Simulating Resource Management across the Cloud-to-Thing Continuum: A Survey and Future Directions
Abstract
:1. Introduction and Motivation
2. Related Works
2.1. The Cloud-to-Thing Continuum
- Fog Computing is a layered model for enabling ubiquitous access to a shared continuum of scalable computing resources. The model facilitates the deployment of distributed, latency-aware applications and services, and consists of fog nodes (physical or virtual), residing between smart end-devices and centralised (cloud) services [3].
- Edge Computing is the network layer encompassing the end devices and their users, to provide, for example, local computing capability on a sensor, metering or some other devices that are network-accessible [3].
2.2. Simulation Software—From the Cloud to the Edge
2.3. Resource Management
3. Methods and Review Framework
3.1. Research Questions
- What resource management mechanisms were simulated in the research sample?
- In which layer of cloud-to-thing continuum were studies conducted?
- What variable or key performance indicator (KPI) was evaluated in the studies?
- What simulation tools were used in the studies?
- What simulation methods were used in the studies?
- How has research on the evaluation of resource management across the C2T continuum evolved over time?
3.2. Identification of Research
3.3. Data Extraction
4. Summary of Selected Research
4.1. Cloud Computing
4.2. Fog Computing
4.3. Edge Computing
5. Analysis and Discussion
5.1. Resource Management Mechanisms
5.2. The C2T Continuum—Cloud, Fog and Edge Computing
5.3. Simulation Tools and Methods
5.4. Evolution over Time
6. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
C2T | Cloud-to-Thing |
DES | Discrete Event Simulation |
DTS | Discrete Time Simulation |
EC2 | Elastic Compute Cloud |
IoT | Internet of Things |
KPI | Key Performance Indicator |
MPI | Message Passing Interface |
NIST | National Institute of Standards and Technology |
PM | Physical Machine |
QoS | Quality of Service |
QoE | Quality of Experience |
SLA | Service Legal Agreement |
vCDN | Virtual Content Delivery Network |
VM | Virtual Machine |
References
- Tarkoma, S.; Katasonov, A. Internet of Things Strategic Research Agenda; Finnish Strategic Centre for Science, Technology and Innovation: Las Palmas, Spain, 2011. [Google Scholar]
- IDC. Worldwide Global DataSphere IoT Device and Data Forecast 2019–2023. Available online: https://www.idc.com/getdoc.jsp?containerId=US45066919 (accessed on 29 May 2019).
- Iorga, M.; Goren, N.; Feldman, L.; Barton, R.; Martin, M.; Mahmoudi, C. Fog Computing Conceptual Model; NIST: Gaithersburg, MD, USA, 2018.
- Loomba, R.; Ellis, K.A.; Forsman, J.; Fowley, F.; Lynn, T.; Svorobej, S.; Willis, P. Optimisation of Edge Networks and Their Distributed Applications; Technical Report; Intel: Leixlip, Ireland, 2020. [Google Scholar]
- Hong, C.H.; Varghese, B. Resource management in fog/edge computing: A survey on architectures, infrastructure, and algorithms. ACM Comput. Surv. (CSUR) 2019, 52, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Buyya, R.; Ranjan, R.; Calheiros, R.N. Modeling and simulation of scalable Cloud computing environments and the CloudSim toolkit: Challenges and opportunities. In Proceedings of the 2009 International Conference on High Performance Computing & Simulation, HPCS’09, Leipzig, Germany, 21–24 June 2009; pp. 1–11. [Google Scholar]
- Filelis-Papadopoulos, C.K.; Giannoutakis, K.M.; Gravvanis, G.A.; Kouzinopoulos, C.S.; Makaratzis, A.T.; Tzovaras, D. Simulating Heterogeneous Clouds at Scale. In Heterogeneity, High Performance Computing, Self-Organization and the Cloud; Lynn, T., Morrison, J.P., Kenny, D., Eds.; Palgrave Macmillan: Cham, Switzerland, 2018; pp. 119–150. [Google Scholar]
- Singh, S.; Chana, I. A survey on resource scheduling in cloud computing: Issues and challenges. J. Grid Comput. 2016, 14, 217–264. [Google Scholar] [CrossRef]
