The Contributions of Neotropical Tree Families to the Structure of Common Amazon Forest-Types
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Setting Up and Sampling of the One Ha Plots
2.3. Data Analyses
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava1, D.S.; Vellend, M. Biodiversity-ecosystem function research: Is It Relevant to Conservation? Annu. Rev. Ecol. Evol. Syst. 2005, 36, 267–294. [Google Scholar] [CrossRef] [Green Version]
- Naeem, S. Ecosystem consequences of biodiversity loss: The evolution of a paradigm. Ecology 2002, 83, 1537–1552. [Google Scholar] [CrossRef]
- Schulze, E.D.; Mooney, H.A. Biodiversity and Ecosystem Function; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Stubbendieck, J.; Friisoe, G.Y.; Bolick, M.R. Weeds of Nebraska and the Great Plains; Nebraska Department of Agriculture, Bureau of Plant Industry: Lincoln, NE, USA, 1994. [Google Scholar]
- Myster, R.W. Are productivity and richness related consistently after different crops in the Neotropics? Botany 2009, 87, 357–362. [Google Scholar] [CrossRef]
- Loreau, M.; De Mazancourt, C. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol. Lett. 2013, 16, 106–115. [Google Scholar] [CrossRef]
- Daily, G. Introduction: What are ecosystem services? In Nature’s Services: Societal Dependence on Natural Ecosystems; Mooney, H., Ed.; Academia Press: Cambridge, MA, USA, 1997; pp. 1–10. [Google Scholar]
- Myster, R.W. Forest Structure, Function and Dynamics in Western Amazonia; Wiley-Blackwell: Oxford, UK, 2016. [Google Scholar]
- Antonelli, A.; Zizka, A.; Carvalho, F.A.; Condamine, F.L. Amazonia is the primary source of Neotropical biodiversity. Proc. Natl. Acad. Sci. USA 2018, 115, 6034–6039. [Google Scholar] [CrossRef] [Green Version]
- Sakschewski, B.; von Bloh, W.; Boit, A.; Poorter, L.; Pena-Claros, M.; Heinke, J.; Joshi, J.; Thonicke, K. Resilience of Amazon forests emerges from plant trait diversity. Nat. Clim. Chang. 2016, 6, 1032–1036. [Google Scholar] [CrossRef]
- Fearnside, P.M. The intrinsic value of Amazon biodiversity. Biodivers. Conserv. 2021, 30, 1199–1202. [Google Scholar] [CrossRef]
- Cardoso, D.; Sarkinen, T.; Alexander, S.; Amorim, A.M.; Bittrich, V.; Celis, M.; Daly, D.C.; Fiaschi, P.; Funk, V.A.; Giacomin, L.L.; et al. Amazon plant diversity revealed by a taxonomically verified species list. Proc. Natl. Acad. Sci. USA 2017, 114, 10695–10700. [Google Scholar] [CrossRef] [Green Version]
- ter Steege, H.; Pitman, N.C.A.; Sabatier, D.; Baraloto, C.; Salomão, R.P.; Guevara, J.E.; Phillips, O.L.; Castilho, C.V.; Magnusson, W.E.; Molino, J.; et al. Hyperdominance in the Amazonian tree flora. Science 2013, 342, 1243092. [Google Scholar] [CrossRef] [Green Version]
- ter Steege, H.; Vaessen, R.W.; Cardenas-Lopez, D.; Sabatier, D.; Antonelli, A.; de Oliveira, S.M.; Pitman, N.C.A.; Jorgensen, P.M.; Salomao, R.P. The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa. Sci. Rep. 2016, 6, 29549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentry, A. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annu. Mo. Bot. Gard. 1988, 75, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Luize, B.G.; Venticinque, E.M.; Silva, T.S.F.; Novo, E.M.L. A floristic survey of angiosperm species occurring at three landscapes of the Central Amazon várzea, Brazil. Check List 2015, 11, 1789. [Google Scholar] [CrossRef]
