Genetic Variability and Clustering Patterns of Sugarcane (Saccharum spp.) Germplasms with Respect to Sucrose-Related Traits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Experimental Design and Data Collection
2.2. Data Analyses
2.2.1. Analysis of Variance
2.2.2. Prediction of Genotypic Value
2.2.3. Cluster Analysis for CRS Content
2.2.4. Flowering Trait Data
3. Results and Discussion
3.1. Variance Components for Cane- and Sucrose-Yield-Related Traits
3.2. Cluster Analysis Based on CRS Content
3.3. Estimates of Genotypic Value via BLUP Analysis Using Sucrose, Cane Yield Related Traits
3.4. Flowering Behavior
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA (United States Department of Agriculture). Crop Values 2021 Summary; National Agricultural Statistics Service: Washington, DC, USA, 2022. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/k35694332/gb19g8865/jd474051x/cpvl0222.pdf (accessed on 21 March 2024).
- Jackson, P.A. Advances in conventional sugarcane breeding programmes. In Achieving Sustainable Cultivation of Sugarcane Volume 2: Breeding, Pests and Diseases; Rott, P., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2018; ISBN 9781786761484. Available online: www.bdspublishing.com (accessed on 15 January 2024).
- Edmé, S.J.; Miller, J.D.; Glaz, B.; Tai, P.Y.P.; Comstock, J.C. Genetic contributions to yield gains in the Florida sugarcane industry across 33 years. Crop Sci. 2005, 45, 92–97. [Google Scholar] [CrossRef]
- Schmitz, A.; Zhang, F. The dynamics of sugarcane and sugar yields in Florida: 1950–2018. Crop Sci. 2019, 59, 1880–1886. [Google Scholar] [CrossRef]
- Tai, P.Y.P.; Miller, J.D. The pedigree of selected Canal Point (CP) varieties of sugarcane. Proc. Am. Soc. Sugar Cane Technol. 1978, 8, 34–39. [Google Scholar]
- Ebrahim, M.K.H.; Zingsheim, O.; Veith, R.; Essam, E.M.; Abokssem, E.E.M.; Komor, E. Sugar Uptake and Storage by Sugarcane Suspension Cells at Different Temperatures and High Sugar Concentrations. J. Plant Physiol. 1999, 154, 610–616. [Google Scholar] [CrossRef]
- Legendre, B.L. The core/press method for predicting the sugar yield from cane for use in cane payment. Sugar J. 1992, 54, 2–7. [Google Scholar]
- Jackson, P.A. Breeding for improved sugar content in sugarcane. Field Crops Res. 2005, 92, 277–290. [Google Scholar] [CrossRef]
- Jackson, P.A.; McRae, T.A. Selection of sugarcane clones in small plots: Effects of plot size and selection criteria. Crop Sci. 2001, 41, 315–322. [Google Scholar] [CrossRef]
- McCord, P.H.; Sandhu, H.S.; Zhao, D.; Davidson, R.W.; Gordon, V.S.; Islam, M.; Sood, S.; Comstock, J.; Baltazar, M.; Singh, M.P. Registration of ‘CP 11-1314’ sugarcane. J. Plant Regist. 2021, 15, 79–88. [Google Scholar] [CrossRef]
- Berding, N.; Owens, W.G.; le Brocq, D.G. Genetic diversity: Breeding to avoid future vulnerability. Proc. Aust. Soc. Sugar Cane Technol. 1998, 20, 140–147. [Google Scholar]
- Fickett, N.D.; Ebrahimi, L.; Parco, A.P.; Gutierrez, A.V.; Hale, A.L.; Pontif, M.J.; Todd, J.; Kimbeng, C.A.; Hoy, J.W.; Ayala-Silva, T.; et al. An enriched sugarcane diversity panel for utilization in genetic improvement of sugarcane. Sci. Rep. 2020, 10, 13390. [Google Scholar] [CrossRef]
- Park, S.; Zhang, D.; Ali, G.S. Assessing the genetic integrity of sugarcane germplasm in the USDA-ARS National Plant Germplasm System collection using single-dose SNP markers. Front. Plant Sci. 2024, 14, 1337736. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.N.; Nath, U.K.; Karim, K.M.R.; Ahmed, M.M.; Mitul, R.Y. Genetic variability of exotic Sugarcane genotypes. Scientifica 2017, 2017, 5202913. [Google Scholar] [CrossRef] [PubMed]
