Performance of the 5th Generation Indoor Wireless Technologies-Empirical Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Performance of 5G and Wi-Fi 6 Links
2.2. Evaluation
2.2.1. 5G and Beyond Test Network
2.2.2. Evaluation Setup and Tools
2.2.3. Network Configuration
3. Results
4. Discussion and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- 5GTNF. 5GTNF-5G Test Network Finland. 2019. Available online: https://5gtnf.fi/ (accessed on 12 May 2021).
- Esmaeily, A.; Kralevska, K. Small-Scale 5G Testbeds for Network Slicing Deployment: A Systematic Review. Wirel. Commun. Mob. Comput. 2021, 2021, 26. [Google Scholar] [CrossRef]
- Popovski, P.; Trillingsgaard, K.F.; Simeone, O.; Durisi, G. 5G Wireless Network Slicing for eMBB, URLLC, and mMTC: A Communication-Theoretic View. IEEE Access 2018, 6, 55765–55779. [Google Scholar] [CrossRef]
- Intel. 5G vs. Wi-Fi 6: A Powerful Combination for Wireless. 2020. Available online: https://www.intel.com/content/www/us/en/wireless-network/5g-technology/5g-vs-wifi.html (accessed on 12 May 2021).
- Aruba Networks. Aruba 510 Series Indoor Access Points. Available online: https://www.arubanetworks.com/products/wireless/access-points/indoor-access-points/510-series/ (accessed on 3 July 2021).
- Khorov, E.; Levitsky, I.; Akyildiz, I.F. Current Status and Directions of IEEE 802.11be, the Future Wi-Fi 7. IEEE Access 2020, 8, 88664–88688. [Google Scholar] [CrossRef]
- Oughton, E.J.; Lehr, W.; Katsaros, K.; Selinis, I.; Bubley, D.; Kusuma, J. Revisiting Wireless Internet Connectivity: 5G vs. Wi-Fi 6. Telecommun. Policy 2021, 45, 102127. [Google Scholar] [CrossRef]
- 5GPPP. The 5G Infrastructure Public Private Partnership (5G PPP). 2021. Available online: https://5g-ppp.eu/ (accessed on 12 May 2021).
- Ojanperä, T.; Mäkelä, J.; Majanen, M.; Mämmelä, O.; Martikainen, O.; Väisänen, J. Evaluation of LiDAR data processing at the mobile network edge for connected vehicles. EURASIP J. Wirel. Commun. Netw. 2021, 2021. [Google Scholar] [CrossRef]
- 5GAA Automotive Association. C-V2X Use Cases Volume II: Examples and Service Level Requirements; Technical Report; 2020; Available online: https://5gaa.org/wp-content/uploads/2020/10/5GAA_White-Paper_C-V2X-Use-Cases-Volume-II.pdf (accessed on 12 May 2021).
- 5G PPP H2020 ICT-18-2018 Projects. 5G Trials for Cooperative, Connected and Automated Mobility along European 5G Cross-Border Corridors-Challenges and Opportunities; Technical Report; 2018; Available online: https://5g-ppp.eu/wp-content/uploads/2020/10/5G-for-CCAM-in-Cross-Border-Corridors_5G-PPP-White-Paper-Final2.pdf (accessed on 12 May 2021).
