Byers, N.L.; Higgs, R.E.; Lee, J.; Macias, W.L.; Na, S.Q.; Ortmann, R.A.; Rocha, G.; Rooney, T.P.; Wehrman, T.; et al. Comparison of baricitinib, upadacitinib, and tofacitinib mediated regulation of cytokine signaling in human leukocyte subpopulations. Arthritis Res. Ther. 2019, 21, 183. [Google Scholar] [CrossRef] [PubMed]
- Traidl, S.; Freimooser, S.; Werfel, T. Janus kinase inhibitors for the therapy of atopic dermatitis. Allergologie 2021, 44, 710–723. [Google Scholar] [CrossRef]
- Agency, E.M. EMA Confirms Xeljanz to Be Used with Caution in Patients at High Risk of Blood Clots. Available online: https://www.ema.europa.eu/en/news/ema-confirms-xeljanz-be-used-caution-patients-high-risk-blood-clots#:~:text=EMA%20has%20concluded%20that%20Xeljanz%20%28tofacitinib%29%20could%20increase,all%20patients%20at%20high%20risk%20of%20blood%20clots (accessed on 28 January 2024).
- Bauer, A.; Thyssen, J.P.; Buhl, T.; Nielsen, T.S.S.; Larsen, L.S.; Osterskov, A.B.; Agner, T. Treatment with delgocitinib cream improves itch, pain and other signs and symptoms of chronic hand eczema: Results from the Hand Eczema Symptom Diary in a phase IIb randomized clinical trial. Contact Dermat. 2023, 89, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, P.A.; Sofen, H.L.; Bissonnette, R.; Lee, M.R.; Fowler, J.; Zammit, D.J.; Chen, Y.S.; Rao, N.R.J.; Denis, L.; Gupta, S. Oral spleen tyrosine kinase/Janus Kinase inhibitor gusacitinib for the treatment of chronic hand eczema: Results of a randomized phase 2 study. J. Am. Acad. Dermatol. 2023, 89, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, F.M.; Loman, L.; Schuttelaar, M.L.A. Baricitinib treatment of severe chronic hand eczema: Two case reports. Contact Dermat. 2022, 86, 419–421. [Google Scholar] [CrossRef] [PubMed]
- Simpson, E.L.; Rahawi, K.; Hu, X.; Chu, A.D.; Nduaka, C.; Jazayeri, S.; Lio, P.; Lynde, C.; Schuttelaar, M.L.A. Effect of upadacitinib on atopic hand eczema in patients with moderate-to-severe atopic dermatitis: Results from two randomized phase 3 trials. J. Eur. Acad. Dermatol. 2023, 37, 1863–1870. [Google Scholar] [CrossRef] [PubMed]
- King, B.; Zhang, X.; Harcha, W.G.; Szepietowski, J.C.; Shapiro, J.; Lynde, C.; Mesinkovska, N.A.; Zwillich, S.H.; Napatalung, L.; Wajsbrot, D.; et al. Efficacy and safety of ritlecitinib in adults and adolescents with alopecia areata: A randomised, double-blind, multicentre, phase 2b-3 trial. Lancet 2023, 401, 1518–1529. [Google Scholar] [CrossRef]
- Blair, H.A. Ritlecitinib: First Approval. Drugs 2023, 83, 1315–1321. [Google Scholar] [CrossRef]
- Worm, M.; Thyssen, J.P.; Schliemann, S.; Bauer, A.; Shi, V.Y.; Ehst, B.; Tillmann, S.; Korn, S.; Resen, K.; Agner, T. The pan-JAK inhibitor delgocitinib in a cream formulation demonstrates dose response in chronic hand eczema in a 16-week randomized phase IIb trial. Br. J. Dermatol. 2022, 187, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Yosipovitch, G.; Mollanazar, N.; Stander, S.; Kwatra, S.G.; Kim, B.S.; Laws, E.; Mannent, L.P.; Amin, N.; Akinlade, B.; Staudinger, H.W.; et al. Dupilumab in patients with prurigo nodularis: Two randomized, double-blind, placebo-controlled phase 3 trials. Nat. Med. 2023, 29, 1180–1190. [Google Scholar] [CrossRef]