- Singh, S.; Chana, I. Cloud resource provisioning: Survey, status and future research directions. Knowl. Inf. Syst. 2016, 49, 1005–1069. [Google Scholar] [CrossRef]
- Kumar, M.; Sharma, S.; Goel, A.; Singh, S. A comprehensive survey for scheduling techniques in cloud computing. J. Netw. Comput. Appl. 2019, 143, 1–33. [Google Scholar] [CrossRef]
- Duc, T.L.; Leiva, R.G.; Casari, P.; Östberg, P.O. Machine learning methods for reliable resource provisioning in edge-cloud computing: A survey. ACM Comput. Surv. (CSUR) 2019, 52, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Ghobaei-Arani, M.; Souri, A.; Rahmanian, A.A. Resource management approaches in fog computing: A comprehensive review. J. Grid Comput. 2019, 18, 1–42. [Google Scholar] [CrossRef]
- Tian, W.; Xu, M.; Chen, A.; Li, G.; Wang, X.; Chen, Y. Open-source simulators for cloud computing: Comparative study and challenging issues. Simul. Model. Pract. Theory 2015, 58, 239–254. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Peng, Y.; Xie, F.; Dai, Z. Modeling and simulation of cloud computing: A review. In Proceedings of the 2012 IEEE Asia Pacific cloud computing congress (APCloudCC), Shenzhen, China, 14–17 November 2012; pp. 20–24. [Google Scholar]
- Svorobej, S.; Takako Endo, P.; Bendechache, M.; Filelis-Papadopoulos, C.; Giannoutakis, K.M.; Gravvanis, G.A.; Tzovaras, D.; Byrne, J.; Lynn, T. Simulating fog and edge computing scenarios: An overview and research challenges. Future Internet 2019, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- Barroso, L.A.; Hölzle, U. The case for energy-proportional computing. Computer 2007, 40, 33–37. [Google Scholar] [CrossRef]
- Shin, D. A socio-technical framework for Internet-of-Things design: A human-centered design for the Internet of Things. Telemat. Inform. 2014, 31, 519–531. [Google Scholar] [CrossRef]
- ITU-T. Vocabulary for Performance and Quality of Service, Amendment 2: New Definitions for Inclusion in Recommendation ITU-T P. 10/G. 100; International Telecommunication Union: Geneva, Switzerland, 2008. [Google Scholar]
- Law, A.M.; Kelton, W.D. Simulation Modelling and Analysis, 3rd ed.; McGraw Hill: Singapore, 2000. [Google Scholar]
- Lynn, T.; Gourinovitch, A.; Byrne, J.; Byrne, P.J.; Svorobej, S.; Giannoutakis, K.; Kenny, D.; Morrison, J. A Preliminary Systematic Review of Computer Science Literature on Cloud Computing Research using Open Source Simulation Platforms. In Proceedings of the 7th International Conference on Cloud Computing and Services Science—Volume 1: CLOSER, INSTICC, Porto, Portugal, 24–26 April 2017; pp. 565–573. [Google Scholar] [CrossRef]
- Byrne, J.; Svorobej, S.; Giannoutakis, K.M.; Tzovaras, D.; Byrne, P.J.; Östberg, P.; Gourinovitch, A.; Lynn, T. A Review of Cloud Computing Simulation Platforms and Related Environments. In Proceedings of the 7th International Conference on Cloud Computing and Services Science—Volume 1: CLOSER,. INSTICC, Porto, Portugal, 24–26 April 2017; pp. 679–691. [Google Scholar] [CrossRef]
- Filelis-Papadopoulos, C.K.; Gravvanis, G.A.; Kyziropoulos, P.E. A framework for simulating large scale cloud infrastructures. Future Gener. Comput. Syst. 2018, 79, 703–714. [Google Scholar] [CrossRef]
- Wickremasinghe, B.; Calheiros, R.N.; Buyya, R. Cloudanalyst: A cloudsim-based visual modeller for analysing cloud computing environments and applications. In Proceedings of the 2010 24th IEEE International Conference on Advanced Information Networking and Applications, Perth, Australia, 20–23 April 2010; pp. 446–452. [Google Scholar]
- Sá, T.T.; Calheiros, R.N.; Gomes, D.G. CloudReports: An extensible simulation tool for energy-aware cloud computing environments. In Cloud Computing; Springer: Berlin/Heidelberg, Germany, 2014; pp. 127–142. [Google Scholar]
