Influence of Microbial Preparations on Triticum aestivum L. Grain Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Determination of Protein and Gluten
2.3. Amino Acid Analysis
2.4. Statistical Analysis
3. Results
3.1. Grain Productivity
3.2. Gluten and Protein
3.3. Amino Acids
3.3.1. Essential and Critical Amino Acids
3.3.2. Proline
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects; United Nations: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Hochman, Z.; Horan, H. Causes of wheat yield gaps and opportunities to advance the water-limited yield frontier in Australia. Field Crops Res. 2018, 228, 20–30. [Google Scholar] [CrossRef]
- Lolatto, R.P.; Ruiz Diaz, D.A.; De Wolf, E.; Knapp, M.; Peterson, D.E.; Fritz, A. Agronomic practices for reducing wheat yield gaps: A quantitative appraisal of progressive producers. Crop Sci. 2019, 59, 333. [Google Scholar] [CrossRef] [Green Version]
- Poltoretsky, S.; Tretiakova, S.; Mostoviak, I.; Yatsenko, A.; Tereshchenko, Y.; Poltoretska, N.; Berezovskyiet, A. Growth and productivity of winter wheat (Triticum aestivum L.) depending on sowing parameters. Ukr. J. Ecol. 2020, 10, 81–87. [Google Scholar] [CrossRef]
- Bastos, L.M.; Carciochi, W.; Lollato, R.P.; Jaenisch, B.R.; Rezende, C.R.; Schwalbert, R.; Vara Prasad, P.V.; Zhang, G.; Fritz, A.K.; Foster, C.; et al. Winter Wheat Yield Response to Plant Density as a Function of Yield Environment and Tillering Potential: A Review and Field Studies. Front. Plant Sci. 2020, 11, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torikov, V.E.; Melnikova, O.V.; Mameev, V.V.; Torikov, V.V.; Osipov, A.A. Influence of fertilizer on agroecological soil properties, yield, crude gluten, amino acid and elemental composition in the grain of soft winter wheat. Bull. Izhevsk State Agric. Acad. 2016, 1, 8–20. [Google Scholar]
- Iutynskaya, G.O.; Ponomarenko, S.P.; Andreyuk, E.I.; Antipchuk, A.F.; Babayanz, O.V.; Belyavskaya, L.A.; Brovko, I.S.; Valagurova, E.V.; Dragovoz, I.V.; Kozyrizkaya, V.E. Bioregulation of Microbial-Plant Systems: Monograph; Iutynskaya, G.O., Ponomarenko, S.P., Eds.; Nichlava: Kyiv, Ukraine, 2010; 464p. [Google Scholar]
- Zavalin, A.A. Biopreparations, Fertilizers and Harvest; All-Russian Scientific-Research Institute of Agrochemistry Named by D.N. Pryanishnikov Publ.: Moscow, Russia, 2005; 302p. [Google Scholar]
- Volkogon, V.V.; Nadkernichna, O.V.; Kovalevska, T.M.; Tokmakova, L.L.; Melnichuk, T.M.; Chaikovska, L.O.; Tolkachov, M.Z.; Kameneva, I.O. Microbial Preparations in Agriculture. Theory and Practice: Monograph; Volkogon, V.V., Ed.; Agrarian Science: Kyiv, Ukraine, 2006; 312p. [Google Scholar]
- Volkogon, V.V. Biological melioration of soils. Traditional and new. Agric. Microbiol. 2011, 13, 7–22. [Google Scholar]
- Tikhonovich, I.A.; Provorov, N.A. Agricultural microbiology as the basis of ecologically sustainable agriculture: Fundamental and applied aspects. Sel’skokhozyaistvennaya Biol. [Agric. Biol.] 2011, 3, 3–9. [Google Scholar]
- Tikhonovich, I.A.; Zavalin, A.A. Application potential of nitrogen-fixing and phytostimulating microorganisms for increasing the efficiency of the agroindustrial complex and improving the agroecological situation in Russian Federation. Plodorodie 2016, 5, 28–32. [Google Scholar]
- Mostafiz, S.B.; Rahman, M. Biotechnology: Role of microbes in sustainable agriculture and environmental health. Internet J. Microbiol. 2012, 10, 1937–8289. Available online: https://ispub.com/IJMB/10/1/14136 (accessed on 30 March 2022).
