Quantifying the Density of mmWave NR Deployments for Provisioning Multi-Layer VR Services
Abstract
:1. Introduction
- a mathematical model characterizing the fraction of VR multi-layer multicast sessions that can be served as a function of system parameters and the traffic load;
- numerical analysis of the minimum mmWave NR BS density that can deliver a given performance to multi-layer VR service as a function of the system and service characteristics.
2. Related Work
3. System Model
3.1. Deployment Model
3.2. Propagation and Antenna Models
3.3. Antenna Model
3.4. Service and Traffic Models
3.5. Metrics of Interest
4. Performance Evaluation
4.1. Multicast Group Formation
4.2. Enhancement Layer Service
4.3. Deployment Density Assessment
Algorithm 1 NR BS Deployment Density Assessment |
Input:, , , , , Q, Output: Initialization:
|
5. Numerical Results
5.1. Comparison with Other Grouping Schemes
5.2. Performance Assessment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
3GPP | 3rd Generation Partnership Project |
BS | Base station |
FoV | Field of view |
GGA | Generalized gradient approximation |
HPBW | Half-power bandwidth |
IMG | Incremental multicast grouping |
LoS | Line-of-sight |
LTE | Long term Evolution |
MCS | Modulation and coding scheme |
MIMO | Multiple input multiple output |
mmWave | Millimeter wave |
NR | New Radio |
PPP | Poisson point process |
QoE | Quality of experience |
QoS | Quality of service |
SNR | Signal to noise ratio |
SVC | Scalable video coding |
UE | User equipment |
UMi | Urban-micro |
VR | Virtual reality |
References
- Holma, H.; Toskala, A.; Nakamura, T. 5G Technology: 3GPP New Radio; John Wiley & Sons: New York, NY, USA, 2020. [Google Scholar]
- Lin, X.; Li, J.; Baldemair, R.; Cheng, J.F.T.; Parkvall, S.; Larsson, D.C.; Koorapaty, H.; Frenne, M.; Falahati, S.; Grovlen, A.; et al. 5G new radio: Unveiling the essentials of the next generation wireless access technology. IEEE Commun. Stand. Mag. 2019, 3, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Le, T.K.; Salim, U.; Kaltenberger, F. An overview of physical layer design for Ultra-Reliable Low-Latency Communications in 3GPP Releases 15, 16, and 17. IEEE Access 2020, 9, 433–444. [Google Scholar] [CrossRef]
- Hoppari, M.; Uitto, M.; Mäkelä, J.; Harjula, I.; Rantala, S. Performance of the 5th Generation Indoor Wireless Technologies-Empirical Study. Future Internet 2021, 13, 180. [Google Scholar] [CrossRef]
- Samuylov, A.; Moltchanov, D.; Kovalchukov, R.; Pirmagomedov, R.; Gaidamaka, Y.; Andreev, S.; Koucheryavy, Y.; Samouylov, K. Characterizing Resource Allocation Trade-Offs in 5G NR Serving Multicast and Unicast Traffic. IEEE Trans. Wirel. Commun. 2020, 19, 3421–3434. [Google Scholar] [CrossRef]
- Karembai, A.K.; Thompson, J.; Seeling, P. Towards Prediction of Immersive Virtual Reality Image Quality of Experience and Quality of Service. Future Internet 2018, 10, 63. [Google Scholar] [CrossRef] [Green Version]
- Nasrabadi, A.T.; Mahzari, A.; Beshay, J.D.; Prakash, R. Adaptive 360-degree video streaming using layered video coding. In Proceedings of the 2017 IEEE Virtual Reality (VR), Los Angeles, CA, USA, 18–22 March 2017; pp. 347–348. [Google Scholar] [CrossRef]
- Long, K.; Cui, Y.; Ye, C.; Liu, Z. Optimal Transmission of Multi-Quality Tiled 360 VR Video by Exploiting Multicast Opportunities. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Hwang, J.; Wei, H. Cross-Layer Optimization for VR Video Multicast Systems. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 206–212. [Google Scholar] [CrossRef]
- Perfecto, C.; Elbamby, M.S.; Ser, J.D.; Bennis, M. Taming the Latency in Multi-User VR 360°: A QoE-Aware Deep Learning-Aided Multicast Framework. IEEE Trans. Commun. 2020, 68, 2491–2508. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, M.; Swaminathan, V. Adaptive 360 VR Video Streaming: Divide and Conquer. In Proceedings of the IEEE International Symposium on Multimedia (ISM), San Jose, CA, USA, 11–13 December 2016; pp. 1–4. [Google Scholar]
- Zuhra, S.u.; Chaporkar, P.; Karandikar, A. Toward Optimal Grouping and Resource Allocation for Multicast Streaming in LTE. IEEE Trans. Veh. Technol. 2019, 68, 12239–12255. [Google Scholar] [CrossRef]
- Tran, T.X.; Yue, G. GRAB: Joint Adaptive Grouping and Beamforming for Multi-Group Multicast with Massive MIMO Networks. In Proceedings of the IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- 3GPP. Physical Channels and Modulation (Release 16). 3GPP TR 38.211 V16.5.0. Available online: https://www.3gpp.org/ftp/Specs/archive/38_series/38.211/38211-g50.zip (accessed on 25 May 2021).