- Voorberg, A.N.; Romeijn, G.L.E.; de Bruin-Weller, M.S.; Schuttelaar, M.L.A. The long-term effect of dupilumab on chronic hand eczema in patients with moderate to severe atopic dermatitis-52 week results from the Dutch BioDay Registry. Contact Dermat. 2022, 87, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Trivino, F.J.; Galan-Gutierrez, M.; Hita, J.C.; Ruiz-Villaverde, R.; Dominguez-Cruz, J.; Pereyra-Rodriguez, J.J. Real-World Clinical Experience of Dupilumab in the Treatment of Chronic Palmo-Plantar Eczema in Patients with Moderate-Severe Atopic Dermatitis: 52-Week Follow-Up. Dermatitis 2024, 35, S55–S61. [Google Scholar] [CrossRef]
- Simpson, E.L.; Silverberg, J.I.; Worm, M.; Honari, G.; Masuda, K.; Sygula, E.; Schuttelaar, M.L.A.; Mortensen, E.; Laws, E.; Akinlade, B.; et al. Dupilumab treatment improves signs, symptoms, quality of life and work productivity in patients with atopic hand and foot dermatitis: Results from a phase 3, randomized, double-blind, placebo-controlled trial. J. Am. Acad. Dermatol. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Voorberg, A.N.; Kamphuis, E.; Christoffers, W.A.; Schuttelaar, M.L.A. Efficacy and safety of dupilumab in patients with severe chronic hand eczema with inadequate response or intolerance to alitretinoin: A randomized, double-blind, placebo-controlled phase IIb proof-of-concept study. Br. J. Dermatol. 2023, 189, 400–409. [Google Scholar] [CrossRef]
- Olesen, C.M.; Yuksel, Y.T.; Zachariae, C.; Lund, T.T.; Agner, T.; Petersen, T.S.; Thyssen, J.P. Treatment of chronic hand eczema with dupilumab-A retrospective follow-up study. J. Eur. Acad. Dermatol. Venereol. 2023, 37, e557–e559. [Google Scholar] [CrossRef]
- Chen, Y.; Yokozeki, H.; Katagiri, K. Physiological and functional changes in the stratum corneum restored by oestrogen in an ovariectomized mice model of climacterium. Exp. Dermatol. 2017, 26, 394–401. [Google Scholar] [CrossRef]
- Hung, C.F.; Chen, W.Y.; Aljuffali, I.A.; Lin, Y.K.; Shih, H.C.; Fang, J.Y. Skin aging modulates percutaneous drug absorption: The impact of ultraviolet irradiation and ovariectomy. Age 2015, 37, 21. [Google Scholar] [CrossRef]
- Kendall, A.C.; Pilkington, S.M.; Wray, J.R.; Newton, V.L.; Griffiths, C.E.M.; Bell, M.; Watson, R.E.B.; Nicolaou, A. Menopause induces changes to the stratum corneum ceramide profile, which are prevented by hormone replacement therapy. Sci. Rep. 2022, 12, 21715. [Google Scholar] [CrossRef]
- Hanley, K.; Rassner, U.; Jiang, Y.; Vansomphone, D.; Crumrine, D.; Komuves, L.; Elias, P.M.; Feingold, K.R.; Williams, M.L. Hormonal basis for the gender difference in epidermal barrier formation in the fetal rat. Acceleration by estrogen and delay by testosterone. J. Clin. Investig. 1996, 97, 2576–2584. [Google Scholar] [CrossRef]
- Kanda, N.; Hoashi, T.; Saeki, H. The Roles of Sex Hormones in the Course of Atopic Dermatitis. Int. J. Mol. Sci. 2019, 20, 4660. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, M.; Denda, M. Paradoxical effects of beta-estradiol on epidermal permeability barrier homeostasis. Br. J. Dermatol. 2007, 157, 776–779. [Google Scholar] [CrossRef]
- Weare-Regales, N.; Chiarella, S.E.; Cardet, J.C.; Prakash, Y.S.; Lockey, R.F. Hormonal Effects on Asthma, Rhinitis, and Eczema. J. Allergy Clin. Immunol. Pract. 2022, 10, 2066–2073. [Google Scholar] [CrossRef]