- Antoun, H. Beneficial microorganisms for the sustainable use of phosphates in agriculture. Procedia Eng. 2012, 46, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Jain, P.; Khichi, D.S. Phosphate solubilizing microorganism (PSM): An ecofriendly biofertilizer and pollution manager. J. Dyn. Agric. Res. 2014, 1, 23–28. [Google Scholar]
- Chebotar, V.K.; Zavalin, A.A.; Kiprushkina, E.I. Efficiency of Application of Biopreparation Extrasol; Publishing house of All Russia Research Institute of Agrochemistry: Moscow, Russia, 2007; 216p. [Google Scholar]
- Volkogon, V.V.; Zaryshniak, A.S.; Hrynnyk, I.V.; Berdnikov, O.M.; Nadkernichna, O.V.; Kovalevska, T.M.; Tokmakova, L.L. Methodology and Practice of Using Microbial Agents in Agricultural Crop Cultivation Technologies; Volkogon, V.V., Ed.; Agrarian Science: Kiyv, Ukraine, 2011; 156p. [Google Scholar]
- Zavalin, A.A.; Kozhemyakov, A.P. New Technologies and Complex Biological Products Application; HIMIZDAT: Saint Petersburg, Russia, 2010; 64p. [Google Scholar]
- Kozhemyakov, A.P.; Laktionov, Y.V.; Popova, T.A.; Orlova, A.G.; Kokorina, A.L.; Vaishlya, O.B.; Agafonov, E.V.; Guzhvin, S.A.; Churakov, A.A.; Yakovleva, M.T. The scientific basis for the creation of new forms of microbial biochemical. Sel’skokhozyaistvennaya Biol. [Agric. Biol.] 2015, 50, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Iutynska, G.O.; Biliavska, L.O.; Titova, L.V.; Leonova, N.O.; Yamborko, N.A.; Petruk, T.V.; Vozniuk, S.V.; Litovchenko, A.M. Microbial Bioformulations for Plant Growing; Methodical recommendations; Zabolotny Institute of Microbiology and Virology of NAS of Ukraine: Kiev, Ukraine, 2017; 84p. [Google Scholar]
- Patyka, V.P.; Melnichuk, T.N.; Sherstoboyev, M.K.; Tataryn, L.M.; Zubachov, S.R.; Kalinichenko, A.V.; Halymonyk, S.P.; Shkatula, Y.M.; Kyrylenko, L.V.; Parkhomenko, T.Y.; et al. Biotechnology of Vegetable Plants Rhizosphere: Monograph; Patyka, V.P., Ed.; SH Edelweiss & K: Vinnitsa, Ukraine, 2015; 266p. [Google Scholar]
- Sharma, S.B.; Sayed, R.Z.; Trivedi, M.H.; Gobi, T.A. Phosphate solubilizing microbes: Sustainable approach for the managing phosphorus deficiency in agricultural soils. Springer Plus 2013, 2, 587. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.S.; Zaidi, A.; Musarrat, J. Phosphate Solubilizing Microorganisms: Principles and Application of Microphos Technology; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; 307p. [Google Scholar] [CrossRef]
- Selvi, K.B.; Paul, J.J.A.; Vijaya, V.; Saraswathi, K. Analyzing the efficiency of phosphate solubilizing microorganisms by enrichment culture techniques. Biochem. Mol. Biol. J. 2017, 3, 1–7. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Patel, H. Role of microbes in phosphorus availability and acquisition by plants. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1344–1347. [Google Scholar] [CrossRef]
- Chaikovskaya, L.A.; Klyuchenko, V.V.; Baranskaya, M.I.; Ovsienko, O.L. Phosphate-Mobilizing Bacteria in Agrocenoses of the Crimea: Monograph; Chaikovskaya, L.A., Ed.; Publishing House “ARIAL”: Simferopol, Russia, 2018; 156p. [Google Scholar]
- Kalayu, G. Phosphate solubilizing microorganisms: Promising approach as biofertilizers. Int. J. Agron. 2019, 2019, 4917256. [Google Scholar] [CrossRef]
