Seed Tubers Are Not the Primary Inoculum Source in Water Yam (Dioscorea alata) Anthracnose Epidemics in the Caribbean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tuber Sampling Surveys and Fungal Isolations
2.2. Tuber Inoculation and Greenhouse Experiment
2.3. Genetic Structure and Plot Ownership
3. Results
3.1. Fungal Diversity in Yam Tubers
3.2. Infection of Yam Tubers with Colletotrichum Gloeosporioides
3.3. Genetic Structure of Fungi Isolates within Plots
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Savary, S.; Teng, P.S.; Willocquet, L.; Nutter, F.W. Quantification and Modeling of Crop Losses: A Review of Purposes. Annu. Rev. Phytopathol. 2006, 44, 89–112. [Google Scholar] [CrossRef] [PubMed]
- Zadoks, J.C. On the Conceptual Basis of Crop Loss Assessment: The Threshold Theory. Annu. Rev. Phytopathol. 1985, 23, 455–473. [Google Scholar] [CrossRef]
- Berger, R.D. Application of Epidemiological Principles to Achieve Plant Disease Control. Annu. Rev. Phytopathol. 1977, 15, 165–181. [Google Scholar] [CrossRef]
- Stone, L.; Olinky, R.; Huppert, A. Seasonal Dynamics of Recurrent Epidemics. Nature 2007, 446, 533–536. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, S.; Kogel, K.H.; Zadoks, J.C. Epidemiological Analysis of the Damage Potential of Pgt-Ug99 in Central East, North East Africa; Iran and Punjab (India). Indian Phytopathol. 2014, 8, 26–32. [Google Scholar]
- Wellings, C.R. Global Status of Stripe Rust: A Review of Historical and Current Threats. Euphytica 2011, 179, 129–141. [Google Scholar] [CrossRef]
- Dentika, P.; Ozier-Lafontaine, H.; Penet, L. Colletotrichum gloeosporioides: Apparent Continuous Spore Rain May Hide Local Disparities and Iterative Disease Dynamics. Trop. Agric. 2022, 99, 333–340. [Google Scholar]
- Lichtemberg, P.S.; Moreira, L.; Zeviani, W.M.; Amorim, L.; De Mio, L.M. Dispersal Gradient of M. fructicola Conidia from Peach Orchard to an Open Field. Eur. J. Plant Pathol. 2022, 162, 231–236. [Google Scholar] [CrossRef]
- Parker, I.M.; Saunders, M.; Bontrager, M.; Weitz, A.P.; Hendricks, R.; Magarey, R.; Suiter, K.; Gilbert, G.S. Phylogenetic Structure and Host Abundance Drive Disease Pressure in Communities. Nature 2015, 520, 542–544. [Google Scholar] [CrossRef]
- Suffert, F.; Sache, I.; Lannou, C. Early Stages of Septoria tritici Blotch Epidemics of Winter Wheat: Build-up, Overseasoning, and Release of Primary Inoculum: Primary Inoculum of Mycosphaerella graminicola. Plant Pathol. 2011, 60, 166–177. [Google Scholar] [CrossRef]
- Dentika, P.; Ozier-Lafontaine, H.; Penet, L. Weeds as Pathogen Hosts and Disease Risk for Crops in the Wake of a Reduced Use of Herbicides: Evidence from Yam (Dioscorea alata) Fields and Colletotrichum Pathogens in the Tropics. J. Fungi 2021, 7, 283. [Google Scholar] [CrossRef]
- Aylor, D.E. The Role of Intermittent Wind in the Dispersal of Fungal Pathogens. Annu. Rev. Phytopathol. 1990, 28, 73–92. [Google Scholar] [CrossRef]
- Kazartsev, I.; Gomzhina, M.; Gasich, E.; Khlopunova, L.; Gannibal, P.B. Biodiversity of Colletotrichum spp. on Several Wild and Cultivated Plants. Biol. Bull. Rev. 2023, 13, S59–S70. [Google Scholar] [CrossRef]