- Apfelbacher, C.; Weiss, M.; Molin, S.; Bauer, A.; Mahler, V.; Schmitt, J.; Elsner, P.; Diepgen, T.L.; Weisshaar, E. Which factors are associated with the use of systemic antihistamines in patients with chronic hand eczema? Results from the CARPE registry. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 50–56. [Google Scholar] [CrossRef]
- German, C.A.; Liao, J.K. Understanding the molecular mechanisms of statin pleiotropic effects. Arch. Toxicol. 2023, 97, 1529–1545. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Jang, J.H.; Kim, C.; Lee, Y.; Lee, E.; Yang, H.M.; Park, R.W.; Park, H.S. Real-World Effectiveness of Statin Therapy in Adult Asthma. J. Allergy Clin. Immunol. Pract. 2023, 12, 399–408.e6. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Xing, M.; Hong, S.; Liu, L.; Ding, X.J.; Sun, X.Y.; Luo, Y.; Wang, C.X.; Zhang, M.; et al. Current evidence on the role of lipid lowering drugs in the treatment of psoriasis. Front. Med. 2022, 9, 900916. [Google Scholar] [CrossRef] [PubMed]
- Hasan, R.; Agarwal, K.; Podder, I.; Misitzis, A.; Schwartz, R.A.; Wollina, U.; Lotti, T.; Grabbe, S.; Goldust, M. Simvastatin in vitiligo: An update with recent review of the literature. Int. J. Dermatol. 2021, 60, e390–e396. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Ghaed-Amini, F.; Firozian, F.; Mohammadi, Y.; Alirezaei, P. Beneficial Effects of Adding Topical Atorvastatin 5% Cream to Topical Betamethasone 1% Ointment on Chronic Hand Eczema. Arch. Iran. Med. 2020, 23, 605–613. [Google Scholar] [CrossRef]
- Babina, M.; Kirn, F.; Hoser, D.; Ernst, D.; Rohde, W.; Zuberbier, T.; Worm, M. Tamoxifen counteracts the allergic immune response and improves allergen-induced dermatitis in mice. Clin. Exp. Allergy 2010, 40, 1256–1265. [Google Scholar] [CrossRef]
- Bhatia, A.; Singh, B.; Wadhwa, S.; Raza, K.; Katare, O.P. Novel phospholipid-based topical formulations of tamoxifen: Evaluation for antipsoriatic activity using mouse-tail model. Pharm. Dev. Technol. 2014, 19, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Basset, J.; Marchal, L.; Hovnanian, A. EGFR Signaling Is Overactive in Pachyonychia Congenita: Effective Treatment with Oral Erlotinib. J. Investig. Dermatol. 2023, 143, 294–304.e8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Duchatelet, S.; Lakdawala, N.; Tower, R.L.; Diamond, C.; Marathe, K.; Hill, I.; Richard, G.; Diab, Y.; Kirkorian, A.Y.; et al. Targeted Inhibition of the Epidermal Growth Factor Receptor and Mammalian Target of Rapamycin Signaling Pathways in Olmsted Syndrome. JAMA Dermatol. 2020, 156, 196–200. [Google Scholar] [CrossRef]
- Greco, C.; Leclerc-Mercier, S.; Chaumon, S.; Doz, F.; Hadj-Rabia, S.; Molina, T.; Boucheix, C.; Bodemer, C. Use of Epidermal Growth Factor Receptor Inhibitor Erlotinib to Treat Palmoplantar Keratoderma in Patients With Olmsted Syndrome Caused by TRPV3 Mutations. JAMA Dermatol. 2020, 156, 191–195. [Google Scholar] [CrossRef]
- Malovitski, K.; Sarig, O.; Feller, Y.; Bergson, S.; Assaf, S.; Mohamad, J.; Pavlovsky, M.; Giladi, M.; Sprecher, E. Defective cathepsin Z affects EGFR expression and causes autosomal dominant palmoplantar keratoderma. Br. J. Dermatol. 