- Walpola, B.C.; Yoon, M.H. Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. Afr. J. Microbiol. Res. 2012, 6, 6600–6605. [Google Scholar] [CrossRef]
- Khan, A.A.; Jilani, G.; Akhtar, M.S.; Saqlan, S.M.N.; Rasheedet, M. Phosphorus solubilizing bacteria: Occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci. 2009, 1, 48–58. [Google Scholar]
- Satyaprakash, M.; Nikitha, T.; Reddy, E.U.B.; Sadhana, B.; Satya Vani, S. Phosphorous and phosphate solubilising bacteria and their role in plant nutrition: A review. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2133–2144. [Google Scholar] [CrossRef]
- Ibragimova, S.S.; Gorelova, V.V.; Kochetov, A.V.; Shumny, V.K. Role of plants metabolites in mechanisms of stress tolerance. Bull. Novosib. State University. Ser. Biol. Clin. Med. 2010, 8, 98–103. [Google Scholar]
- Szabados, L.; Savure, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Chaikovskaya, L.A.; Melnichuk, T.N.; Kameneva, I.A.; Baranskaya, M.I.; Ovsienko, O.L. Phosphate-mobilizing Strains of Soil Bacteria Lelliottia nimipressuralis CCM 32-3 and Biopreparation on Its Basis for the Optimization of Mineral Nutrition of Plants, Stimulates Their Growth and Increase Yields Application. Patent RF No. 2676926, 11 January 2019. [Google Scholar]
- Delwiche, S.R. Protein content of single kernels of wheat by near-infrared reflectance spectroscopy. J. Cereal Sci. 1998, 27, 241–254. [Google Scholar] [CrossRef]
- Bates, L.E.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for waterstress studios. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Zelinsky, V.G.; Revyakina, L.Y.; Vykhristenko, L.P. Determination of Sulfur-Containing Amino Acids and Total Sulfur in Plant Material: Methodological Recommendations; AUSGI: Odessa, Ukraine, 1988; 16p. [Google Scholar]
- Dospekhov, B.A. Methods of Field Research; Kniga po trebovaniju: Moscow, Russia, 2012; 351p. [Google Scholar]
- Kondratenko, E.P.; Konstantinova, O.B.; Soboleva, O.M.; Izhmulkina, E.A.; Verbitskaya, N.V.; Sukhoi, A.S. The content of protein and amino acids in the grain of winter crops growing in the forest-steppe of the south-east of western Siberia. Chem. Plant Raw Mater. 2015, 3, 143–150. [Google Scholar] [CrossRef]
- Galushko, N.A.; Sokolenko, N.I. The most important selection criteria in winter wheat breeding for grain quality. Taurida Her. Agrar. Sci. 2021, 4, 50–57. [Google Scholar] [CrossRef]
- Lapa, V.V.; Mikhailovskaya, N.A.; Barashenko, T.B. The Effectiveness of Bacterial Fertilizer Kaliplant on Soddy-Podzolic Sandy Loam Soil with Different Sufficiency of Moving Potassium. Agrochemistry 2016, 6, 29–38. [Google Scholar]
- Soboleva, O.M.; Kondratenko, E.P.; Sukhikh, A.S. Increasing of the Biological Value of Barley Grain during Diazotrophic Inoculation. Achiev. Sci. Technol. Agro-Ind. Complex 2019, 33, 98–101. (In Russian) [Google Scholar] [CrossRef]
- Shevyakova, N.I.; Musatenko, L.I.; Stetsenko, L.A.; Vedenicheva, N.P.; Voitenko, L.P.; Sytnik, K.M.; Kuznetsov, V.V. Regulation of polyamines and proline content by abscisic acid in bean plants under salt stress. Plant Physiol. 2013, 60, 1–13. [Google Scholar]