- Duivenvoorden, J.F.; Balslev, H.; Caveilier, J.; Grandez, C.; Tuomisto, H.; Valencia, R. Evaluacion de Recursos Vegetales no Maderables en la Amazonia Noroccidental; Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Tuomisto, H.; Ruokolainen, K.; Yli-Halla, M. Dispersal, environment, and floristic variation of western Amazonian forests. Science 2003, 299, 241–244. [Google Scholar] [CrossRef]
- Gottdenker, N.; Bodmer, R.E. Reproduction and productivity of white-lipped and collared peccaries in the Peruvian Amazon. J. Zool. 1998, 245, 423–430. [Google Scholar] [CrossRef]
- Daly, D.G.; Prance, G.T. Brazillian Amazon. In Floristic Inventory of Tropical Countries; Campbell, D.G., Hammond, H.D., Eds.; New York Botanical Garden: Bronx, NY, USA, 1989; pp. 401–426. [Google Scholar]
- Moreau, C.S. Unraveling the evolutionary history of the hyperdiverse ant genus Pheidole (hymenoptera: Formicidae). Moleular Physiol. Evol. 2008, 48, 224–239. [Google Scholar] [CrossRef]
- Choo, J.P.S.; Martinez, R.V.; Stiles, E.W. Diversity and abundance of plants with flowers and fruits from October 2001 to September 2002 in Paucarillo reserve, Northeastern Amazon, Peru. Revisita Peru Biol. 2007, 14, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Chase, M.W.; Christenhusz, M.J.M.; Fay, M.F.; Byng, J.W.; Judd, W.S.; Soltis, D.E.; Mabberley, D.J.; Sennikov, A.N.; Soltis, P.S.; Stevens, P.F. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar]
- Romoleroux, K.; Foster, R.; Valencia, R.; Condit, R.; Balslev, H.; Losos, E. Especies lenosas (dap => 1 cm) encontradas en dos hectareas de un bosque de la Amazonia ecuatoriana. In Estudios Sobre Diversidad y Ecologia de Plantas; Valencia, R., Balslev, H., Eds.; Pontificia Universidad Catolica del Ecuador: Quito, Ecuador, 1997; pp. 189–215. [Google Scholar]
- Gentry, A. A Field Guide to Woody Plants of Northwest South America (Colombia, Ecuador, Peru); Conservation International: Washington, DC, USA, 1993. [Google Scholar]
- Fisher, R.A.; Corbet, A.S.; Williams, C.B. The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 1943, 12, 42–58. [Google Scholar] [CrossRef]
- SAS. User’s Guide: Statistics, Version 5; SAS Institute Inc.: Cary, NC, USA, 1985. [Google Scholar]
- Myster, R.W.; Thomlinson, J.R.; Larsen, M.C. Predicting landslide vegetation in patches on landscape gradients in Puerto Rico. Landsc. Ecol. 1997, 12, 299–307. [Google Scholar] [CrossRef]
- Myster, R.W. Varzea forest vs. terra firme forest floristics and physical structure in the Ecuadorean Amazon. Ecotropica 2015, 20, 35–44. [Google Scholar]
- Myster, R.W. Black-water forests (igapo) vs. white-water forests (varzea) in the Amazon: Floristics and physical structure. Biologist (Lima) 2016, 13, 391–406. [Google Scholar]
- Myster, R.W. The physical structure of forests in the Amazon basin: A review. Bot. Rev. 2016, 82, 407–427. [Google Scholar] [CrossRef]
- Myster, R.W. What we know about the composition and structure of Igapo forests in the Amazon basin. Bot. Rev. 2018, 84, 394–410. [Google Scholar] [CrossRef]
- Myster, R.W. Igapó (Black-Water Flooded Forests) in the Amazon Basin; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Myster, R.W. Effects of soil type on floristics and stand structure in Amazon unflooded forests. J. Plant Stud. 2018, 7, 20–28. [Google Scholar] [CrossRef]
- Myster, R.W. Primary and Secondary Igapó Forests in the Peruvian Amazon: Floristics, Physical Structure and the Predictive Value of Soil Bulk Density. J. Plant Stud. 2019, 8, 20–29. [Google Scholar] [CrossRef]