- Dentika, P.; Gumbau, M.; Ozier-Lafontaine, H.; Penet, L. Natural Flora Is Indiscriminately Hosting High Loads of Generalist Fungal Pathogen Colletotrichum gloeosporioides Complex over Forest Niches, Vegetation Strata andElevation Gradient. J. Fungi 2023, 9, 296. [Google Scholar] [CrossRef] [PubMed]
- Talhinhas, P.; Baroncelli, R. Hosts of Colletotrichum. Mycosphere 2023, 14, 158–261. [Google Scholar] [CrossRef]
- Garrett, K.A.; Mundt, C.C. Host Diversity Can Reduce Potato Late Blight Severity for Focal and General Patterns of Primary Inoculum. Phytopathology 2000, 90, 1307–1312. [Google Scholar] [CrossRef] [PubMed]
- Finckh, M.R. Integration of Breeding and Technology into Diversification Strategies for Disease Control in Modern Agriculture. Eur. J. Plant Pathol. 2008, 121, 399–409. [Google Scholar] [CrossRef]
- Carisse, O.; Provost, C. Cluster Zone Leaf Removal Reduces the Rate of Anthracnose (Elsinöe Ampelina) Progress and Facilitates Its Control. Plant Dis. 2024, 108, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Dentika, P.; Ozier-Lafontaine, H.; Penet, L. Dynamics of Pathogenic Fungi in Field Hedges: Vegetation Cover Is Differentially Impacted by Weather. Microorganisms 2022, 10, 400. [Google Scholar] [CrossRef]
- Gurr, G.M.; Wratten, S.D.; Luna, J.M. Multi-Function Agricultural Biodiversity: Pest Management and Other Benefits. Basic Appl. Ecol. 2003, 4, 107–116. [Google Scholar] [CrossRef]
- Veres, A.; Petit, S.; Conord, C.; Lavigne, C. Does Landscape Composition Affect Pest Abundance and Their Control by Natural Enemies? A Review. Agric. Ecosyst. Environ. 2013, 166, 110–117. [Google Scholar] [CrossRef]
- Plantegenest, M.; Le May, C.; Fabre, F. Landscape Epidemiology of Plant Diseases. J. R. Soc. Interface 2007, 4, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Van der Heyden, H.; Dutilleul, P.; Charron, J.-B.; Bilodeau, G.J.; Carisse, O. Monitoring Airborne Inoculum for Improved Plant Disease Management. A Review. Agron. Sustain. Dev. 2021, 41, 40. [Google Scholar] [CrossRef]
- Sherman, J.; Burke, J.M.; Gent, D.H. Cooperation and Coordination in Plant Disease Management. Phytopathology 2019, 109, 1720–1731. [Google Scholar] [CrossRef] [PubMed]
- Chades, I.; Martin, T.G.; Nicol, S.; Burgman, M.A.; Possingham, H.P.; Buckley, Y.M. General Rules for Managing and Surveying Networks of Pests, Diseases, and Endangered Species. Proc. Natl. Acad. Sci. USA 2011, 108, 8323–8328. [Google Scholar] [CrossRef]
- Filho, A.B.; Inoue-Nagata, A.K.; Bassanezi, R.B.; Belasque, J.; Amorim, L.; Macedo, M.A.; Barbosa, J.C.; Willocquet, L.; Savary, S. The Importance of Primary Inoculum and Area-Wide Disease Management to Crop Health and Food Security. Food Secur. 2016, 8, 221–238. [Google Scholar] [CrossRef]
- Power, A.G.; Mitchell, C.E. Pathogen Spillover in Disease Epidemics. Am. Nat. 2004, 164, S79–S89. [Google Scholar] [CrossRef]
- Cullen, D.W.; Lees, A.K.; Toth, I.K.; Duncan, J.M. Detection of Colletotrichum Coccodes from Soil and Potato Tubers by Conventional and Quantitative Real-Time PCR. Plant Pathol. 2002, 51, 281–292. [Google Scholar] [CrossRef]
- Mancini, V.; Romanazzi, G. Seed Treatments to Control Seedborne Fungal Pathogens of Vegetable Crops. Pest Manag. Sci. 2014, 70, 860–868. [Google Scholar] [CrossRef]