- Bendechache, M.; Svorobej, S.; Takako Endo, P.; Mario, M.N.; Ares, M.E.; Byrne, J.; Lynn, T. Modelling and Simulation of ElasticSearch using CloudSim. In Proceedings of the 2019 23rd IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications, Cosenza, Italy, 7–9 October 2019; pp. 1–8. [Google Scholar]
- Son, J.; Dastjerdi, A.V.; Calheiros, R.N.; Ji, X.; Yoon, Y.; Buyya, R. Cloudsimsdn: Modeling and simulation of software-defined cloud data centers. In Proceedings of the 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Shenzhen, China, 4–7 May 2015; pp. 475–484. [Google Scholar]
- Higashino, W.A.; Capretz, M.A.; Bittencourt, L.F. CEPSim: Modelling and simulation of Complex Event Processing systems in cloud environments. Future Gener. Comput. Syst. 2016, 65, 122–139. [Google Scholar] [CrossRef]
- Gupta, H.; Vahid Dastjerdi, A.; Ghosh, S.K.; Buyya, R. iFogSim: A toolkit for modeling and simulation of resource management techniques in the Internet of Things, Edge and Fog computing environments. Softw. Pract. Exp. 2017, 47, 1275–1296. [Google Scholar] [CrossRef] [Green Version]
- Garg, S.K.; Buyya, R. Networkcloudsim: Modelling parallel applications in cloud simulations. In Proceedings of the 2011 Fourth IEEE International Conference on Utility and Cloud Computing, Victoria, Australia, 5–8 December 2011; pp. 105–113. [Google Scholar]
- Fittkau, F.; Frey, S.; Hasselbring, W. CDOSim: Simulating cloud deployment options for software migration support. In Proceedings of the 2012 IEEE 6th International Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA), Trnto, Italy, 24 September 2012; pp. 37–46. [Google Scholar]
- Jararweh, Y.; Jarrah, M.; Alshara, Z.; Alsaleh, M.N.; Al-Ayyoub, M. CloudExp: A comprehensive cloud computing experimental framework. Simul. Model. Pract. Theory 2014, 49, 180–192. [Google Scholar] [CrossRef]
- Varga, A. OMNeT++. In Modeling and Tools for Network Simulation; Springer: Berlin/Heidelberg, Germany, 2010; pp. 35–59. [Google Scholar]
- Tighe, M.; Keller, G.; Bauer, M.; Lutfiyya, H. DCSim: A data centre simulation tool for evaluating dynamic virtualized resource management. In Proceedings of the 2012 8th International Conference on Network and Service Management (CNSM) and 2012 Workshop on Systems Virtualiztion Management (SVM), Las Vegas, NV, USA, 22–26 October 2012; pp. 385–392. [Google Scholar]
- Kliazovich, D.; Bouvry, P.; Khan, S.U. GreenCloud: A packet-level simulator of energy-aware cloud computing data centers. J. Supercomput. 2012, 62, 1263–1283. [Google Scholar] [CrossRef]
- Kecskemeti, G. DISSECT-CF: A simulator to foster energy-aware scheduling in infrastructure clouds. Simul. Model. Pract. Theory 2015, 58, 188–218. [Google Scholar] [CrossRef] [Green Version]
- Sotiriadis, S.; Bessis, N.; Antonopoulos, N.; Anjum, A. SimIC: Designing a new inter-cloud simulation platform for integrating large-scale resource management. In Proceedings of the 2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA), Barcelona, Spain, 25–28 March 2013; pp. 90–97. [Google Scholar]
- Filelis-Papadopoulos, C.K.; Giannoutakis, K.M.; Gravvanis, G.A.; Tzovaras, D. Large-scale simulation of a self-organizing self-management cloud computing framework. J. Supercomput. 2018, 74, 530–550. [Google Scholar] [CrossRef]
- Fernández-Cerero, D.; Fernández-Montes, A.; Ortega, J.A. Energy policies for data-center monolithic schedulers. Expert Syst. Appl. 2018, 110, 170–181. [Google Scholar] [CrossRef]
- Kitchenham, B. Procedures for performing systematic reviews. Keele UK Keele Univ. 2004, 33, 1–26. [Google Scholar]
- Pai, M.; McCulloch, M.; Colford, J. Systematic Review: A Road Map; Version 2.2; Systematic Reviews Group: Berkeley, CA, USA, 2004. [Google Scholar]
- Malawski, M.; Juve, G.; Deelman, E.; Nabrzyski, J. Algorithms for cost-and deadline-constrained provisioning for scientific workflow ensembles in IaaS clouds. Future Gener. Comput. Syst. 2015, 48, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Samimi, P.; Teimouri, Y.; Mukhtar, M. A combinatorial double auction resource allocation model in cloud computing. Inf. Sci. 2016, 357, 201–216. [Google Scholar] [CrossRef]
