Mutual Influence of Users Credibility and News Spreading in Online Social Networks
Abstract
:1. Introduction
- the propensity to trust, affected by each individual’s psychology and independent of other OSN users;
- the set of mutual past interactions between users;
- the opinion each user has about the veracity of others’ posts; note that acquaintance between two individuals does not imply mutual trust, rather it can be dynamically inferred by observing the users social behaviors over time.
2. Related Works
3. Trust Based News Spreading Model
3.1. OSN Layer
- susceptible status corresponds to ignorant status, i.e., OSNs users who belong to this category are not aware of the news;
- infected status corresponds to spreader status, i.e., OSNs users that are aware of news and try to spread it through sharing;
- recovered status corresponds to stifle status, i.e., OSNs users aware of the news, but are not interested in propagating it. Considering that from the OSNs data analysis it is not easy to distinguish who viewed news without sharing it or who was not connected at news’ publishing time, we believe that this category should include users who have at least one neighbor who shared the news and did not re-share it.
3.2. CN Layer
- if the news x is false;
- if x is true,
- if x is false but perceived as true (e.g., it cites false authoritative sources, and/or it seems coming from logical reasoning or it starts from a real event), then ,
- if x is true but perceived as false (e.g., it does not cite any sources, it is poorly described or its content is strange enough to sound fake), then .
3.3. News Propagation Model
- (1)
- Initially, the seed node s injects a news in the network, while each of his neighbors j uses Equation (2) to compute the probability to re-post the news or not.
- (2)
- If j re-post the news, it updates the credibility on the CN layers by using Equation (3).
- (3)
- At the next step, infected nodes attempt to infect their neighborhood using the same mechanism, if it happens the directed credibilities is updated.
- (4)
- Another diffusion step is performed.
Algorithm 1: News spreading algorithm. |
4. Simulations and Results
4.1. Case A and B
4.2. Case C and D
4.3. Newman Case
4.4. Credibility Distributions
5. Conclusions and Future Work
- further experiments on large networks (even not scale-free) will allow to test the scalability of our model;
- we will also investigate on the applicability of our model to real OSNs; indeed, we believe that its formulation allows to adopt it in any social network where nodes neighbourhood is known, although sometimes this is allowed just for OSNs administrators and specific considerations may be required for each OSN (e.g., in FB the friendship is monodirectional whereas in Twitter the following–follower is a two-way relationship);
- we will consider how our model can address the case of creation and diffusion of fakes from non-human accounts, i.e., bots or cyborgs [73].
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bruns, A. The Active Audience: Transforming Journalism from Gatekeeping to Gatewatching. Available online: http://snurb.info/files/The%20Active%20Audience.pdf (accessed on 24 April 2021).
- Chunara, R.; Andrews, J.R.; Brownstein, J.S. Social and news media enable estimation of epidemiological patterns early in the 2010 Haitian cholera outbreak. Am. J. Trop. Med. Hyg. 2012, 86, 39–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamzah, F.B.; Lau, C.; Nazri, H.; Ligot, D.; Lee, G.; Tan, C. CoronaTracker: Worldwide COVID-19 Outbreak Data Analysis and Prediction. Available online: https://www.who.int/bulletin/online_first/20-255695.pdf (accessed on 24 April 2021).