- Montonen, J.; Koskinen, J.; Mäkelä, J.; Ruponen, S.; Heikkilä, T.; Hentula, M. Applying 5G and Edge Processing in Smart Manufacturings. In Proceedings of the 20th Annual IFIP Networking Conference 2021, Paris, France, 22–25 June 2020. [Google Scholar]
- Mu, N.; Gong, S.; Sun, W.; Gan, Q. The 5G MEC Applications in Smart Manufacturing. In Proceedings of the 2020 IEEE International Conference on Edge Computing (EDGE), Beijing, China, 19–23 October 2020; pp. 45–48. [Google Scholar] [CrossRef]
- Peuster, M.; Schneider, S.; Behnke, D.; Müller, M.; Bök, P.; Karl, H. Prototyping and Demonstrating 5G Verticals: The Smart Manufacturing Case. In Proceedings of the 2019 IEEE Conference on Network Softwarization (NetSoft), Paris, France, 24–28 June 2019; pp. 236–238. [Google Scholar] [CrossRef]
- Isto, P.; Heikkilä, T.; Mämmelä, A.; Uitto, M.; Seppälä, T.; Ahola, J.M. 5G Based Machine Remote Operation Development Utilizing Digital Twin. Open Eng. 2020, 10, 265–272. [Google Scholar] [CrossRef]
- Uitto, M.; Heikkinen, A.; Rantala, S.J.; Mäkelä, J. Evaluation of Evolved Multimedia Broadcast Multicast Service for More Efficient Mobile Video Streaming. In Proceedings of the 2019 IEEE International Symposium on Multimedia (ISM), San Diego, CA, USA, 9–11 December 2019; pp. 103–1034. [Google Scholar] [CrossRef]
- Uitto, M.; Heikkinen, A. Exploiting and Evaluating Live 360° Low Latency Video Streaming Using CMAF. In Proceedings of the 2020 European Conference on Networks and Communications (EuCNC), Dubrovnik, Croatia, 15–18 June 2020; pp. 276–280. [Google Scholar] [CrossRef]
- Bonetto, R.; Sychev, I.; Fitzek, F.H.P. Power to the Future: Use Cases and Challenges for Mobile, Self Configuring, and Distributed Power Grids. In Proceedings of the 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Aalborg, Denmark, 29–31 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, J.; Kwon, Y.; Kim, D. Regional Smart City Development Focus: The South Korean National Strategic Smart City Program. IEEE Access 2021, 9, 7193–7210. [Google Scholar] [CrossRef]
- Höyhtyä, M.; Lähetkangas, K.; Suomalainen, J.; Hoppari, M.; Kujanpää, K.; Trung Ngo, K.; Kippola, T.; Heikkilä, M.; Posti, H.; Mäki, J.; et al. Critical Communications Over Mobile Operators’ Networks: 5G Use Cases Enabled by Licensed Spectrum Sharing, Network Slicing and QoS Control. IEEE Access 2018, 6, 73572–73582. [Google Scholar] [CrossRef]
- Zreikat, A. Performance Evaluation of 5G/WiFi-6 Coexistence. Int. J. Circuits Syst. Signal Process. 2020, 14, 904–913. [Google Scholar] [CrossRef]
- Xu, S.; Li, Y.; Gao, Y.; Liu, Y.; Gačanin, H. Opportunistic Coexistence of LTE and WiFi for Future 5G System: Experimental Performance Evaluation and Analysis. IEEE Access 2018, 6, 8725–8741. [Google Scholar] [CrossRef]
- Soós, G.; Ficzere, D.; Varga, P.; Szalay, Z. Practical 5G KPI Measurement Results on a Non-Standalone Architecture. In Proceedings of the NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 20–24 April 2020; pp. 1–5. [Google Scholar] [CrossRef]
- 3GPP. User Equipment (UE) Radio Access Capabilities (Release 16). Technical Report, 3GPP TS 38.306 V16.4.0 (2021-03). 2021. Available online: https://www.etsi.org/deliver/etsi_ts/138300_138399/138306/15.03.00_60/ts_138306v150300p.pdf (accessed on 12 May 2021).
- 3GPP. TR 36.211: NR; Physical Channels and Modulation (Release 16). 2021. Available online: https://www.etsi.org/deliver/etsi_ts/136200_136299/136211/14.02.00_60/ts_136211v140200p.pdf (accessed on 12 May 2021).
- Cisco. IEEE 802.11ax: The Sixth Generation of Wi-Fi White Paper; Technical Report; Cisco Public: San Jose, CA, USA, 2020; Available online: https://www.cisco.com/c/en/us/products/collateral/wireless/white-paper-c11-740788.html (accessed on 12 May 2021).
- GSMA. 5G Spectrum-GSMA Public Policy Position. March 2021. Available online: https://www.gsma.com/latinamerica/resources/5g-spectrum-gsma-public-policy-position-2/ (accessed on 12 May 2021).
- Traficom. Frequencies and License Holders of Public Mobile Networks. 2021. Available online: https://www.traficom.fi/en/communications/communications-networks/frequencies-and-license-holders-public-mobile-networks (accessed on 12 May 2021).
- Wi-Fi Alliance. Wi-Fi 6E Expands Wi-Fi into 6 GHz. 2021. Available online: https://www.wi-fi.org/download.php?file=/sites/default/files/private/Wi-Fi_6E_Highlights_202101.pdf (accessed on 12 May 2021).
- Gray, D. WW Spectrum Allocations for BWA. 1999. Available online: https://www.ieee802.org/16/tg2_orig/contrib/80216cc-99_04.pdf (accessed on 3 July 2021).
- ETSI. ETSI White Paper No. 24 MEC Deployments in 4G and Evolution towards 5G. 2018. Available online: https://www.etsi.org/images/files/etsiwhitepapers/etsi_wp24_mec_deployment_in_4g_5g_final.pdf (accessed on 12 May 2021).