- Hemaprabha, G.; Mohanraj, K.; Jackson, P.A.; Lakshmanan, P.; Ali, G.S.; Li, A.M.; Huang, D.L.; Ram, B. Sugarcane genetic diversity and major germplasm collections. Sugar Tech 2022, 24, 279–297. [Google Scholar] [CrossRef]
- McCray, J.M.; Sandhu, H.S.; Rice, R.W.; Odero, D.C. Nutrient Requirements for Sugarcane Production on Florida Muck Soils; SS-AGR-226; University of Florida: Gainesville, FL, USA, 2019. [Google Scholar]
- Edmé, S.J.; Tai, P.Y.P.; Glaz, B.; Gilbert, R.A.; Miller, J.D.; Davidson, J.D.; Dunckelman, J.W.; Comstock, J.C. Registration of ‘CP 96-1252’ Sugarcane. Crop Sci. 2005, 45, 421–423. [Google Scholar] [CrossRef]
- Gilbert, R.A.; Comstock, J.C.; Glaz, B.; Edmé, S.J.; Davidson, R.W.; Glynn, N.C.; Miller, J.D.; Tai, P.Y.P. Registration of ‘CP 00-1101’ Sugarcane. J. Plant Regist. 2008, 2, 95–101. [Google Scholar] [CrossRef]
- Tai, P.Y.P.; Miller, J.D.; Glaz, B.; Deren, C.W.; Shine, J.M., Jr. Registration of ‘CP 78-1628’ Sugarcane. Crop Sci. 1991, 31, 236. [Google Scholar] [CrossRef]
- VanWeelden, M.T.; Swanson, S.; Davidson, W.; Baltazar, M.; Rice, R. Sugarcane Variety Census: Florida 2019. Sugar J. 2020, 83, 8–20. [Google Scholar]
- Zhao, D.; Comstock, J.C.; Glaz, B.; Edme, S.J.; Glynn, N.C.; Del Blanco, I.A.; Gilbert, R.A.; Davidson, R.W.; Chen, C.Y. Vigor Rating and Brix for First Clonal Selection Stage of the Canal Point Sugarcane Cultivar Development Program. J. Crop Improv. 2012, 26, 60–75. [Google Scholar] [CrossRef]
- SAS Institute. SAS for Windows, version 9.4; Service Pack 4; SAS Institute: Cary, NC, USA, 2017. [Google Scholar]
- Barbosa, M.H.P.; Resende, M.D.V.; Bressiani, J.A.; Silveira, L.C.I.; Peternelli, L.A. Selection of sugarcane families and parents by REML/BLUP. Crop Breed. Appl. Technol. 2005, 5, 443–450. [Google Scholar] [CrossRef]
- Yan, W.; Rajcan, I. Prediction of cultivar performance based on single- versus multiple-year tests in soybean. Crop Sci. 2003, 43, 549–555. [Google Scholar]
- Yan, W.; Hunt, L.A.; Johnson, P.; Stewart, G.; Lu, X. On-farm strip trials versus replicated performance trials for cultivar evaluation. Crop Sci. 2002, 42, 385–392. [Google Scholar]
- Ward, J.H., Jr. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Kang, M.S.; Miller, J.D.; Tai, P.Y.P.; Dean, L.; Glaz, B. Implications of confounding of genotype × year and genotype × crop effects in sugarcane. Field Crops Res. 1987, 15, 349–355. [Google Scholar] [CrossRef]
- Masri, M.I.; Amein, M.M.M. Yield potential and ratooning ability of some sugar cane genotypes. J. Plant Breed. Crop Sci. 2015, 7, 262–274. [Google Scholar]
- Milligin, S.B.; Gravois, K.A.; Bischoff, K.P.; Martin, F.A. Crop effects on genetic relationships among sugarcane traits. Crop Sci. 1990, 30, 927–931. [Google Scholar] [CrossRef]
- Shanthi, R.M.; Alarmelu, S.; Mahadeva Swamy, H.K.; Lakshmi Pathy, T. Impact of climate change on sucrose synthesis in sugarcane varieties. In Agro-Industrial Perspectives on Sugarcane Production under Environmental Stress; Verma, K.K., Song, X.P., Rajput, V.D., Solomon, S., Li, Y.R., Rao, G.P., Eds.; Springer: Singapore, 2022. [Google Scholar]
- Glaz, B.; Ulloa, M.F.; Parrado, R. Cultivation, cultivar and crop age effects on sugarcane. Agron. J. 1989, 81, 163–167. [Google Scholar] [CrossRef]
- MacColl, D. Growth and sugar accumulation of sugarcane: II. Percentage of sugar in relation to pattern of growth. Exp. Agric. 1976, 12, 369–377. [Google Scholar] [CrossRef]
- Sandhu, H.S.; Gilbert, R.A.; Shine, J.M., Jr.; Rice, R.W. Sucrose Accumulation and Maturity Curves for CP 89-2143; SS-AGR-220; Institute of Food and Agricultural Sciences, University of Florida: Gainesville, FL, USA, 2004; Available online: https://edis.ifas.ufl.edu/sc069 (accessed on 15 January 2024).