2023, 189, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Saaf, A.; Pivarcsi, A.; Winge, M.C.; Wahlgren, C.F.; Homey, B.; Nordenskjold, M.; Tengvall-Linder, M.; Bradley, M. Characterization of EGFR and ErbB2 expression in atopic dermatitis patients. Arch. Dermatol. Res. 2012, 304, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.Y.; Lee, Y.J.; Kim, J.M.; Kang, H.J.; Cho, S.H.; Chang, S.E. Epidermal Growth Factor Relieves Inflammatory Signals in Staphylococcus aureus-Treated Human Epidermal Keratinocytes and Atopic Dermatitis-Like Skin Lesions in Nc/Nga Mice. BioMed Res. Int. 2018, 2018, 9439182. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Choi, M.J.; Bak, D.H.; Lee, B.C.; Ko, E.J.; Ahn, G.R.; Ahn, S.W.; Kim, M.J.; Na, J.; Kim, B.J. Topical administration of EGF suppresses immune response and protects skin barrier in DNCB-induced atopic dermatitis in NC/Nga mice. Sci. Rep. 2018, 8, 11895. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Q.; Yang, Y.; Liu, W.; Zhang, M.; Xia, G.; Wang, C. Epidermal growth factor-network signaling mediates luteinizing hormone regulation of BNP and CNP and their receptor NPR2 during porcine oocyte meiotic resumption. Mol. Reprod. Dev. 2014, 81, 1030–1041. [Google Scholar] [CrossRef]
- Mascia, F.; Mariani, V.; Girolomoni, G.; Pastore, S. Blockade of the EGF receptor induces a deranged chemokine expression in keratinocytes leading to enhanced skin inflammation. Am. J. Pathol. 2003, 163, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Wohlrab, J.; Kreft, D. Niacinamide—Mechanisms of action and its topical use in dermatology. Skin Pharmacol. Physiol. 2014, 27, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.R.; Wang, J.; Wang, S.S. A single-center, randomized, controlled study on the efficacy of niacinamide-containing body emollients combined with cleansing gel in the treatment of mild atopic dermatitis. Skin Res. Technol. 2023, 29, e13475. [Google Scholar] [CrossRef]
- Forbat, E.; Al-Niaimi, F.; Ali, F.R. Use of nicotinamide in dermatology. Clin. Exp. Dermatol. 2017, 42, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Kinoshita, M.; Shimada, S.; Kawamura, T. Zinc and Skin Disorders. Nutrients 2018, 10, 199. [Google Scholar] [CrossRef] [PubMed]
- Suvirya, S.; Thakur, A.; Pandey, S.S.; Tripathi, S.K.; Dwivedi, D.K. Altered Levels of Serum Zinc and Cadmium in Patients with Chronic Vesiculobullous Hand and Feet Dermatitis. Dermatol. Res. Pract. 2016, 2016, 3284937. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, S.; Nguyen, M.; Vaughn, A.R.; Notay, M.; Chambers, C.J.; Sivamani, R.K. Effects of Zinc Supplementation on Inflammatory Skin Diseases: A Systematic Review of the Clinical Evidence. Am. J. Clin. Dermatol. 2020, 21, 21–39. [Google Scholar] [CrossRef]
- Gray, N.A.; Dhana, A.; Stein, D.J.; Khumalo, N.P. Zinc and atopic dermatitis: A systematic review and meta-analysis. J. Eur. Acad. Dermatol. 2019, 33, 1042–1050. [Google Scholar] [CrossRef]
- Faghihi, G.; Iraji, F.; Shahingohar, A.; Saidat, A. The efficacy of ‘0.05% Clobetasol + 2.5% zinc sulphate’ cream vs. ‘0.05% Clobetasol alone’ cream in the treatment of the chronic hand eczema: A double-blind study. J. Eur. Acad. Dermatol. Venereol. 2008, 22, 531–536. [Google Scholar] [CrossRef]
- Norreslet, L.B.; Lilje, B.; Ingham, A.C.; Edslev, S.M.; Clausen, M.L.; Plum, F.; Andersen, P.S.; Agner, T. Skin Microbiome in Patients with Hand Eczema and Healthy Controls: A Three-week Prospective Study. Acta Derm. Venereol. 2022, 102, adv00633. [Google Scholar] [CrossRef]