- Lee, K.; Agrawal, A.; Choudhary, A. Real-time disease surveillance using twitter data: Demonstration on flu and cancer. In Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining, Chicago, IL, USA, 11–14 August 2013. [Google Scholar]
- Christakis, N.A.; Fowler, J.H. Social network sensors for early detection of contagious outbreaks. PLoS ONE 2010, 5, e12948. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, C.W. Trending now: Using social media to predict and track disease outbreaks. Environ. Health Perspect. 2012, 120, a30. [Google Scholar] [CrossRef] [PubMed]
- Sakaki, T.; Okazaki, M.; Matsuo, Y. Earthquake shakes Twitter users: Real-time event detection by social sensors. In Proceedings of the 19th International Conference On World Wide Web, Raleigh, NC, USA, 26–30 April 2010. [Google Scholar]
- Guy, M.; Earle, P.; Ostrum, C.; Gruchalla, K.; Horvath, S. Integration and dissemination of citizen reported and seismically derived earthquake information via social network technologies. In Advances in Intelligent Data Analysis IX; Springer: Berlin/Heidelberg, Germany, 2010; pp. 42–53. [Google Scholar]
- Spence, P.R.; Lachlan, K.A.; Griffin, D.R. Crisis communication, race, and natural disasters. J. Black Stud. 2007, 37, 539–554. [Google Scholar] [CrossRef]
- Pourebrahim, N.; Sultana, S.; Edwards, J.; Gochanour, A.; Mohanty, S. Understanding communication dynamics on Twitter during natural disasters: A case study of Hurricane Sandy. Int. J. Disaster Risk Reduct. 2019, 37, 101176. [Google Scholar] [CrossRef]
- Dragović, N.; Vasiljević, Ð.; Stankov, U.; Vujičić, M. Go social for your own safety! Review of social networks use on natural disasters–case studies from worldwide. Op. Geosci. 2019, 11, 352–366. [Google Scholar] [CrossRef]
- Haas, C.; Wearden, S.T. E-credibility: Building common ground in web environments. L1-Educ. Stud. Lang. Lit. 2003, 3, 169–184. [Google Scholar] [CrossRef]
- Kaplan, A.; Haenlein, M. Users of the World, Unite! The Challenges and Opportunities of Social Media. Bus. Horiz. 2010, 53, 59–68. [Google Scholar] [CrossRef]
- Glenski, M.; Volkova, S.; Kumar, S. User Engagement with Digital Deception. Available online: https://www.researchgate.net/publication/342250726_User_Engagement_with_Digital_Deception (accessed on 24 April 2021).
- Carchiolo, V.; Longheu, A.; Malgeri, M.; Mangioni, G.; Previti, M. Post Sharing-Based Credibility Network for Social Network. In Intelligent Distributed Computing XI; Springer International Publishing: Cham, Switzerland, 2018; pp. 149–158. [Google Scholar]
- Carchiolo, V.; Longheu, A.; Malgeri, M.; Mangioni, G.; Previti, M. Complex Networks IX; Springer International Publishing: Cham, Switzerland, 2018; pp. 303–310. [Google Scholar]
- Anderson, R.M.; May, R.M.; Anderson, B. Infectious Diseases of Humans: Dynamics and Control. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2272191/pdf/epidinfect00031-0211.pdf (accessed on 24 April 2021).
- Diekmann, O.; Heesterbeek, J.A.P. Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Available online: AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAApswggKXBgkqhkiG9w0BBwagggKIMIIChAIBADCCAn0GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMww6khyh2WW_MdVFrAgEQgIICTuVMNaZzMClmiglP (accessed on 24 April 2021).
- Newman, M.E. Spread of epidemic disease on networks. Phys. Rev. E 2002, 66, 016128. [Google Scholar] [CrossRef] [Green Version]
- Carchiolo, V.; Longheu, A.; Malgeri, M.; Mangioni, G. Trust assessment: A personalized, distributed, and secure approach. Concurr. Comput. Pract. Exp. 2012, 24, 605–617. [Google Scholar] [CrossRef]
- Buzzanca, M.; Carchiolo, V.; Longheu, A.; Malgeri, M.; Mangioni, G. Direct trust assignment using social reputation and aging. J. Ambient Intell. Humaniz. Comput. 2017, 8, 167–175. [Google Scholar] [CrossRef]
- Buskens, V. Social Networks and Trust. Available online: https://books.google.co.id/books?id=XJ0SBwAAQBAJ&printsec=frontcover&dq=Social+networks+and+trust&hl=zh-CN&sa=X&ved=2ahUKEwjl7OTix5bwAhXP7nMBHbFFCPEQ6AEwAHoECAUQAg#v=onepage&q=Social%20networks%20and%20trust&f=false (accessed on 24 April 2021).
- Aymanns, C.; Foerster, J.; Georg, C.P. Fake News in Social Networks. Available online: https://www.researchgate.net/publication/319210331_Fake_News_in_Social_Networks (accessed on 24 April 2021).