- Zhou, M.M.; Mokwele, A. Family versus individual genotype selection for Eldana saccharina resistance in early stages of sugarcane breeding. S. Afr. J. Plant Soil 2015, 22, 2168. [Google Scholar]
- Khokar, J.S.; Jamwal, N.S.; Sanghera, G.S.; Singh, P. Evaluation of sugarcane (Saccharum officinarum) germplasm for quality, yield traits and effects of flowering on cane traits. Indian J. Agric. Sci. 2022, 92, 842–846. [Google Scholar] [CrossRef]
- Ohto, M.; Onai, K.; Furukawa, Y.; Aoki, E.; Araki, T.; Nakamura, K. Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiol. 2001, 127, 252–261. [Google Scholar] [CrossRef]
- Clements, H.F. Flowering of Sugarcane: Mechanics and Control; University of Hawaii Agricultural Experiment Station: Honolulu, HI, USA, 1975. [Google Scholar]
- Momotaz, A.; Zhao, D. Responses of sugarcane genotypes to salinity stress during growth and flowering. J. Am. Soc. Sugar Cane Technol. 2022, 42, 51–60. [Google Scholar]
- Abu-Ellail, F.F.B.; McCord, P.H. Temperature and relative humidity effects on sugarcane flowering ability and pollen viability under natural and seminatural conditions. Sugar Technol. 2019, 21, 83–92. [Google Scholar] [CrossRef]
Cultivar | Country of Origin | Cultivar | Country of Origin |
---|---|---|---|
BR 97-1004 | Dominican Republic | N 23 | South Africa |
BR 97-2001 | Dominican Republic | N 25 | South Africa |
CC 48-0074 | Colombia | N 37 | South Africa |
CC 84-75 | Colombia | N 39 | South Africa |
CC 85-92 | Colombia | N 41 | South Africa |
CC 93-4418 | Colombia | Q 135 | Australia |
CG 00-102 | Guatemala | Q 152 | Australia |
CG 05-1024 | Guatemala | Q 153 | Australia |
CG 05-1292 | Guatemala | Q 155 | Australia |
CG 96-01 | Guatemala | Q 158 | Australia |
CG 97-100 | Guatemala | Q 160 | Australia |
CR 00-0026 | Dominican Republic | Q 167 | Australia |
CR 03-1009 | Dominican Republic | Q 171 | Australia |
CR 93-1007 | Dominican Republic | Q 172 | Australia |
CR 95-1007 | Dominican Republic | Q 183 | Australia |
CR 97-1007 | Dominican Republic | Q 190 | Australia |
GX 1 | China | Q 191 | Australia |
GX 11 | China | Q 196 | Australia |
GX 17 | China | Q 197 | Australia |
GX 7 | China | Q 200 | Australia |
ISD 20 | Bangladesh | Q 201 | Australia |
ISD 27 | Bangladesh | Q 208 | Australia |
ISD 28 | Bangladesh | TUCCP 77-42 | Argentina |
ISD 29 | Bangladesh | CB 41-76 | Brazil |