- Bux, M.; Leser, U. Dynamiccloudsim: Simulating heterogeneity in computational clouds. Future Gener. Comput. Syst. 2015, 46, 85–99. [Google Scholar]
- Arianyan, E.; Taheri, H.; Sharifian, S. Novel energy and SLA efficient resource management heuristics for consolidation of virtual machines in cloud data centers. Comput. Electr. Eng. 2015, 47, 222–240. [Google Scholar]
- Magalhães, D.; Calheiros, R.N.; Buyya, R.; Gomes, D.G. Workload modeling for resource usage analysis and simulation in cloud computing. Comput. Electr. Eng. 2015, 47, 69–81. [Google Scholar]
- Da Silva, R.A.; da Fonseca, N.L. Topology-aware virtual machine placement in data centers. J. Grid Comput. 2016, 14, 75–90. [Google Scholar]
- Castro, P.H.; Barreto, V.L.; Corrêa, S.L.; Granville, L.Z.; Cardoso, K.V. A joint CPU-RAM energy efficient and SLA-compliant approach for cloud data centers. Comput. Netw. 2016, 94, 1–13. [Google Scholar] [CrossRef]
- Cai, Z.; Li, X.; Ruiz, R.; Li, Q. A delay-based dynamic scheduling algorithm for bag-of-task workflows with stochastic task execution times in clouds. Future Gener. Comput. Syst. 2017, 71, 57–72. [Google Scholar]
- Heilig, L.; Buyya, R.; Voß, S. Location-aware brokering for consumers in multi-cloud computing environments. J. Netw. Comput. Appl. 2017, 95, 79–93. [Google Scholar]
- Lin, W.; Xu, S.; He, L.; Li, J. Multi-resource scheduling and power simulation for cloud computing. Inf. Sci. 2017, 397, 168–186. [Google Scholar] [CrossRef]
- Arianyan, E.; Taheri, H.; Khoshdel, V. Novel fuzzy multi objective DVFS-aware consolidation heuristics for energy and SLA efficient resource management in cloud data centers. J. Netw. Comput. Appl. 2017, 78, 43–61. [Google Scholar] [CrossRef]
- Ranjbari, M.; Torkestani, J.A. A learning automata-based algorithm for energy and SLA efficient consolidation of virtual machines in cloud data centers. J. Parallel Distrib. Comput. 2018, 113, 55–62. [Google Scholar] [CrossRef]
- Gawali, M.B.; Shinde, S.K. Task scheduling and resource allocation in cloud computing using a heuristic approach. J. Cloud Comput. 2018, 7, 4. [Google Scholar] [CrossRef]
- Sood, S.K. SNA based QoS and reliability in fog and cloud framework. World Wide Web 2018, 21, 1601–1616. [Google Scholar] [CrossRef]
- Al-Mansoori, A.; Abawajy, J.; Chowdhury, M. SDN enabled BDSP in public cloud for resource optimization. Wirel. Netw. 2018, 1–11. [Google Scholar] [CrossRef]
- Mishra, S.K.; Puthal, D.; Sahoo, B.; Jayaraman, P.P.; Jun, S.; Zomaya, A.Y.; Ranjan, R. Energy-efficient VM-placement in cloud data center. Sustain. Comput. Inform. Syst. 2018, 20, 48–55. [Google Scholar] [CrossRef]
- Kumar, M.; Sharma, S. PSO-COGENT: Cost and Energy Efficient scheduling in Cloud environment with deadline constraint. Sustain. Comput. Inform. Syst. 2018, 19, 147–164. [Google Scholar]
- Fernández-Cerero, D.; Jakóbik, A.; Grzonka, D.; Kołodziej, J.; Fernández-Montes, A. Security supportive energy-aware scheduling and energy policies for cloud environments. J. Parallel Distrib. Comput. 2018, 119, 191–202. [Google Scholar] [CrossRef]
- Pu, L.; Chen, X.; Mao, G.; Xie, Q.; Xu, J. Chimera: An energy-efficient and deadline-aware hybrid edge computing framework for vehicular crowdsensing applications. IEEE Internet Things J. 2018, 6, 84–99. [Google Scholar]
- Mahmoud, M.M.; Rodrigues, J.J.; Saleem, K.; Al-Muhtadi, J.; Kumar, N.; Korotaev, V. Towards energy-aware fog-enabled cloud of things for healthcare. Comput. Electr. Eng. 2018, 67, 58–69. [Google Scholar] [CrossRef]
- Qayyum, T.; Malik, A.W.; Khattak, M.A.K.; Khalid, O.; Khan, S.U. FogNetSim++: A toolkit for modeling and simulation of distributed fog environment. IEEE Access 2018, 6, 63570–63583. [Google Scholar] [CrossRef]