- Shevyakova, N.I.; Musatenko, L.I.; Stetsenko, L.A.; Rakitin, V.Y.; Vedenicheva, N.P.; Kuznetsov, V.V. The effect of ABA on the content of proline, polyamines and cytokinins in crystal grass plants under salt stress. Plant Physiol. 2013, 60, 784–792. [Google Scholar] [CrossRef]
- Krivobochek, V.G.; Statsenko, A.P.; Trazanova, E.A.; Kuryshev, I.A. Free proline—A biochemical indicator of salt resistance of plants. Agrar. Sci. J. 2017, 1, 16–19. [Google Scholar]
- Efimova, M.V.; Kolomeychuk, L.V.; Boyko, E.V.; Malofiy, M.K.; Vidershpan, A.N.; Plyusnin, I.N.; Golovatskaya, I.F.; Murgan, O.K.; Kuznetsov, V.V. Physiological mechanisms of plant stability of Solanum tuberosum L. to chloride salinization. Plant Physiol. 2018, 65, 196–206. [Google Scholar] [CrossRef]
- Kirillov, A.F.; Kozmik, R.A.; Daskalyuk, A.P.; Kuznetsova, N.A.; Kharchuk, O.A. Evaluation of proline content in soybean plants under the influence of drought and salinization. Rep. Ecol. Soil Sci. 2013, 18, 195–201. [Google Scholar]
- Stetsenko, L.A.; Shevyakova, N.I.; Rakitin, V.Y.; Kuznetsov, V.V. Proline protects Atropa belladonna plants from the toxic effects of nickel salts. Plant Physiol. 2011, 58, 275–282. [Google Scholar]
- Abilova, G.A. The influence of cadmium and lead ions on the growth and proline content in triticosecale plants (Tritico secale Wittm.). Proc. Karelian Sci. Cent. Russ. Acad. Sci. 2016, 11, 27–32. [Google Scholar] [CrossRef]
- Statsenko, A.P.; Kapustin, D.A.; Yurova, Y.A. Stress-induced proline in wheat plants in drought conditions. In Natural Resource Potential, Ecology and Sustainable Development of Russian Regions; Penza State Agrarian University: Penza, Russia, 2014; pp. 85–87. [Google Scholar]
- Allagulova, C.R.; Lastochkina, O.V. Reducing the level of oxidative stress in wheat plants under the influence of endophytic bacteria in drought conditions. Ecobiotech 2020, 3, 129–134. [Google Scholar]
- Lastochkina, O.; Aliniaeifard, S.; Seifikalhor, M.; Yuldashev, R.; Pusenkova, L.; Garipova, S. Plant Growth-Promoting Bacteria: Biotic Strategy to Cope with Abiotic Stresses in Wheat. In Wheat Production in Changing Environments; Hasanuzzaman, M., Nahar, K., Hossain, M.A., Eds.; Springer: Singapore, 2019; pp. 579–614. [Google Scholar] [CrossRef]
- Javadyan, N.; Karim zadeh, G.; Mafuzi, S.; Grenades, F. Changes in the activity of enzymes and the content of proline, carbohydrates and chlorophylls caused by cold in wheat. Plant Physiol. 2010, 57, 580–588. [Google Scholar]
- Krivobochek, V.G.; Statsenko, A.P.; Gorodnichev, A.A. Proline index as an estimated indicator of frost resistance of winter wheat. Bull. Saratov State Agrouniversity Named By N.I. Vavilov 2012, 4, 15–16. [Google Scholar]
- Ivanisov, M.M.; Ionina, E.V. The use of the method for determining free proline in assessing the frost resistance of winter wheat varieties. In Book of International Summit of Young Scientists "Modern Solutions in the Development of Agricultural Science and Practice"; IE D.N. Sinyaev: Kazan Russia, 2016; pp. 58–62. [Google Scholar]
- Chaikovskaya, L.A.; Klyuchenko, V.V.; Baranskaya, M.I.; Ovsienko, O.L.; Klimenko, N.N. Method for Growing Winter Wheat in the Conditions of the Southern Regions of Russia. Patent RF No. 20760750, 30 November 2021. [Google Scholar]
Variant | t/ha | Yield Increase | |
t/ha | % | ||
Without Mineral Fertilizers | |||
Without inoculation | 2.55 | - | - |