- Kopp, C.; Korb, K.B.; Mills, B.I. Information-theoretic models of deception: Modelling cooperation and diffusion in populations exposed to “fake news”. PLoS ONE 2018, 13, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Pellis, L.; Ball, F.; Bansal, S.; Eames, K.; House, T.; Isham, V.; Trapman, P. Eight challenges for network epidemic models. Epidemics 2015, 10, 58–62. [Google Scholar] [CrossRef]
- Grabner-Kräuter, S.; Bitter, S. Trust in online social networks: A multifaceted perspective. Forum Soc. Econ. 2015, 44, 48–68. [Google Scholar] [CrossRef] [Green Version]
- Lewicki, R.; Bunker, B. Trust in Relationships: A Model of Development and Decline. Available online: https://www.researchgate.net/profile/Roy-Lewicki/publication/232534885_Trust_in_relationships_A_model_of_development_and_decline/links/00b7d52ccca7d587e6000000/Trust-in-relationships-A-model-of-development-and-decline.pdf (accessed on 24 April 2021).
- Golbeck, J. Personalizing applications through integration of inferred trust values in semantic web-based social networks. In Proceedings of the Semantic Network Analysis Workshop at the 4th International Semantic Web Conference, Galway, Ireland, 7 November 2005. [Google Scholar]
- Kuter, U.; Golbeck, J. Sunny: A New Algorithm for Trust Inference in Social Networks Using Probabilistic Confidence Models. Available online: http://www.cs.umd.edu/~golbeck/downloads/Sunny.pdf (accessed on 24 April 2021).
- Taherian, M.; Amini, M.; Jalili, R. Internet and Web Applications and Services. In Proceedings of the Third International Conference on Internet and Web Applications and Services, Athens, Greece, 8–13 June 2008. [Google Scholar]
- Liu, G.; Wang, Y.; Orgun, M. Trust inference in complex trust-oriented social networks. Computational Science and Engineering. In Proceedings of the IEEE CSE 09, 12th IEEE International Conference on Computational Science and Engineering, Vancouver, BC, Canada, 29–31 August 2009. [Google Scholar]
- Adali, S.; Escriva, R.; Goldberg, M.K.; Hayvanovych, M.; Magdon-Ismail, M.; Szymanski, B.K.; Wallace, W.A.; Williams, G. Measuring behavioral trust in social networks. In Proceedings of the ISI 2010: IEEE International Conference on Intelligence and Security Informatics, Vancouver, BC, Canada, 23–26 May 2010. [Google Scholar]
- Caverlee, J.; Liu, L.; Webb, S. The SocialTrust framework for trusted social information management: Architecture and algorithms. Inf. Sci. 2010, 180, 95–112. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Z. A enhanced trust model based on social network and online behavior analysis for recommendation. In Proceedings of the CiSE 2010: International Conference on Computational Intelligence and Software Engineering, Wuhan, China, 10–12 December 2010. [Google Scholar]
- Jiang, W.; Wang, G.; Wu, J. Generating trusted graphs for trust evaluation in online social networks. Futur. Gener. Comput. Syst. 2014, 31, 48–58. [Google Scholar] [CrossRef]
- Jiang, W.; Wu, J.; Li, F.; Wang, G.; Zheng, H. Trust evaluation in online social networks using generalized network flow. IEEE Trans. Comput. 2016, 65, 952–963. [Google Scholar] [CrossRef]
- Feng, L.; Hu, Y.; Li, B.; Stanley, H.E.; Havlin, S.; Braunstein, L.A. Competing for Attention in Social Media under Information Overload Conditions. PLoS ONE 2015, 10, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, L.; Menczer, F.; Ahn, Y.Y. Virality Prediction and Community Structure in Social Networks. Sci. Rep. 2013, 3, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, F.; Dougherty, E.; Saraf, P.; Cao, Y.; Ramakrishnan, N. Epidemiological Modeling of News and Rumors on Twitter. In Proceedings of the 7th Workshop on Social Network Mining and Analysis, Chicago, IL, USA, 11 August 2013. [Google Scholar]
- Sreenivasan, S.; Chan, K.S.; Swami, A.; Korniss, G.; Szymanski, B.K. Information Cascades in Feed-Based Networks of Users with Limited Attention. IEEE Trans. Netw. Sci. Eng. 2017, 4, 120–128. [Google Scholar] [CrossRef]