- Petrov, V.; Komarov, M.; Moltchanov, D.; Jornet, J.M.; Koucheryavy, Y. Interference and SINR in Millimeter Wave and Terahertz Communication Systems With Blocking and Directional Antennas. IEEE Trans. Wirel. Commun. 2017, 16, 1791–1808. [Google Scholar] [CrossRef]
- Singh, S.; Mudumbai, R.; Madhow, U. Interference Analysis for Highly Directional 60-GHz Mesh Networks: The Case for Rethinking Medium Access Control. IEEE/ACM Trans. Netw. 2011, 19, 1513–1527. [Google Scholar] [CrossRef]
- Constantine, A.B. Antenna theory: Analysis and design. In Microstrip Antennas; John Wiley & Sons: New York, NY, USA, 2005. [Google Scholar]
- Gerasimenko, M.; Moltchanov, D.; Gapeyenko, M.; Andreev, S.; Koucheryavy, Y. Capacity of multiconnectivity mmWave systems with dynamic blockage and directional antennas. IEEE Trans. Veh. Technol. 2019, 68, 3534–3549. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; Azpilicueta, L.; Naser-Moghadasi, M.; Akinsolu, M.O.; See, C.H.; Liu, B.; Abd-Alhameed, R.A.; Falcone, F.; Huynen, I.; et al. A comprehensive survey of “metamaterial transmission-line based antennas: Design, challenges, and applications”. IEEE Access 2020, 8, 144778–144808. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Babaeian, F.; Virdee, B.S.; Aïssa, S.; Azpilicueta, L.; See, C.H.; Althuwayb, A.A.; Huynen, I.; Abd-Alhameed, R.A.; Falcone, F.; et al. A comprehensive survey on “Various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna systems”. IEEE Access 2020, 8, 192965–193004. [Google Scholar] [CrossRef]
- Shirkolaei, M.M.; Jafari, M. A new class of wideband microstrip falcate patch antennas with reconfigurable capability at circular-polarization. Microw. Opt. Technol. Lett. 2020, 62, 3922–3927. [Google Scholar] [CrossRef]
- Mohammadi Shirkolaei, M. Wideband linear microstrip array antenna with high efficiency and low side lobe level. Int. J. RF Microw. Comput. Aided Eng. 2020, 30, e22412. [Google Scholar] [CrossRef]
- Althuwayb, A.A. On-chip antenna design using the concepts of metamaterial and SIW principles applicable to terahertz integrated circuits operating over 0.6–0.622 THz. Int. J. Antennas Propag. 2020, 2020, 6653095. [Google Scholar] [CrossRef]
- Moltchanov, D. Distance distributions in random networks. Ad Hoc Netw. 2012, 10, 1146–1166. [Google Scholar] [CrossRef]
- Begishev, V.; Moltchanov, D.; Sopin, E.; Samuylov, A.; Andreev, S.; Koucheryavy, Y.; Samouylov, K. Quantifying the impact of guard capacity on session continuity in 3GPP new radio systems. IEEE Trans. Veh. Technol. 2019, 68, 12345–12359. [Google Scholar] [CrossRef]
- Begishev, V.; Sopin, E.; Moltchanov, D.; Kovalchukov, R.; Samuylov, A.; Andreev, S.; Koucheryavy, Y.; Samouylov, K. Joint Use of Guard Capacity and Multiconnectivity for Improved Session Continuity in Millimeter-Wave 5G NR Systems. IEEE Trans. Veh. Technol. 2021, 70, 2657–2672. [Google Scholar] [CrossRef]
- Gapeyenko, M.; Samuylov, A.; Gerasimenko, M.; Moltchanov, D.; Singh, S.; Akdeniz, M.R.; Aryafar, E.; Himayat, N.; Andreev, S.; Koucheryavy, Y. On the temporal effects of mobile blockers in urban millimeter-wave cellular scenarios. IEEE Trans. Veh. Technol. 2017, 66, 10124–10138. [Google Scholar] [CrossRef] [Green Version]
- Samuylov, A.; Beschastnyi, V.; Moltchanov, D.; Ostrikova, D.; Gaidamaka, Y.; Shorgin, V. Modeling Coexistence of Unicast and Multicast Communications in 5G New Radio Systems. In Proceedings of the 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 8–11 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Park, H.; Park, S.; Song, T.; Pack, S. An incremental multicast grouping scheme for mmWave networks with directional antennas. IEEE Commun. Lett. 2013, 17, 616–619. [Google Scholar] [CrossRef]