R 570 | Reunion | CP 00-1101 | USA |
ROC 15 | Taiwan | CP 01-2390 | USA |
S 97-19 | Argentina | CP 78-1628 | USA |
SP 90-1638 | Brazil | CP 96-1252 | USA |
SP 91-1049 | Brazil | ||
SP 91-3011 | Brazil | ||
SP 97-19 | Brazil |
Traits | Genotype Estimate | Residual Estimate | Percent of Total | |
---|---|---|---|---|
Genotype | Residual | |||
StWt | 0.03 ± 0.01 *** | 0.01 ± 0.01 *** | 68.6 | 31.4 |
StPop | 8,767,278 ± 17,362,207 *** | 24,710,510 ± 2,344,952 *** | 77.9 | 22.1 |
CY | 193.36 ± 45.54 *** | 214.89 ± 20.44 *** | 46.4 | 53.6 |
Brix | 0.910 ± 0.18 *** | 0.72 ± 0.05 *** | 50.5 | 49.5 |
Pol | 24.63 ± 4.93 *** | 16.03 ± 1.14 *** | 52.4 | 47.6 |
Sucrose | 1.28 ± 0.26 *** | 1.18 ± 0.08 *** | 52.1 | 47.9 |
CRS | 389.68 + 85.65 *** | 303.24 + 29.70 *** | 56.2 | 43.8 |
CRS only | ||||
Source | DF | F Ratio | ||
Genotype (G) | 58 | 13.29 ** | ||
Crop (C) | 1 | 354.77 ** | ||
G×C | 58 | 1.80 * |
Cultivar | CY (t.ha−1) | CRS (kg·Mg−1) | Cluster | Cultivar | CY (t.ha−1) | CRS (kg·Mg−1) | Cluster | ||
---|---|---|---|---|---|---|---|---|---|
PC | PC | FR | PC | PC | FR | ||||
BR 97-1004 | 123.9 | 193.6 | 226.6 | 1 | N 23 | 206.9 | 195.2 | 230.7 | 3 |
BR 97-2001 | 134.2 | 183.4 | 210.9 | 1 | N 25 | 200.4 | 97.1 | 144.2 | 6 |
CC 48-0074 | 186.6 | 183.5 | 195.1 | 5 | N 37 | 144.6 | 218.7 | 251.5 | 4 |
CC 84-75 | 196.5 | 168.8 | 192.0 | 5 | N 39 | 167.9 | 198.9 | 213.7 | 2 |
CC 85-92 | 76.4 | 191.6 | 218.8 | 1 | N 41 | 155.2 | 187.6 | 220.4 | 1 |
CC 93-4418 | 157.7 | 175.8 | 200.9 | 5 | Q 135 | 159.8 | 189.9 | 224.2 | 1 |
CG 00-102 | 142.8 | 218.3 | 227.3 | 3 | Q 152 | 186.6 | 197.0 | 218.7 | 1 |
CG 05-1024 | 201.1 | 175.0 | 217.2 | 1 | Q 153 | 182.5 | 223.7 | 240.0 | 4 |
CG 05-1292 | 196.2 | 189.3 | 220.8 | 1 | Q 155 | 169.4 | 228.2 | 245.0 | 4 |
CG 96-01 | 136.3 | 204.6 | 252.2 | 4 | Q 158 | 169.4 | 221.3 | 225.9 | 3 |
CG 97-100 | 156.3 | 200.5 | 213.7 | 2 | Q 160 | 249.4 | 168.4 | 214.1 | 1 |
CR 00-0026 | 86.9 | 171.0 | 205.1 | 2 | Q 167 | 208.8 | 185.7 | 210.5 | 1 |
CR 03-1009 | 183.0 | 159.8 | 218.1 | 5 | Q 171 | 146.5 | 200.9 | 232.4 | 3 |
CR 93-1007 | 203.9 | 172.6 | 218.7 | 1 | Q 172 | 153.3 | 207.5 | 22.7 | 3 |
CR 95-1007 | 151.7 | 200.5 | 223.7 | 1 | Q 183 | 196.6 | 200.7 | 233.2 | 3 |
CR 97-1007 | 144.1 | 219.3 | 233.6 | 3 | Q 190 | 236.7 | 184.4 | 237.8 | 1 |