- Bessi, A.; Coletto, M.; Davidescu, G.A.; Scala, A.; Caldarelli, G.; Quattrociocchi, W. Science vs Conspiracy: Collective Narratives in the Age of Misinformation. PLoS ONE 2015, 10, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Baronchelli, A. The emergence of consensus: A primer. R. Soc. Opt. Sci. 2018, 5, 172189. [Google Scholar] [CrossRef] [Green Version]
- Vicario, M.D.; Quattrociocchi, W.; Scala, A.; Zollo, F. Polarization and Fake News: Early Warning of Potential Misinformation Targets. ACM Trans. Web 2019, 13, 1–22. [Google Scholar] [CrossRef]
- Vosoughi, S.; Roy, D.; Aral, S. The spread of true and false news online. Science 2018, 359, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Duffy, A.; Tandoc, E.; Ling, R. Too good to be true, too good not to share: The social utility of fake news. Inf. Commun. Soc. 2020, 23, 1965–1979. [Google Scholar] [CrossRef]
- Niu, Y.W.; Qu, C.Q.; Wang, G.H.; Wu, J.L.; Yan, G.Y. Information spreading with relative attributes on signed networks. Inf. Sci. 2021, 551, 54–66. [Google Scholar] [CrossRef]
- Saeedian, M.; Azimi-Tafreshi, N.; Jafari, G.; Kertész, J. Epidemic spreading on evolving signed networks. Phys. Rev. E 2016, 95, 022314. [Google Scholar] [CrossRef] [Green Version]
- Pastor-Satorras, R.; Castellano, C.; Van Mieghem, P.; Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 2015, 87, 925–979. [Google Scholar] [CrossRef] [Green Version]
- Bingol, H. Fame Emerges as a Result of Small Memory. Available online: https://arxiv.org/pdf/nlin/0609033.pdf (accessed on 24 April 2021).
- Cetin, U.; Bingol, H.O. Attention competition with advertisement. Phys. Rev. E 2014, 90, 032801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huberman, B. Social Computing and the Attention Economy. J. Stat. Phys. 2013, 151. [Google Scholar] [CrossRef]
- Wu, F.; Huberman, B.A. Novelty and collective attention. Proc. Natl. Acad. Sci. USA 2007, 104, 17599–17601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Lin, Y.R. Measuring and monitoring collective attention during shocking events. EPJ Data Sci. 2017, 6, 30. [Google Scholar] [CrossRef]
- Lehmann, J.; Gonçalves, B.; Ramasco, J.J.; Cattuto, C. Dynamical Classes of Collective Attention in Twitter. In Proceedings of the 21st International Conference on World Wide Web, Lyon, France, 16–20 April 2012. [Google Scholar]
- Sasahara, K.; Hirata, Y.; Toyoda, M.; Kitsuregawa, M.; Aihara, K. Quantifying collective attention from tweet stream. PLoS ONE 2013, 8, e61823. [Google Scholar] [CrossRef]
- Karrer, B.; Newman, M. Competing Epidemics on Complex Networks. Available online: https://arxiv.org/pdf/1105.3424.pdf (accessed on 24 April 2021).
- Sneppen, K.; Trusina, A.; Jensen, M.; Bornholdt, S. A minimal model for multiple epidemics and immunity spreading. PLoS ONE 2010, 5, e13326. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, D.F.; Chan, K.S. The effects of trust and influence on the spreading of low and high quality information. Phys. A Stat. Mech. Appl. 2019, 525, 657–663. [Google Scholar] [CrossRef] [Green Version]
- Shu, P.; Gao, L.; Zhao, P.; Wang, W.; Stanley, H. Social contagions on interdependent lattice networks. Sci. Rep. 2017, 7, 44669. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, W.; Liu, L.; Pei, S.; Tang, S.; Zheng, Z. Promoting information diffusion through interlayer recovery processes in multiplex networks. Phys. Rev. E 2017, 96, 032304. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Yang, Q.; Ai, K.; Zhu, X.; Wang, W. Information Spreading on Two-Layered Multiplex Networks With Limited Contact. IEEE Access 2020, 8, 104316–104325. [Google Scholar] [CrossRef]
- Shu, K.; Mahudeswaran, D.; Wang, S.; Lee, D.; Liu, H. FakeNewsNet: A Data Repository with News Content, Social Context, and Spatiotemporal Information for Studying Fake News on Social Media. Big Data 2020, 8, 171–188. [Google Scholar] [CrossRef]
- Apuke, O.D.; Omar, B. Fake news and COVID-19: Modelling the predictors of fake news sharing among social media users. Telemat. Inform. 2021, 56, 101475. [Google Scholar] [CrossRef]
- Thompson, N.; Wang, X.; Daya, P. Determinants of News Sharing Behavior on Social Media. Available online: http://nikthompson.com/PDF/Thompson-Wang-2019-NewsSharing.pdf (accessed on 24 April 2021).