- George, S.M.C.; Karanovic, S.; Harrison, D.A.; Rani, A.; Birnie, A.J.; Bath-Hextall, F.J.; Ravenscroft, J.C.; Williams, H.C. Interventions to reduce Staphylococcus aureus in the management of eczema. Cochrane Database Syst. Rev. 2019, 10, CD003871. [Google Scholar] [CrossRef] [PubMed]
- Elston, D.M. Confirmation bias in medical decision-making. J. Am. Acad. Dermatol. 2020, 82, 572. [Google Scholar] [CrossRef] [PubMed]
- Voland, P.; Barthel, C.; Azzouz, B.; Raison-Peyron, N.; Du-Thanh, A.; Staumont-Salle, D.; Jachiet, M.; Soria, A.; Nosbaum, A.; Valois, A.; et al. Intravenous and subcutaneous immunoglobulins-associated eczematous reactions occur with a broad range of immunoglobulin types: A French national multicenter study. J. Am. Acad. Dermatol. 2023, 88, 380–387. [Google Scholar] [CrossRef] [PubMed]
Bonus Criteria | Points |
---|---|
Drugs with immunomodulating efficacy in inflammatory/auto-immune diseases (in a completed phase 2 interventional trial and at least an ongoing phase 3 trial) 1,2 | 1 |
Drugs with immunomodulating efficacy in inflammatory/auto-immune skin diseases (in a completed phase 2 interventional trial and at least an ongoing phase 3 trial) 1,2 | 2 |
Drugs that target > 3 genes of our (V)HE network | 1 |
Topical application or possibility of compounding into a topical application 3 | 1 |
Part of World Health Organization (WHO) list of essential medicines 2023 4 | 1 |
The price of the drug is low (50–500 EUR/year) 5 | 1 |
The price of the drug is very low (<50 EUR/year) 5 | 2 |
Penalty Criteria | Points |
No Anatomical Therapeutic Chemical (ATC)-code 6 | −2 |
Not available for order 3 | −1 |
Unclear direction of effect on genes | −1 |
0.1–1% chance on grade 3–5 adverse events: severe, life-threatening, death 5 | −1 |
Practical issues 3,5,6 | −1 |
Severe practical issues 3,5,6 | −2 |
The price of the drug is not available (in addition to the drug not being available for order) or is very expensive (>20,000 EUR/year) 5 | −1 |
Score | Drug | Medicine Group (with ATC-Code) | Target Gene(s) |
---|---|---|---|
6 | Calcitriol | Vitamin D and analogues (A11CC04/D05AX03) | BIRC3, C1S, S100A8, SERPINB3, SNTB1, TNC |
6 | Estradiol | Hormones (G03CA03) | KRT17, KRT6A, KRT6B, KRT6C, MSMB, PARP9 |
5 | Tretinoin | Retinoids (D10AD01) | BIRC3, FABP7, HAS3, KRT17, KRT6A, LAPTM5, LYZ, S100A8, S100A9, SNTB1, TNC |
5 | Atorvastatin | Lipid modifying drugs (C10AA05) | DPP4 |
5 | Methotrexate | Immunosuppressants (L04AX03) | AADAC, CD1A, MMP12, S100A9 |
5 | Prednisolone | Glucocorticoids (H02AB06/D07XA) | MMP12 |
5 | Adapalene | Retinoids (D10AD03) | JUN |
4 | Isotretinoin | Retinoids (D10BA01) | CHI3L2, KRT16, KRT17, KRT6A, MSMB |
4 | Sulfasalazine | Immunosuppressants (A07EC01) | NFKB1 |
4 | Zinc | Vitamins and minerals (A12CB/D02AB) | S100A8; S100A9; C1R; C1S; KRT16; KRT6A; SERPINA3 |
4 | Acetaminophen | Analgesics (N02BE01) | CD1A, DPP4, IL37, LCE3A, LCP1, MSMB, PARP9, SERPINA3, TYMP |
4 | Acetylsalicylic acid | Analgesics/antithrombotic drugs (N02BE01/B01AC06) | SERPINA3, TYMP |
4 | Azathioprine | Immunosuppressants (L04AX01) | DPP4, MMP12 |
4 | Dexamethasone | Glucocorticoids (H02AB02/D07AB) | IL4R, MSMB |
4 | Fexofenadine | Antihistamines (R06AX26) | CCL22 |
3 | Lidocaine | Analgesics (N01BB02/D04AB01) | EGFR |
3 | Diazepam | Benzodiazepine derivatives (N05BA01) | TNC |
3 | Cyclophosphamide | Antineoplastic agents— Nitrogen mustard analogues (L01AA01) | BIRC3 |