- Naranjo, P.G.V.; Baccarelli, E.; Scarpiniti, M. Design and energy-efficient resource management of virtualized networked Fog architectures for the real-time support of IoT applications. J. Supercomput. 2018, 74, 2470–2507. [Google Scholar] [CrossRef]
- Moghaddam, S.K.; Buyya, R.; Ramamohanarao, K. ACAS: An anomaly-based cause aware auto-scaling framework for clouds. J. Parallel Distrib. Comput. 2019, 126, 107–120. [Google Scholar]
- Zakarya, M.; Gillam, L. Modelling resource heterogeneities in cloud simulations and quantifying their accuracy. Simul. Model. Pract. Theory 2019, 94, 43–65. [Google Scholar] [CrossRef]
- Priya, V.; Kumar, C.S.; Kannan, R. Resource scheduling algorithm with load balancing for cloud service provisioning. Appl. Soft Comput. 2019, 76, 416–424. [Google Scholar]
- Filelis-Papadopoulos, C.K.; Giannoutakis, K.M.; Gravvanis, G.A.; Endo, P.T.; Tzovaras, D.; Svorobej, S.; Lynn, T. Simulating large vCDN networks: A parallel approach. Simul. Model. Pract. Theory 2019, 92, 100–114. [Google Scholar]
- Talaat, F.M.; Ali, S.H.; Saleh, A.I.; Ali, H.A. Effective Load Balancing Strategy (ELBS) for Real-Time Fog Computing Environment Using Fuzzy and Probabilistic Neural Networks. J. Netw. Syst. Manag. 2019, 27, 883–929. [Google Scholar] [CrossRef]
- Madni, S.H.H.; Latiff, M.S.A.; Ali, J. Multi-objective-oriented cuckoo search optimization-based resource scheduling algorithm for clouds. Arab. J. Sci. Eng. 2019, 44, 3585–3602. [Google Scholar] [CrossRef]
- Guerrero, C.; Lera, I.; Juiz, C. A lightweight decentralized service placement policy for performance optimization in fog computing. J. Ambient Intell. Humaniz. Comput. 2019, 10, 2435–2452. [Google Scholar]
- AbdElhalim, E.; Obayya, M.; Kishk, S. Distributed Fog-to-Cloud computing system: A minority game approach. Concurr. Comput. Pract. Exp. 2019, 31, e5162. [Google Scholar] [CrossRef]
- Ostermann, S.; Plankensteiner, K.; Prodan, R.; Fahringer, T. GroudSim: An event-based simulation framework for computational grids and clouds. In Proceedings of the European Conference on Parallel Processing, Ischia, Italy, 31 August–3 September 2010; pp. 305–313. [Google Scholar]
- Mell, P.; Grance, T. The NIST Definition of Cloud Computing (Draft). NIST Spec. Publ. 2011, 800, 145. [Google Scholar]
- Liu, F.; Tong, J.; Mao, J.; Bohn, R.; Messina, J.; Badger, L.; Leaf, D. NIST cloud computing reference architecture. NIST Spec. Publ. 2011, 500, 292. [Google Scholar]
- Iorga, M.; Feldman, L.; Barton, R.; Martin, M.; Goren, N.; Mahmoudi, C. The Nist Definition of Fog Computing; Technical Report; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017. [Google Scholar]
- Lynn, T.; Endo, P.T.; Maria Ribeiro, A.; Barbosa, G.; Rosati, P. The Internet of Things: Definitions, Key Concepts, and Reference Architectures. In The Cloud-to-Thing Continuum Opportunities and Challenges in Cloud, Fog and Edge Computing; Lynn, T., John Mooney, P.T.E., Lee, B., Eds.; Palgrave-Macmillan: Cham, Switzerland, 2020; Chapter 1. [Google Scholar]
- Keranen, A. Opportunistic Network Environment Simulator; Special Assignment Report; Helsinki University of Technology, Department of Communications and Networking: Espoo, Finland, 2008. [Google Scholar]
- Freyne, J.; Coyle, L.; Smyth, B.; Cunningham, P. Relative status of journal and conference publications in computer science. Commun. ACM 2010, 53, 124–132. [Google Scholar] [CrossRef]
- Gkonis, P.K.; Trakadas, P.T.; Kaklamani, D.I. A Comprehensive Study on Simulation Techniques for 5G Networks: State of the Art Results, Analysis, and Future Challenges. Electronics 2020, 9, 468. [Google Scholar] [CrossRef] [Green Version]
Inclusion Criteria | Exclusion Criteria |
---|---|
Full-text | Uncompleted studies |
Published at any time | Non English |
Published in the above selected databases | Duplicated studies |