- Hopkins, M.J.G. Flora da Reserva Ducke, Amazonas, Brasil. Rodriguésia 2005, 56, 9–25. [Google Scholar] [CrossRef]
- Valencia, R.; Balslev, H.; Paz, G.; Miño, C. High tree alpha-diversity in Amazonian Ecuador. Biodivers. Conserv. 1994, 3, 21–28. [Google Scholar] [CrossRef]
- ter Steege, H.; Pitman, N.C.A.; Phillips, O.L.; Chave, J.; Sabatier, D.; Duque, A.; Molino, J.; Prévost, M.; Spichiger, R.; Castellanos, H.; et al. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 2006, 443, 444–447. [Google Scholar] [CrossRef]
- Prickett, R.M.; Honorio, E.N.; Baba, Y.; Baden, H.M.; Alvez, C.M.; Quesada, C.A. Floristic inventory of one hectare of palm-dominanted creek forest in Jenaro Herrera, Peru. Edinb. J. Bot. 2012, 69, 259–280. [Google Scholar] [CrossRef]
- Cintra, R.; de Carvalho, A.; Fábio, X.; Gondim, R.; Kropf, M.S. Forest spatial heterogeneity and palm richness, abundance and community composition in terra firme forest, Central Amazon. Braz. J. Bot. 2005, 28, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Goodman, R.C.; Phillips, O.L.; Del Castillo, M.; Torres, D.; Freitas, L.; Cortese, S.T.; Monteagudo, A.; Baker, T.R. Amazon palm biomass and allometry. For. Ecol. Manag. 2013, 310, 994–1004. [Google Scholar] [CrossRef]
- Stropp, J.; ter Steege, H.; Malhi, Y. Disentangling regional and local tree diversity in the Amazon. Ecography 2009, 32, 46–54. [Google Scholar] [CrossRef]
- Wittmann, F.; Junk, W.J.; Oiedade, T.F. The varzea forests in Amazonia: Flooding and the highly dynamic geomorphology interactions with natural forest succession. For. Ecol. Manag. 2004, 196, 199–212. [Google Scholar] [CrossRef]
- Ruokolainen, K.; Tuomisto, H.; Macia, M.J.; Higgins, M.A.; Yli-Halla, M. Are floristic and edaphic patterns in Amazonian rain forest congruent for trees, pteridophytes and Melastomataceae? J. Trop. Ecol. 2007, 23, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Leimbeck, R.M.; Balslev, H. Species richness and abundance of epiphtic Araceae on adjacent floodplain and upland forest in Amazonia Ecuador. Biodivers. Conserv. 2001, 10, 1579–1593. [Google Scholar] [CrossRef]
- Honorio, E.N. Floristic Relationships of the Tree Flora of Jenaro Herrera, an Unusual Area of the Peruvian Amazon. Master’s Thesis, University of Edinburgh, Edinburgh, UK, 2006. [Google Scholar]
- Godoy, J.R.; Petts, G.; Salo, J. Riparian flooded forests of the Orinoco and Amazon basins: A comparative review. Biodivers. Conserv. 1999, 8, 551–586. [Google Scholar] [CrossRef]
- Duivenvoorden, J.F.; Lips, J.M. A Land-Ecological Study of Soils, Vegetation, and Plant Diversity in Colombian Amazonia; The Tropenbos Foundation: Wageningen, The Netherlands, 1995. [Google Scholar]
- Ferreira, L.V. Effects of flooding duration on species richness floristic composition and forest structure in river margin habitat in Amazonian black water floodplain forests: Implications for future design of protected areas. Biodivers. Conserv. 2000, 9, 1–14. [Google Scholar] [CrossRef]
- Amaral, I.L.D.; Adis, J.; Prance, G.T. On the vegetation of a seasonal mixed water inundation forest near Manaus, Brazilian Amazonia. Amazoniana 1997, 14, 335–347. [Google Scholar]
Family | # Stems | Mean Stem dbh | Basal Area | # Genera | # Species | Fisher’s α |
---|---|---|---|---|---|---|
Anacardiaceae | 5 | 37.82 | 0.56 | 3 | 3 | 3.16 |
Annonaceae | 62 | 14.1 | 0.96 | 17 | 20 | 10.23 |