- Penet, L.; Cornet, D.; Blazy, J.-M.; Alleyne, A.; Barthe, E.; Bussière, F.; Guyader, S.; Pavis, C.; Pétro, D. Varietal Dynamics and Yam Agro-Diversity Demonstrate Complex Trajectories Intersecting Farmers’ Strategies, Networks, and Disease Experience. Front. Plant Sci. 2016, 7, 1962. [Google Scholar] [CrossRef]
- Champoiseau, P.; Laurent, L.; Osseux, J.; Petro, D.; Tournebize, R.; Arnau, G.; Maledon, E.; Nudol, E.; Cornet, D. A Yam Collaborative Selection Plateform in Guadeloupe: A Model for Effective Multipartenarial and Participative Program. In Proceedings of the Annual Meeting of Caribbean Food Crops Society, Guadeloupe, France, 10–16 July 2016. [Google Scholar]
- Weir, B.S.; Johnston, P.R.; Damm, U. The Colletotrichum gloeosporioides Species Complex. Stud. Mycol. 2012, 73, 115–180. [Google Scholar] [CrossRef] [PubMed]
- Penet, L.; Guyader, S.; Pétro, D.; Salles, M.; Bussière, F. Direct Splash Dispersal Prevails over Indirect and Subsequent Spread during Rains in Colletotrichum Gloeosporioides Infecting Yams. PLoS ONE 2014, 9, e115757. [Google Scholar] [CrossRef]
- Ripoche, A.; Jacqua, G.; Bussière, F.; Guyader, S.; Sierra, J. Survival of Colletotrichum Gloeosporioides (Causal Agent of Yam Anthracnose) on Yam Residues Decomposing in Soil. Appl. Soil Ecol. 2008, 38, 270–278. [Google Scholar] [CrossRef]
- Norman, D.J.; Strandberg, J.O. Survival of Colletotrichum Acutatum in Soil and Plant Debris of Leatherleaf Fern. Plant Dis. 1997, 81, 1177–1180. [Google Scholar] [CrossRef] [PubMed]
- Penet, L.; Barthe, E.; Alleyne, A.; Blazy, J.M. Disease Risk Perception and Diversity of Management Strategies by Farmers: The Case of Anthracnose Caused by Colletotrichum gloeosporioides on Water Yams (Dioscorea alata) in Guadeloupe. Crop Prot. 2016, 88, 7–17. [Google Scholar] [CrossRef]
- Green, K.R.; Simons, S.A. “Dead Skin” on Yams (Dioscorea alata) Caused by Colletotrichum gloeosporioides. Plant Pathol. 1994, 43, 1062–1065. [Google Scholar] [CrossRef]
- Adebanjo, A.; Onesirosan, P.J. Surface-Borne Infection of Dioscorea Alata Tubers by Colletotrichum gloeosporioides. J. Plant Prot. Trop. 1986, 3, 135–137. [Google Scholar]
- Frézal, L.; Jacqua, G.; Neema, C. Adaptation of a Fungal Pathogen to Host Quantitative Resistance. Front. Plant Sci. 2018, 9, 1554. [Google Scholar] [CrossRef] [PubMed]
- Frézal, L.; Desquilbet, L.; Jacqua, G.; Neema, C. Quantification of the Aggressiveness of a Foliar Pathogen, Colletotrichum gloeosporioides, Responsible for Water Yam (Dioscorea Alata) Anthracnose. Eur. J. Plant Pathol. 2012, 134, 267–279. [Google Scholar] [CrossRef]
- Buddenhagen, C.E.; Hernandez Nopsa, J.F.; Andersen, K.F.; Andrade-Piedra, J.; Forbes, G.A.; Kromann, P.; Thomas-Sharma, S.; Useche, P.; Garrett, K.A. Epidemic Network Analysis for Mitigation of Invasive Pathogens in Seed Systems: Potato in Ecuador. Phytopathology 2017, 107, 1209–1218. [Google Scholar] [CrossRef]
- Dentika, P.; Blazy, J.-M.; Alleyne, A.; Petro, D.; Eversley, A.; Penet, L. High Genetic Diversity and Structure of Colletotrichum Gloeosporioides Sl in the Archipelago of Lesser Antilles. J. Fungi 2023, 9, 619. [Google Scholar] [CrossRef] [PubMed]
- Messiaen, C.M.; Lafon, R. Les Maladies des Plantes Maraîchères; INRA: Paris, France, 1970. [Google Scholar]
- Eddleman, H. Bacteria Media from Potato. Ph.D. Thesis, Indiana University, Bloomington, Indiana, 1998. Available online: https://himedialabs.com/TD/M096.pdf (accessed on 1 June 2024).