GX 1 | 189.4 | 182.1 | 221.5 | 1 | Q 191 | 245.6 | 180.8 | 230.3 | 1 |
GX 11 | 148.2 | 206.0 | 229.9 | 3 | Q 196 | 204.7 | 188.4 | 209.4 | 1 |
GX 17 | 209.8 | 196.0 | 221.7 | 1 | Q 197 | 214.6 | 177.3 | 230.3 | 1 |
GX 7 | 193.8 | 176.2 | 223.3 | 1 | Q 200 | 202.9 | 206.9 | 234.1 | 3 |
ISD 20 | 124.4 | 168.7 | 191.1 | 5 | Q 201 | 169.3 | 180.9 | 224.4 | 1 |
ISD 27 | 189.9 | 186.0 | 219.6 | 1 | Q 208 | 216.9 | 195.2 | 214.4 | 1 |
ISD 28 | 112.0 | 172.4 | 199.7 | 5 | TUCCP 77-42 | 168.2 | 199.9 | 194.9 | 2 |
ISD 29 | 157.0 | 163.1 | 190.7 | 5 | CB 41-76 | 113.7 | 171.1 | 190.2 | 5 |
R 570 | 132.6 | 203.6 | 225.8 | 1 | CP 00-1101 | 221.3 | 247.5 | 252.4 | 4 |
ROC 15 | 134.1 | 200.1 | 234.8 | 3 | CP 01-2390 | 131.7 | 205.6 | 231.1 | 3 |
S 97-19 | 95.8 | 203.5 | 209.7 | 2 | CP 78-1628 | 190.9 | 201.9 | 210.8 | 1 |
SP 90-1638 | 233.9 | 186.6 | 225.5 | 1 | CP 96-1252 | 187.3 | 202.4 | 227.2 | 1 |
SP 91-1049 | 196.9 | 204.3 | 210.5 | 2 | |||||
SP 91-3011 | 152.9 | 180.8 | 230.2 | 1 | Mean | 173.2 | 192.2 | 216.0 | |
SP 97-19 | 149.7 | 208.2 | 205.0 | 2 | CV | 28.6 | 11.2 | 8.4 |
Genotypes | StWt ₸ | StPop | CY | Genotypes | StWt | StPop | CY |
---|---|---|---|---|---|---|---|
BR 97-1004 | 1 | −1 | −1 | N 23 | 0 | 0 | 0 |
BR 97-2001 | 1 | −1 | −1 | N 25 | 0 | 0 | 0 |
CC 48-0074 | −1 | 1 | 0 | N 37 | −1 | −1 | −1 |
CC 84-75 | −1 | 1 | 0 | N 39 | −1 | 1 | −1 |
CC 85-92 | 0 | −1 | −1 | N 41 | −1 | 1 | −1 |
CC 93-4418 | 1 | −1 | −1 | Q 135 | −1 | 0 | −1 |
CG 00-102 | −1 | −1 | −1 | Q 152 | −1 | 1 | 0 |
CG 05-1024 | 1 | −1 | 0 | Q 153 | −1 | 1 | 0 |
CG 05-1292 | 0 | 0 | 0 | Q 155 | −1 | 1 | −1 |
CG 96-01 | −1 | −1 | −1 | Q 158 | −1 | 0 | −1 |
CG 97-100 | 0 | −1 | −1 | Q 160 | −1 | 1 | 1 |
CR 00-0026 | −1 | −1 | −1 | Q 167 | −1 | 1 | 1 |
CR 03-1009 | 1 | −1 | 0 | Q 171 | −1 | 0 | −1 |
CR 93-1007 | 1 | −1 | 0 | Q 172 | 0 | −1 | −1 |
CR 95-1007 | 1 | −1 | −1 | Q 183 | 0 | −1 | 0 |
CR 97-1007 | 0 | −1 | −1 | Q 190 | 1 | −1 | 1 |
GX 1 | 0 | −1 | 0 | Q 191 | 1 | 1 | 1 |
GX 11 | 0 | 0 | 0 | Q 196 | −1 | 1 | 0 |
GX 17 | 1 | −1 | 1 | Q 197 | 1 | −1 | 1 |
GX 7 | 1 | −1 | 0 | Q 200 | −1 | 1 | 0 |
ISD 20 | −1 | 1 | 0 | Q 201 | −1 | 0 | −1 |
ISD 27 | −1 | 1 | 0 | Q 208 | −1 | 1 | 1 |
ISD 28 | −1 | −1 | −1 | TUCCP 77-42 | −1 | 0 | −1 |
ISD 29 | −1 | −1 | −1 | CB 41-76 | −1 | −1 | −1 |
R 570 | 0 | −1 | −1 | CP 00-1101 | 0 | 1 | 1 |