Published in a Scopus Q1 or Q2 journal | Studies on Grid Computing |
Study manuscript written in English on the topic of evaluation of resource management across the C2T continuum using simulation frameworks | Studies using analytical modelling techniques, e.g., Petri Nets, Markov Chains, Fault Trees, Reliability Graphs, and Reliability Block Diagrams |
No | Title | Authors | Journal (Publisher) | Year | Scopus Ranking | Citation |
---|---|---|---|---|---|---|
1 | Algorithms for cost- and deadline-constrained provisioning for scientific workflow ensembles in IaaS clouds | Malawski et al. [41] | Future Generation Computer Systems (Elsevier) | 2015 | Q1 | 433 |
2 | DISSECT-CF: A simulator to foster energy-aware scheduling in infrastructure clouds | Kecskemeti [35] | Simulation Modelling Practice and Theory (Elsevier) | 2015 | Q1 | 46 |
3 | DynamicCloudSim: Simulating heterogeneity in computational clouds | Bux and Leser [43] | Future Generation Computer Systems (Elsevier) | 2015 | Q1 | 78 |
4 | Novel energy and SLA efficient resource management heuristics for consolidation of virtual machines in cloud data centers | Arianyan et al. [44] | Computers & Electrical Engineering (Elsevier) | 2015 | Q2 | 82 |
5 | Workload modeling for resource usage analysis and simulation in cloud computing | Magalhaes et al. [45] | Computers & Electrical Engineering (Elsevier) | 2015 | Q2 | 77 |
6 | A combinatorial double auction resource allocation model in cloud computing | Samimi et al. [42] | Information sciences (Elsevier) | 2016 | Q1 | 178 |
7 | Topology-Aware Virtual Machine Placement in data centers | da Silva and da Fonseca [46] | Journal of Grid Computing (Springer) | 2016 | Q1 | 21 |
8 | A joint CPU-RAM energy efficient and SLA-compliant approach for cloud data centers | Castro et al. [47] | Computer Networks (Elsevier) | 2016 | Q1 | 19 |
9 | CEPSim: Modelling and simulation of Complex Event Processing systems in cloud environments | Higashino et al. [27] | Future Generation Computer Systems (Elsevier) | 2016 | Q1 | 33 |
10 | A delay-based dynamic scheduling algorithm for bag-of-task workflows with stochastic task execution times in clouds | Cai et al. [48] | Future Generation Computer Systems (Elsevier) | 2017 | Q1 | 32 |
11 | Location-aware brokering for consumers in multi-cloud computing environments | Heilig et al. [49] | Journal of Network and Computer Applications (Elsevier) | 2017 | Q1 | 13 |
12 | Multi-resource scheduling and power simulation for cloud computing | Lin et al. [50] | Information Sciences (Elsevier) | 2017 | Q1 | 50 |
13 | Novel fuzzy multi objective DVFS-aware consolidation heuristics for energy and SLA efficient resource management in cloud data centers | Arianyan et al. [51] | Journal of Network and Computer Applications (Elsevier) | 2017 | Q1 | 28 |
14 | iFogSim: A toolkit for modeling and simulation of resource management techniques in the Internet of Things, Edge and Fog computing environments | Gupta et al. [28] | Software: Practice and Experience (Wiley) | 2017 | Q2 | 508 |
15 | A learning automata-based algorithm for energy and SLA efficient consolidation of virtual machines in cloud data centers | Ranjbari and Torkestani [52] | Parallel Distributed Computing (Elsevier) | 2018 | Q2 | 35 |
16 | Task scheduling and resource allocation in cloud computing using a heuristic approach | Gawali and Shinde [53] | Journal of Cloud Computing (Springer) | 2018 | Q2 | 33 |
17 | SNA based QoS and reliability in fog and cloud framework | Sood [54] | World Wide Web (Springer) | 2018 | Q2 | 5 |
18 | SDN enabled BDSP in public cloud for resource optimization | Al-Mansoori et al. [55] | Wireless Networks (Springer) | 2018 | Q2 | 1 |
19 | Energy-efficient VM-placement in cloud data center | Mishra et al. [56] | Sustainable computing: informatics and systems (Elsevier) | 2018 | Q2 | 19 |