- Cinelli, M.; Quattrociocchi, W.; Galeazzi, A.; Valensise, C.; Brugnoli, E.; Schmidt, A.; Zola, P.; Zollo, F.; Scala, A. The COVID-19 social media infodemic. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Carchiolo, V.; Longheu, A.; Malgeri, M.; Mangioni, G.; Previti, M. Complex Networks & Their Applications VI; Springer International Publishing: Cham, Switzerland, 2018; pp. 980–988. [Google Scholar]
- Kivelä, M.; Arenas, A.; Barthelemy, M.; Gleeson, J.P.; Moreno, Y.; Porter, M.A. Multilayer Networks. Available online: https://arxiv.org/pdf/1309.7233.pdf (accessed on 24 April 2021).
- Keeling, M.J.; Rohani, P. Modeling Infectious Diseases in Humans and Animals. 2011. Available online: https://www.researchgate.net/publication/23180326_Modeling_Infectious_Diseases_in_Humans_and_Animals (accessed on 24 April 2021).
- Mislove, A.; Marcon, M.; Gummadi, K.P.; Druschel, P.; Bhattacharjee, B. Measurement and Analysis of Online Social Networks. In Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, San Diego, CA, USA, 24–26 October 2007. [Google Scholar]
- Michail, D.; Kinable, J.; Naveh, B.; Sichi, J.V. JGraphT: A Java Library of Graph Theory Data Structures and Algorithms. Available online: https://arxiv.org/pdf/1904.08355.pdf (accessed on 24 April 2021).
- DocNow Catalog. Available online: https://catalog.docnow.io/ (accessed on 24 April 2021).
- Zubiaga, A.; Ji, H. Tweet, but Verify: Epistemic Study of Information Verification on Twitter. Available online: https://arxiv.org/pdf/1312.5297.pdf (accessed on 24 April 2021).
- Shu, K.; Zhou, X.; Wang, S.; Zafarani, R.; Liu, H. The Role of User Profiles for Fake News Detection. In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Vancouver, BC, Canada, 27–30 August 2019. [Google Scholar]
Case | Description | |
---|---|---|
A | all news are false | |
B | all news are true | |
first 50 news are false | ||
C | next 50 news are true | |
last 50 news are false | ||
first 50 news are true | ||
D | next 50 news are false | |
last 50 news are true | ||
Newman | / | all news are propagated with pure Newman transmissibility formula |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carchiolo, V.; Longheu, A.; Malgeri, M.; Mangioni, G.; Previti, M. Mutual Influence of Users Credibility and News Spreading in Online Social Networks. Future Internet 2021, 13, 107. https://doi.org/10.3390/fi13050107
Carchiolo V, Longheu A, Malgeri M, Mangioni G, Previti M. Mutual Influence of Users Credibility and News Spreading in Online Social Networks. Future Internet. 2021; 13(5):107. https://doi.org/10.3390/fi13050107
Chicago/Turabian StyleCarchiolo, Vincenza, Alessandro Longheu, Michele Malgeri, Giuseppe Mangioni, and Marialaura Previti. 2021. "Mutual Influence of Users Credibility and News Spreading in Online Social Networks" Future Internet 13, no. 5: 107. https://doi.org/10.3390/fi13050107
APA StyleCarchiolo, V., Longheu, A., Malgeri, M., Mangioni, G., & Previti, M. (2021). Mutual Influence of Users Credibility and News Spreading in Online Social Networks. Future Internet, 13(5), 107. https://doi.org/10.3390/fi13050107