ROC 15 | 0 | −1 | −1 | CP 01-2390 | −1 | −1 | −1 |
S 97-19 | −1 | −1 | −1 | CP 78-1628 | −1 | 1 | 1 |
SP 90-1638 | 0 | 1 | 1 | CP 96-1252 | −1 | 1 | 0 |
SP 91-1049 | 1 | −1 | 0 | ||||
SP 91-3011 | −1 | 0 | 0 | ||||
SP 97-19 | −1 | −1 | −1 |
Genotypes | Brix ₸ | Pol | Sucrose | CRS | Genotypes | Brix | Pol | Sucrose | CRS |
---|---|---|---|---|---|---|---|---|---|
BR 97-1004 | 0 | 0 | 0 | 0 | N 23 | 0 | 0 | 0 | 0 |
BR 97-2001 | −1 | −1 | −1 | −1 | N 25 | −1 | −1 | −1 | −1 |
CC 48-0074 | −1 | −1 | −1 | −1 | N 37 | 1 | 1 | 1 | 1 |
CC 84-75 | −1 | −1 | −1 | −1 | N 39 | −1 | −1 | −1 | 0 |
CC 85-92 | −1 | −1 | 0 | 0 | N 41 | −1 | −1 | −1 | −1 |
CC 93-4418 | −1 | −1 | −1 | −1 | Q 135 | −1 | 0 | 0 | −1 |
CG 00-102 | 1 | 1 | 1 | 1 | Q 152 | −1 | −1 | −1 | 0 |
CG 05-1024 | −1 | −1 | −1 | −1 | Q 153 | 1 | 1 | 1 | 1 |
CG 05-1292 | −1 | −1 | −1 | −1 | Q 155 | 1 | 1 | 1 | 1 |
CG 96-01 | 1 | 1 | 1 | −1 | Q 158 | 1 | 1 | 1 | 1 |
CG 97-100 | −1 | −1 | 0 | 0 | Q 160 | −1 | −1 | −1 | −1 |
CR 00-0026 | −1 | −1 | −1 | −1 | Q 167 | −1 | −1 | −1 | −1 |
CR 03-1009 | −1 | −1 | −1 | −1 | Q 171 | 0 | 0 | 0 | 1 |
CR 93-1007 | −1 | −1 | −1 | −1 | Q 172 | 1 | 1 | 1 | 1 |
CR 95-1007 | 0 | 0 | 0 | 0 | Q 183 | 1 | 1 | 1 | 0 |
CR 97-1007 | 1 | 1 | 1 | 1 | Q 190 | 0 | 0 | 0 | −1 |
GX 1 | 1 | 1 | 1 | −1 | Q 191 | 0 | 0 | 0 | 0 |
GX 11 | 0 | 1 | 1 | 0 | Q 196 | −1 | −1 | −1 | −1 |
GX 17 | −1 | 0 | 0 | 0 | Q 197 | −1 | −1 | −1 | −1 |
GX 7 | 0 | −1 | −1 | −1 | Q 200 | 1 | 1 | 1 | 0 |
ISD 20 | −1 | −1 | −1 | −1 | Q 201 | 1 | 1 | 1 | −1 |
ISD 27 | −1 | −1 | −1 | −1 | Q 208 | −1 | −1 | −1 | 0 |
ISD 28 | −1 | −1 | −1 | −1 | TUCCP 77-42 | −1 | −1 | −1 | −1 |
ISD 29 | −1 | −1 | −1 | −1 | CB 41-76 | −1 | −1 | −1 | −1 |
R 570 | 0 | 0 | 0 | 1 | CP 00-1101 | 1 | 1 | 1 | 1 |
ROC 15 | 1 | 1 | 1 | 0 | CP 01-2390 | 1 | 1 | 1 | 1 |
S 97-19 | 1 | 1 | 1 | 0 | CP 78-1628 | −1 | −1 | −1 | 1 |
SP 90-1638 | 0 | 0 | 0 | 0 | CP 96-1252 | 1 | 1 | 1 | 1 |
SP 91-1049 | 0 | 1 | 1 | 1 | |||||
SP 91-3011 | 0 | 0 | 0 | −1 | |||||
SP 97-19 | 0 | 0 | 0 | 0 |
Genotypes | Number of Flower/Plants * | Genotypes | Number of Flower/Plants | ||
---|---|---|---|---|---|
Natural Condition | Photo Induction | Natural Condition | Photo Induction | ||
BR 97-1004 | 3.4 | - | SP 97-19 | - | |
BR 97-2001 | 0.9 | - | N 23 | 0.0 | - |
CC 48-0074 | 0.0 | - | N 25 | 0.0 | 0.0 |
CC 84-75 | 0.0 | - | N 37 | 0.0 | 1.8 |