- Tan, C.; Chuah, T.; Tan, S.; Sim, M. Efficient clustering scheme for OFDMA-based multicast wireless systems using grouping genetic algorithm. Electron. Lett. 2012, 48, 184–186. [Google Scholar] [CrossRef]
- Gorbunova, A.V.; Naumov, V.A.; Gaidamaka, Y.V.; Samouylov, K.E. Resource queuing systems as models of wireless communication systems. Inform. Primen. 2018, 12, 48–55. [Google Scholar]
- Khintchine, A.Y. Mathematical Methods in the Theory of Queueing; Griffin: London, UK, 1960. [Google Scholar]
Notation | Description |
---|---|
operational frequency | |
B | number of available RBs |
density of NR BSs | |
density of blockers | |
mean UE passage time | |
blocker radius | |
blocker height | |
UE height | |
NR BS height | |
v | UE speed |
transmit power | |
BS antenna array gain | |
UE antenna array gain | |
path loss exponent in LoS non-blocked state | |
interference and shadow fading margin | |
array HPBW | |
array maximum | |
upper and lower 3-dB points | |
J | number of antenna arrays |
number of UE antenna array configurations | |
number of NR BS antenna array configurations | |
density of noise | |
intensity of user requests | |
density of UEs | |
R | NR BS cell radius |
LoS blockage probability | |
beam’s arc circumference | |
number of void beams | |
Q | minimum UE to NR BS distance |
base layer demand | |
l-s enhancement layer demand | |
mean number of sessions with l-s enhancement layer | |
QoS profile |
Array | Gain, dBi | HPBW, o |
---|---|---|
64 × 4 | 17.58 | 1.59 |
32 × 4 | 14.58 | 3.18 |
16 × 4 | 11.57 | 6.37 |
8 × 4 | 8.57 | 12.75 |
4 × 4 | 5.57 | 25.50 |
Notation | Description | Values |
---|---|---|
operational frequency | 73 GHz | |
B | number of available RBs | 264 |
blocker radius | 0.4 m | |
blocker height | 1.7 m | |
UE height | 1.5 m | |
NR BS height | 4 m | |
v | UE speed | 1.5 m/s |
transmit power | 2 W | |
UE antenna array configurations | 64 | |
density of noise | −84 dBi | |
density of blockers | 0.3 units/m2 | |
path loss exponent | 2.1 | |
intensity of video sessions from a UE | sessions/s | |
mean session length | 15 s | |
base layer downloading rate | Mbps | |
enhancement layer downloading rates | Mbps | |
Q | minimum UE to NR BS distance | 1 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beschastnyi, V.; Ostrikova, D.; Konyukhov, R.; Golos, E.; Chursin, A.; Moltchanov, D.; Gaidamaka, Y. Quantifying the Density of mmWave NR Deployments for Provisioning Multi-Layer VR Services. Future Internet 2021, 13, 185. https://doi.org/10.3390/fi13070185
Beschastnyi V, Ostrikova D, Konyukhov R, Golos E, Chursin A, Moltchanov D, Gaidamaka Y. Quantifying the Density of mmWave NR Deployments for Provisioning Multi-Layer VR Services. Future Internet. 2021; 13(7):185. https://doi.org/10.3390/fi13070185
Chicago/Turabian StyleBeschastnyi, Vitalii, Daria Ostrikova, Roman Konyukhov, Elizaveta Golos, Alexander Chursin, Dmitri Moltchanov, and Yuliya Gaidamaka. 2021. "Quantifying the Density of mmWave NR Deployments for Provisioning Multi-Layer VR Services" Future Internet 13, no. 7: 185. https://doi.org/10.3390/fi13070185
APA StyleBeschastnyi, V., Ostrikova, D., Konyukhov, R., Golos, E., Chursin, A., Moltchanov, D., & Gaidamaka, Y. (2021). Quantifying the Density of mmWave NR Deployments for Provisioning Multi-Layer VR Services. Future Internet, 13(7), 185. https://doi.org/10.3390/fi13070185