Phosphostim | 2.76 | 0.21 | 8.2 |
LSD05 | 0.27 | ||
P30 | |||
Without inoculation | 3.78 | - | - |
Phosphostim | 4.97 | 1.19 | 31.5 |
LSD05 | 0.53 | ||
P60 | |||
Without inoculation | 4.08 | - | - |
Phosphostim | 4.95 | 0.87 | 21.3 |
LSD05 | 0.43 | ||
P90 | |||
Without inoculation | 4.08 | - | - |
Phosphostim | 4.83 | 0.75 | 18.4 |
LSD05 | 0.48 |
Amino Acids | Variant | ||||
Control (Without Fertilizer) | P30 | P60 | P90 | ||
Without Inoculation | Inoculation | ||||
Essential amino acids, including: | |||||
Valine | 0.236 | 0.268 | 0.317 | 0.287 | 0.293 |
Isoleucine | 0.173 | 0.202 | 0.227 | 0.208 | 0.227 |
Leucine | 0.502 | 0.579 | 0.745 | 0.641 | 0.667 |
Lysine | 0.183 | 0.209 | 0.250 | 0.215 | 0.221 |
Methionine | 0.189 | 0.197 | 0.189 | 0.243 | 0.275 |
Threonine | 0.177 | 0.256 | 0.242 | 0.209 | 0.215 |
Tryptophan | 0.128 | 0.147 | 0.136 | 0.154 | 0.152 |
Phenylalanine | 0.226 | 0.262 | 0.314 | 0.289 | 0.288 |
Critical amino acids, including: | |||||
Alanine | 0.185 | 0.216 | 0.244 | 0.214 | 0.226 |
Arginine | 0.256 | 0.324 | 0.327 | 0.300 | 0.307 |
Aspartic acid | 0.340 | 0.369 | 0.469 | 0.380 | 0.412 |
Histidine | 0.113 | 0.134 | 0.164 | 0.139 | 0.147 |
Glycine | 0.292 | 0.339 | 0.421 | 0.366 | 0.377 |
Glutamic acid | 2.760 | 3.324 | 4.815 | 3.893 | 4.171 |
Cystine | 0.154 | 0.172 | 0.170 | 0.178 | 0.202 |
Serine | 0.301 | 0.339 | 0.457 | 0.382 | 0.400 |
Tyrosine | 0.134 | 0.149 | 0.168 | 0.160 | 0.174 |
The amount | 6.349 | 7.486 | 9.655 | 8.258 | 8.754 |
Amino acids | Variant | ||||
Control (Without Fertilizer) | P30 | P60 | P90 | ||
Without Inoculation | Inoculation | ||||
Essential amino acids | 1.814 | 2.120 | 2.420 | 2.246 | 2.338 |
Critical amino acids | 4.535 | 5.366 | 7.235 | 6.102 | 6.416 |
Total | 6.349 | 7.486 | 9.655 | 8.258 | 8.754 |
Ratio: essential amino acids/critical amino acids | 0.400 | 0.395 | 0.334 | 0.373 | 0.364 |
Free Proline, mg/% | Protein, % | Gluten, % | Grain Productivity, t/ha | |
Free proline, mg/% | 1.00 | − | − | − |
Protein, % | −0.69 | 1.00 | − | − |
Gluten, % | −0.70 | 0.95 | 1.00 | − |
Grain productivity, t/ha | −0.72 | 0.92 | 0.92 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaikovskaya, L.; Iakusheva, N.; Ovsienko, O.; Radchenko, L.; Pashtetskiy, V.; Baranskaya, M. Influence of Microbial Preparations on Triticum aestivum L. Grain Quality. Int. J. Plant Biol. 2022, 13, 535-545. https://doi.org/10.3390/ijpb13040043
Chaikovskaya L, Iakusheva N, Ovsienko O, Radchenko L, Pashtetskiy V, Baranskaya M. Influence of Microbial Preparations on Triticum aestivum L. Grain Quality. International Journal of Plant Biology. 2022; 13(4):535-545. https://doi.org/10.3390/ijpb13040043
Chicago/Turabian StyleChaikovskaya, Lyudmila, Nina Iakusheva, Olga Ovsienko, Lyudmila Radchenko, Vladimir Pashtetskiy, and Marina Baranskaya. 2022. "Influence of Microbial Preparations on Triticum aestivum L. Grain Quality" International Journal of Plant Biology 13, no. 4: 535-545. https://doi.org/10.3390/ijpb13040043
APA StyleChaikovskaya, L., Iakusheva, N., Ovsienko, O., Radchenko, L., Pashtetskiy, V., & Baranskaya, M. (2022). Influence of Microbial Preparations on Triticum aestivum L. Grain Quality. International Journal of Plant Biology, 13(4), 535-545. https://doi.org/10.3390/ijpb13040043