20 | PSO-COGENT: Cost and energy efficient scheduling in cloud environment with deadline constraint | Kumar and Sharma [57] | Sustainable computing: informatics and systems (Elsevier) | 2018 | Q2 | 12 |
21 | Security supportive energy-aware scheduling and energy policies for cloud environments | Fernández-Cerero et al. [58] | Parallel Distributed Computing (Elsevier) | 2018 | Q2 | 14 |
22 | Chimera: An Energy-Efficient and Deadline-Aware Hybrid Edge Computing Framework for Vehicular Crowdsensing Applications | Pu et al. [59] | IEEE Internet of Things Journal (IEEE) | 2018 | Q1 | 17 |
23 | Towards energy-aware fog-enabled cloud of things for healthcare | Mahmoud et al. [60] | Computers & Electrical Engineering (Elsevier) | 2018 | Q2 | 28 |
24 | FogNetSim++: A Toolkit for Modeling and Simulation of Distributed Fog Environment | Qayyum et al. [61] | IEEE Access (IEEE) | 2018 | Q1 | 25 |
25 | Design and energy-efficient resource management of virtualized networked Fog architectures for the real-time support of IoT applications | Naranjo et al. [62] | The Journal of Supercomputing (Springer) | 2018 | Q2 | 25 |
26 | Large-scale simulation of a self-organizing self-management cloud computing framework | Filelis-Papadopoulos et al. [37] | The Journal of Supercomputing (Springer) | 2018 | Q2 | 8 |
27 | A framework for simulating large scale cloud infrastructures | Filelis-Papadopoulos et al. [22] | Future Generation Computer Systems (Elsevier) | 2018 | Q1 | 11 |
28 | ACAS: An anomaly-based cause aware auto-scaling framework for clouds | Moghaddam et al. [63] | Journal of Parallel and Distributed Computing (Elsevier) | 2019 | Q2 | 4 |
29 | Modelling resource heterogeneities in cloud simulations and quantifying their accuracy | Zakarya and Gillam [64] | Simulation Modelling Practice and Theory (Elsevier) | 2019 | Q1 | 1 |
30 | Resource scheduling algorithm with load balancing for cloud service provisioning | Priya et al. [65] | Applied Soft Computing (Elsevier) | 2019 | Q1 | 12 |
31 | Simulating large vCDN networks: A parallel approach | Filelis-Papadopoulos et al. [66] | Simulation Modelling Practice and Theory (Elsevier) | 2019 | Q1 | 4 |
32 | Effective Load Balancing Strategy (ELBS) for Real-Time Fog Computing Environment Using Fuzzy and Probabilistic Neural Networks | Talaat et al. [67] | Journal of Network and Systems Management (Springer) | 2019 | Q2 | 2 |
33 | Multi-objective-Oriented Cuckoo Search Optimization-Based Resource Scheduling Algorithm for Clouds | Madni et al. [68] | Arabian Journal for Science and Engineering (Springer) | 2019 | Q2 | 5 |
34 | A lightweight decentralized service placement policy for performance optimization in fog computing | Guerrero et al. [69] | Journal of Ambient Intelligence and Humanized Computing (Springer) | 2019 | Q2 | 27 |
35 | Distributed Fog-to-Cloud computing system: A minority game approach | AbdElhalim et al. [70] | Concurrency and Computation: Practice and Experience (Wiley) | 2019 | Q2 | 0 |
Publication | Year | C2T Context | RM Context | Simulation Methodelogy | Simulator Tool | Variable or KPI under Study | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cloud | Fog | Edge | Provisioning | Scheduling | DES | DTS | Hybrid | ||||||||
Detection | Selection | Mapping | Allocation | Monitoring | Load Balancing | ||||||||||
Samimi et al. [42] | 2016 | ✓ | ✓ | ✓ | CloudSim | Defining auction strategies | |||||||||
da Silva and da Fonseca [46] | 2016 | ✓ | ✓ | ✓ | CloudSim * | VM placement | |||||||||
Cai et al. [48] | 2017 | ✓ | ✓ | ✓ | ✓ | ✓ | ElasticSim * | Rental time and rental cost | |||||||
Castro et al. [47] | 2016 | ✓ | ✓ | ✓ | CloudSim | VM placement | |||||||||
Ranjbari and Torkestani [52] | 2018 | ✓ | ✓ | ✓ | CloudSim | Energy consumption and SLA violations | |||||||||
Gawali and Shinde [53] | 2018 | ✓ | ✓ | ✓ | CloudSim | Bandwidth and workload | |||||||||
Malawski et al. [41] | 2015 | ✓ | ✓ | ✓ | ✓ | ✓ | CloudSim | Cost (budget), Run time | |||||||