Apocynaceae | 7 | 28.11 | 0.43 | 3 | 4 | 3.87 |
Araliaceae | 2 | 14.85 | 0.03 | 2 | 2 | 999 |
Arecaceae | 305 | 17.58 | 7.39 | 8 | 13 | 2.75 |
Begoniaceae | 2 | 15.11 | 0.03 | 2 | 2 | 999 |
Bixaceae | 18 | 12.21 | 0.21 | 10 | 15 | 42.29 |
Boraginaceae | 4 | 26.83 | 0.22 | 1 | 4 | 999 |
Burseraceae | 46 | 25.8 | 9.61 | 5 | 10 | 3.93 |
Calophyllaceae | 8 | 12.75 | 0.1 | 1 | 1 | 0.3 |
Capparaceae | 1 | 12.21 | 0.01 | 1 | 1 | 999 |
Caricaceae | 3 | 41.23 | 0.4 | 1 | 1 | 0.52 |
Cecropiaceae | 49 | 24.61 | 2.32 | 4 | 11 | 4.41 |
Chrysobalanaceae | 24 | 16.35 | 0.5 | 5 | 13 | 11.57 |
Clusiaceae | 240 | 14.01 | 3.69 | 9 | 21 | 2.65 |
Combretaceae | 1 | 10 | 0.01 | 1 | 1 | 999 |
Dichapetalaceae | 2 | 13.9 | 0.03 | 1 | 2 | 999 |
Ehretiaceae | 1 | 10 | 0.01 | 1 | 1 | 999 |
Elaeocarpaceae | 6 | 21.77 | 0.22 | 1 | 3 | 2.38 |
Euphorbiaceae | 73 | 18.84 | 2.03 | 15 | 21 | 9.86 |
Fabaceae | 293 | 22.92 | 12.08 | 31 | 57 | 21.11 |
Humiriaceae | 15 | 12.22 | 0.17 | 4 | 5 | 2.62 |
Icacinaceae | 7 | 15.15 | 0.12 | 3 | 5 | 7.81 |
Lauraceae | 32 | 17.34 | 0.75 | 11 | 22 | 31.08 |
Lecythidaceae | 98 | 29.36 | 6.63 | 4 | 16 | 5.42 |
Malpighiaceae | 5 | 26.81 | 0.28 | 2 | 2 | 1.23 |
Malvaceae | 196 | 20.52 | 6.47 | 26 | 37 | 13.49 |
Melastomataceae | 30 | 16.37 | 0.63 | 4 | 8 | 3.56 |
Meliaceae | 68 | 20.52 | 2.24 | 5 | 10 | 3.23 |
Memecylaceae | 1 | 11.6 | 0.01 | 1 | 1 | 999 |
Moraceae | 57 | 24.74 | 2.73 | 13 | 23 | 14.33 |
Myristicaceae | 76 | 21.94 | 2.87 | 6 | 16 | 6.18 |
Myrtaceae | 71 | 14.36 | 1.14 | 5 | 9 | 2.73 |
Nyctaginaceae | 24 | 25.14 | 1.19 | 2 | 4 | 1.37 |
Ochnaceae | 1 | 22 | 0.03 | 1 | 1 | 999 |
Oleaceae | 3 | 23.11 | 0.09 | 2 | 3 | 999 |
Opiliaceae | 1 | 14 | 0.01 | 1 | 1 | 999 |
Picramniaceae | 2 | 10.21 | 0.01 | 1 | 2 | 999 |
Polygonaceae | 8 | 19.58 | 0.24 | 2 | 4 | 3.18 |
Quiinaceae | 1 | 11.33 | 0.01 | 1 | 1 | 999 |
Rhizophoraceae | 1 | 13.15 | 0.01 | 1 | 1 | 999 |
Rubiaceae | 74 | 19.42 | 2.19 | 8 | 12 | 4.05 |
Sabiaceae | 32 | 15.91 | 0.64 | 11 | 15 | 10.99 |
Salicaceae | 24 | 12.33 | 0.28 | 7 | 10 | 6.42 |
Sapindaceae | 23 | 16.65 | 0.5 | 7 | 12 | 10.12 |
Sapotaceae | 64 | 23.01 | 2.66 | 20 | 28 | 18.98 |
Simaroubaceae | 4 | 24.91 | 0.19 | 2 | 2 | 1.58 |
Siparunaceae | 13 | 15.77 | 0.25 | 5 | 8 | 8.85 |
Staphyleaceae | 1 | 42.31 | 0.14 | 1 | 1 | 999 |
Ulmaceae | 7 | 29.92 | 0.49 | 4 | 6 | 20 |
Urticaceae | 3 | 14.73 | 0.03 | 2 | 2 | 2.61 |
Verbenaceae | 1 | 11.9 | 0.01 | 1 | 1 | 999 |
Violaceae | 6 | 15.37 | 0.11 | 3 | 4 | 5.24 |
Vochysiaceae | 21 | 20.51 | 0.69 | 12 | 15 | 23.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myster, R.W. The Contributions of Neotropical Tree Families to the Structure of Common Amazon Forest-Types. Int. J. Plant Biol. 2023, 14, 339-346. https://doi.org/10.3390/ijpb14020028
Myster RW. The Contributions of Neotropical Tree Families to the Structure of Common Amazon Forest-Types. International Journal of Plant Biology. 2023; 14(2):339-346. https://doi.org/10.3390/ijpb14020028
Chicago/Turabian StyleMyster, Randall W. 2023. "The Contributions of Neotropical Tree Families to the Structure of Common Amazon Forest-Types" International Journal of Plant Biology 14, no. 2: 339-346. https://doi.org/10.3390/ijpb14020028
APA StyleMyster, R. W. (2023). The Contributions of Neotropical Tree Families to the Structure of Common Amazon Forest-Types. International Journal of Plant Biology, 14(2), 339-346. https://doi.org/10.3390/ijpb14020028