3 | Cyclosporine | Immunosuppressants—calcineurin inhibitor (L04AD01) | C1R, C1S, DPP4, LAPTM5, LYZ, MT4, PARP9, S100A8, TNC, S100A9, SERPINA3 |
3 | Cytarabine | Antineoplastic agents-pyrimidine analogues (L01BC01) | CDH3, FABP7 |
3 | Diclofenac | NSAID (M01AB05/D11AX18) | MMP12 |
3 | Methylprednisolone | Glucocorticoids (H02AB04/D07AA) | MMP12 |
3 | Rifampicin | Antibiotics (J04AB02) | IL37 |
3 | Selenium | Vitamins & minerals (A12CE) | BIRC3 |
3 | Silver nitrate | Antibacterial (D08AL01) | MT4 |
3 | Simvastatin | Lipid modifying agents (C10AA01) | IL4R |
3 | Tofacitinib | Immunosuppressants—selective (L04AA29) | KRT16 |
3 | Valproic acid | Anti-epileptics (N03AG01) | C1S, CHP2, DPP4, FABP7, SERPINB3 |
2 | Dupilumab | Interleukin-inhibitor (D11AH05) | IL4R |
2 | Framycetin | Antibiotics (D09AA) | CXCR4 |
2 | Irbesartan | Angiotensin II receptor blockers (C09CA04) | JUN |
2 | Niacin | Vitamins and minerals (A11) | NNMT |
2 | Vildagliptin | Blood glucose lowering drugs-DPP4 inhibitors (A10BH02) | DPP4 |
2 | Alitretinoin | Retinoids (D11AH0) | KRT17, KRT6A, S100A8 |
2 | Bexarotene | Retinoids (L01XF03) | KRT17 |
2 | Indomethacin | NSAID (M01AB01) | BIRC3 |
2 | Nicotine | Drugs used in nicotine dependence (N07BA01) | LTF |
2 | Progesterone | Hormones (G03DA04) | KRT17, SPRR2B, TNC |
2 | Rosuvastatin | Lipid modifying agents (C10AA07) | PI3 |
2 | Tamoxifen | Antineoplastic agents–anti-estrogens (L02BA01) | SERPINA3 |
2 | Nadroparin | Antithrombotic drugs (B01AB06) | FOS |
1 | Erlotinib | Antineoplastic agents-Epidermal growth factor receptor inhibitors (L01EB02) | EGFR |
1 | Saxagliptin | Blood glucose lowering drugs—Dipeptidyl peptidase 4 (DPP4) inhibitors (A10BH03) | DPP4 |
1 | Etoposide | Antineoplastic agents—podophyllotoxin derivatives (L01CB01) | BIRC3 |
1 | Fluorouracil | Antineoplastic agents—pyrimidine analogues (L01BC02) | SNTB1, TYMP |
1 | Silicon dioxide | No ATC-code, used as a compound in medicine | AADAC, C1R, C1S, KRT17, LCN2, LOR, PARP9, SERPINA3, SERPINB3, SERPINB4, TMEM173 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosenberg, F.M.; Kamali, Z.; Voorberg, A.N.; Oude Munnink, T.H.; van der Most, P.J.; Snieder, H.; Vaez, A.; Schuttelaar, M.L.A. Transcriptomics- and Genomics-Guided Drug Repurposing for the Treatment of Vesicular Hand Eczema. Pharmaceutics 2024, 16, 476. https://doi.org/10.3390/pharmaceutics16040476
Rosenberg FM, Kamali Z, Voorberg AN, Oude Munnink TH, van der Most PJ, Snieder H, Vaez A, Schuttelaar MLA. Transcriptomics- and Genomics-Guided Drug Repurposing for the Treatment of Vesicular Hand Eczema. Pharmaceutics. 2024; 16(4):476. https://doi.org/10.3390/pharmaceutics16040476
Chicago/Turabian StyleRosenberg, Fieke M., Zoha Kamali, Angelique N. Voorberg, Thijs H. Oude Munnink, Peter J. van der Most, Harold Snieder, Ahmad Vaez, and Marie L. A. Schuttelaar. 2024. "Transcriptomics- and Genomics-Guided Drug Repurposing for the Treatment of Vesicular Hand Eczema" Pharmaceutics 16, no. 4: 476. https://doi.org/10.3390/pharmaceutics16040476
APA StyleRosenberg, F. M., Kamali, Z., Voorberg, A. N., Oude Munnink, T. H., van der Most, P. J., Snieder, H., Vaez, A., & Schuttelaar, M. L. A. (2024). Transcriptomics- and Genomics-Guided Drug Repurposing for the Treatment of Vesicular Hand Eczema. Pharmaceutics, 16(4), 476. https://doi.org/10.3390/pharmaceutics16040476