Heilig et al. [49] | 2017 | ✓ | ✓ | ✓ | ✓ | ✓ | CloudSim * | Cost and latency | |||||||
Moghaddam et al. [63] | 2019 | ✓ | ✓ | ✓ | ✓ | CloudSim * | Autoscaling (vertical and horizontal) | ||||||||
Al-Mansoori et al. [55] | 2018 | ✓ | ✓ | ✓ | FogNetSim++ | VM placement | |||||||||
Higashino et al. [27] | 2016 | ✓ | ✓ | ✓ | CEPSim * | Latency, response time and accuracy | |||||||||
Kecskemeti [35] | 2015 | ✓ | ✓ | ✓ | DISSECT-CF | Energy consumption | |||||||||
Bux and Leser [43] | 2015 | ✓ | ✓ | ✓ | DynamicCloudSim * | Run time | |||||||||
Mishra et al. [56] | 2018 | ✓ | ✓ | ✓ | CloudSim | Energy consumption | |||||||||
Zakarya and Gillam [64] | 2019 | ✓ | ✓ | ✓ | ✓ | ✓ | CloudSim * | Energy consumption | |||||||
Kumar and Sharma [57] | 2018 | ✓ | ✓ | ✓ | CloudSim | Energy consumption, run time and cost | |||||||||
Lin et al. [50] | 2017 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | MultiRE-CloudSim * | Efficiency, power consumption | ||||||
Arianyan et al. [51] | 2017 | ✓ | ✓ | ✓ | CloudSim | Energy, SLA and run time | |||||||||
Arianyan et al. [44] | 2015 | ✓ | ✓ | ✓ | CloudSim | Energy consumption, SLA and VM migration | |||||||||
Fernández-Cerero et al. [58] | 2018 | ✓ | ✓ | ✓ | ✓ | SCORE | Energy consumption and task makespan | ||||||||
Magalhaes et al. [45] | 2015 | ✓ | ✓ | ✓ | CloudSim * | accuracy | |||||||||
Priya et al. [65] | 2019 | ✓ | ✓ | ✓ | ✓ | ✓ | CloudSim | Load balance | |||||||
Madni et al. [68] | 2019 | ✓ | ✓ | ✓ | CloudSim | Makespan, cost and enhance resource utilisation | |||||||||
Filelis-Papadopoulos et al. [37] | 2018 | ✓ | ✓ | ✓ | CloudLightining | Energy consumption, task throughput and computational efficiency | |||||||||
Filelis-Papadopoulos et al. [22] | 2018 | ✓ | ✓ | ✓ | CloudLightining | Energy consumption and Scalability | |||||||||
Sood [54] | 2018 | ✓ | ✓ | ✓ | CloudSim | Detect deadlocks | |||||||||
Mahmoud et al. [60] | 2018 | ✓ | ✓ | ✓ | iFogSim * | Energy consumption of the IoT devices | |||||||||
Qayyum et al. [61] | 2018 | ✓ | ✓ | ✓ | FogNetSim++ | Efficient utilization of fog nodes | |||||||||
Talaat et al. [67] | 2019 | ✓ | ✓ | ✓ | iFogSim * | Average Turnaround Time, Failure Rate, and reliability | |||||||||
Naranjo et al. [62] | 2018 | ✓ | ✓ | ✓ | ✓ | ✓ | iFogSim * | Energy, QoS, and networking delay reduction | |||||||
Guerrero et al. [69] | 2019 | ✓ | ✓ | ✓ | ✓ | iFogSim * | Service placement, service latency and network usage | ||||||||
Gupta et al. [28] | 2017 | ✓ | ✓ | ✓ | iFogSim * | Cost and latency | |||||||||
AbdElhalim et al. [70] | 2019 | ✓ | ✓ | ✓ | iFogSim * | Energy consumption and network delay | |||||||||
Pu et al. [59] | 2018 | ✓ | ✓ | ✓ | ONE | Energy and latency | |||||||||
Filelis-Papadopoulos et al. [66] | 2019 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | CloudLightning | Energy, memory requirement, and scalability |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bendechache, M.; Svorobej, S.; Takako Endo, P.; Lynn, T. Simulating Resource Management across the Cloud-to-Thing Continuum: A Survey and Future Directions. Future Internet 2020, 12, 95. https://doi.org/10.3390/fi12060095
Bendechache M, Svorobej S, Takako Endo P, Lynn T. Simulating Resource Management across the Cloud-to-Thing Continuum: A Survey and Future Directions. Future Internet. 2020; 12(6):95. https://doi.org/10.3390/fi12060095
Chicago/Turabian StyleBendechache, Malika, Sergej Svorobej, Patricia Takako Endo, and Theo Lynn. 2020. "Simulating Resource Management across the Cloud-to-Thing Continuum: A Survey and Future Directions" Future Internet 12, no. 6: 95. https://doi.org/10.3390/fi12060095
APA StyleBendechache, M., Svorobej, S., Takako Endo, P., & Lynn, T. (2020). Simulating Resource Management across the Cloud-to-Thing Continuum: A Survey and Future Directions. Future Internet, 12(6), 95. https://doi.org/10.3390/fi12060095