CC 85-92 | 0.2 | - | N 39 | 3.7 | - |
CC 93-4418 | 0.0 | - | N 41 | 0.0 | 0.0 |
CG 00-102 | 0.0 | 0.0 | Q 135 | 0.0 | - |
CG 05-1024 | 2.7 | - | Q 152 | 0.0 | - |
CG 05-1292 | 0.5 | - | Q 153 | 0.0 | - |
CG 96-01 | 3.5 | - | Q 155 | 0.0 | - |
CG 97-100 | 0.0 | - | Q 158 | 0.0 | - |
CR 00-0026 | 0.0 | - | Q 160 | 0.0 | - |
CR 03-1009 | 5.0 | - | Q 167 | 0.0 | - |
CR 93-1007 | 0.0 | - | Q 171 | 0.0 | - |
CR 95-1007 | 1.9 | - | Q 172 | 0.0 | - |
CR 97-1007 | 0.0 | - | Q 183 | 0.0 | 0.0 |
GX 1 | 0.0 | - | Q 190 | 0.0 | - |
GX 11 | 0.0 | - | Q 191 | 0.0 | 0.0 |
GX 17 | 0.0 | - | Q 196 | 0.0 | 0.2 |
GX 7 | 0.0 | 1.3 | Q 197 | 0.0 | - |
ISD 20 | 0.0 | - | Q 200 | 0.2 | 0.0 |
ISD 27 | 0.5 | - | Q 201 | 0.0 | - |
ISD 28 | 0.3 | - | Q 208 | 0.0 | 0.0 |
ISD 29 | 0.0 | - | TUCCP 77-42 | 4.0 | 0.0 |
R 570 | 0.0 | 0.0 | CB 41-76 | 0.0 | - |
ROC 15 | 0.0 | - | CP 00-1101 | 0.0 | 0.2 |
S 97-19 | - | - | CP 01-2390 | 3.3 | - |
SP 90-1638 | 0.0 | 0.0 | CP 78-1628 | 5.8 | - |
SP 91-1049 | 0.4 | 0.4 | CP 96-1252 | 4.5 | - |
SP 91-3011 | 0.7 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Momotaz, A.; Coto Arbelo, O.; Gordon, V.S.; Wesley, B.; Sood, S.G.; Zhao, D. Genetic Variability and Clustering Patterns of Sugarcane (Saccharum spp.) Germplasms with Respect to Sucrose-Related Traits. Int. J. Plant Biol. 2024, 15, 203-216. https://doi.org/10.3390/ijpb15020017
Momotaz A, Coto Arbelo O, Gordon VS, Wesley B, Sood SG, Zhao D. Genetic Variability and Clustering Patterns of Sugarcane (Saccharum spp.) Germplasms with Respect to Sucrose-Related Traits. International Journal of Plant Biology. 2024; 15(2):203-216. https://doi.org/10.3390/ijpb15020017
Chicago/Turabian StyleMomotaz, Aliya, Orlando Coto Arbelo, Vanessa S. Gordon, Bronski Wesley, Sushma G. Sood, and Duli Zhao. 2024. "Genetic Variability and Clustering Patterns of Sugarcane (Saccharum spp.) Germplasms with Respect to Sucrose-Related Traits" International Journal of Plant Biology 15, no. 2: 203-216. https://doi.org/10.3390/ijpb15020017
APA StyleMomotaz, A., Coto Arbelo, O., Gordon, V. S., Wesley, B., Sood, S. G., & Zhao, D. (2024). Genetic Variability and Clustering Patterns of Sugarcane (Saccharum spp.) Germplasms with Respect to Sucrose-Related Traits. International Journal of Plant Biology, 15(2), 203-216. https://doi.org/10.3390/ijpb15020017