- Keysight Technologies. Nemo Handy Handheld Measurement Solution. Available online: https://www.keysight.com/fi/en/product/NTH00000B/nemo-handy-handheld-measurement-solution.html (accessed on 25 May 2021).
- Keysight Technologies. Nemo Outdoor 5G NR Drive Test Solution. Available online: https://www.keysight.com/fi/en/product/NTA00002B/nemo-outdoor-5g-nr-drive-test-solution.html (accessed on 25 May 2021).
- Marshall, P.; Rinaldi, J. Industrial Ethernet: How to Plan, Install and Maintain TCP/IP Ethernet Networks, The Basic Reference Guide for Automation and Process Control Engineers, 2nd ed.; International Society of Automation: Pittsburgh, PA, USA, 2005. [Google Scholar]
- iPerf3. iPerf-The Ultimate Speed Test Tool for TCP, UDP and SCTP. 2021. Available online: https://iperf.fr/ (accessed on 12 May 2021).
- Abbas, K.; Ahmed, K.T.; Rafiq, A.; Song, W.C.; Seok, S.J. An LTE-WiFi Spectrum Aggregation System for 5G Network: A Testbed. In Proceedings of the 2020 International Conference on Information Networking (ICOIN), Barcelona, Spain, 7–10 January 2020; pp. 753–755. [Google Scholar] [CrossRef]
- Kokkoniemi-Tarkkanen, H.; Horsmanheimo, S.; Grudnitsky, A.; Moisio, M.; Li, Z.; Uusitalo, M.A.; Samardzija, D.; Härkönen, T.; Yli-Paunu, P. Enabling Safe Wireless Harbor Automation via 5G URLLC. In Proceedings of the 2019 IEEE 2nd 5G World Forum (5GWF), Dresden, Germany, 30 September–2 October 2019; pp. 403–408. [Google Scholar] [CrossRef]
Ping | iPerf3 | ||
---|---|---|---|
Repeats | 600 | Duration | 300 s |
Packet Size | 32 B | UDP Datagram Size | 1440 B |
Interval | 100 ms | UDP Target Bitrate | 1 Gbps |
Buffer Length | 410 KB |
Parameter | 5G | Wi-Fi 6 |
---|---|---|
Carrier frequency | 3540 MHz | 5.150 to 5.250 GHz |
5.250 to 5.350 GHz, | ||
5.470 to 5.725 GHz, | ||
5.725 to 5.850 GHz | ||
midrule Bandwidth | 60 MHz | 160 MHz |
Maximum transmit power | 21 dBm | 24 dBm |
MIMO mode | 4 × 4 Closed Loop Spatial Multiplexing | 4 × 4 MIMO |
Modulation Scheme | Automatic | HE 20/40/80/160 |
Carrier Aggregation | Disabled | - |
ullaDeltaSinrMax | 15 | - |
Measurement Point | 5G | Wi-Fi 6 | |||||||
---|---|---|---|---|---|---|---|---|---|
fst 3/7 | fst 1/4 | ||||||||
DLT | ULT | Delay | DLT | ULT | Delay | DLT | ULT | Delay | |
1 | 470 | 70 | 11 | 579 | 31 | 13 | 698 | 677 | 3 |
2 | 433 | 64 | 11 | 611 | 40 | 13 | 491 | 514 | 3 |
3 | 331 | 48 | 11 | 435 | 15 | 13 | 119 | 117 | 3 |
4 | 256 | 46 | 11 | 322 | 18 | 13 | 41 | 41 | 21 |
5 | 187 | 48 | 11 | 160 | 17 | 13 | 0 | 0 | 21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoppari, M.; Uitto, M.; Mäkelä, J.; Harjula, I.; Rantala, S. Performance of the 5th Generation Indoor Wireless Technologies-Empirical Study. Future Internet 2021, 13, 180. https://doi.org/10.3390/fi13070180
Hoppari M, Uitto M, Mäkelä J, Harjula I, Rantala S. Performance of the 5th Generation Indoor Wireless Technologies-Empirical Study. Future Internet. 2021; 13(7):180. https://doi.org/10.3390/fi13070180
Chicago/Turabian StyleHoppari, Mika, Mikko Uitto, Jukka Mäkelä, Ilkka Harjula, and Seppo Rantala. 2021. "Performance of the 5th Generation Indoor Wireless Technologies-Empirical Study" Future Internet 13, no. 7: 180. https://doi.org/10.3390/fi13070180
APA StyleHoppari, M., Uitto, M., Mäkelä, J., Harjula, I., & Rantala, S. (2021). Performance of the 5th Generation Indoor Wireless Technologies-Empirical Study. Future Internet, 13(7), 180. https://doi.org/10.3390/fi13070180