- Liu, B.; Louws, F.J.; Sutton, T.B.; Correll, J.C. A Rapid Qualitative Molecular Method for the Identification of Colletotrichum acutatum and C. gloeosporioides. Eur. J. Plant Pathol. 2012, 132, 593–607. [Google Scholar] [CrossRef]
- Wilson, E.B. Probable Inference, the Law of Succession, and Statistical Inference. J. Am. Stat. Assoc. 1927, 22, 209–212. [Google Scholar] [CrossRef]
- Agresti, A.; Coull, B.A. Approximate Is Better than “Exact” for Interval Estimation of Binomial Proportions. Am. Stat. 1998, 52, 119–126. [Google Scholar] [CrossRef]
- Tuyl, F.; Gerlach, R.; Mengersen, K. The Rule of Three, Its Variants and Extensions. Int. Stat. Rev. 2009, 77, 266–275. [Google Scholar] [CrossRef]
- Von Arx, J. Kultur-Und Infektionsversuche Mit Einigen Colletotrichum-Arten. Tijdschr. Plantenziekten 1957, 63, 171–190. [Google Scholar]
- Penet, L.; Briand, S.; Petro, D.; Bussi?re, F.; Guyader, S. Data on Microsatellite Markers in Colletotrichum Gloeosporioides s.l., Polymorphism Levels and Diversity Range. Data Brief 2017, 12, 644–648. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Barnett, H.L.; Hunter, B.B. Illustrated Genera of Imperfect Fungi; Burgess Publishing Company: Menominee, MI, USA, 1960. [Google Scholar]
- Dentika, P.; Ninsseu, A.; Pétro, D.; Ozier-Lafontaine, H.; Penet, L. Competition between Colletotrichum Species Reduces Anthracnose Symptom Development in Dioscorea Alata Yams: Potential for Biopriming and Breeding. Plant Pathol. 2022, 72, 442–448. [Google Scholar] [CrossRef]
- Noon, R.A.; Colhun, J. Market and Storage Diseases of Yams Imported into the United Kingdom. J. Phytopathol. 1979, 94, 289–302. [Google Scholar] [CrossRef]
- Martin, P.L.; Peter, K.A. Spore Dispersal Patterns of Colletotrichum Fioriniae in Orchards and the Timing of Apple Bitter Rot Infection Periods. Plant Dis. 2023, 107, 2474–2482. [Google Scholar] [CrossRef]
- Hsieh, T.-F.; Shen, Y.-M.; Huang, J.-H.; Tsai, J.-N.; Lu, M.-T.; Lin, C.-P. Insights into Grape Ripe Rot: A Focus on the Colletotrichum Gloeosporioides Species Complex and Its Management Strategies. Plants 2023, 12, 2873. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Suarez, M.; Cárdenas, M.; Jiménez, P.; Afanador-Kafuri, L.; Restrepo, S. Colletotrichum Species Complexes Associated with Crops in Northern South America: A Review. Agronomy 2022, 12, 548. [Google Scholar] [CrossRef]
- Bhadauria, V.; Zhang, M.; Ma, W.; Yang, J.; Zhao, W.; Peng, Y.-L. The Hidden Truths of Fungal Virulence and Adaptation on Hosts: Unraveling the Conditional Dispensability of Minichromosomes in the Hemibiotrophic Colletotrichum Pathogens. Int. J. Mol. Sci. 2023, 25, 198. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Dong, M.; Huang, Z.; Wang, Q.; An, B.; He, C.; Wang, Q.; Luo, H. CgCFEM1 Is Required for the Full Virulence of Colletotrichum Gloeosporioides. Int. J. Mol. Sci. 2024, 25, 2937. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; An, B.; Luo, H.; He, C.; Wang, Q. Roles of CgEde1 and CgMca in Development and Virulence of Colletotrichum Gloeosporioides. Int. J. Mol. Sci. 2024, 25, 2943. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-López, D.B.; Luna-Castellanos, L.L.; Espinosa-Carvajal, M.R.; Pérez-Polo, D.J.; Cadena-Torres, J. Capacidad de Infección de Hongos Asociados a La Pudrición Seca de Los Tubérculos de Ñame. Rev. Investig. Altoandinas 2021, 23, 149–158. [Google Scholar] [CrossRef]
- Anwadike, B. Fungal Rot of White Yam (Dioscorea Rotundata) Sold in Warri Markets, Nigeria. Int. J. Agric. Res. IJAR 2021, 2, 1–11. [Google Scholar]
- Peralta-Ruiz, Y.; Rossi, C.; Grande-Tovar, C.D.; Chaves-López, C. Green Management of Postharvest Anthracnose Caused by Colletotrichum gloeosporioides. J. Fungi 2023, 9, 623. [Google Scholar] [CrossRef]
Df | Sum of Squares | Mean Square | F Value | p | |
---|---|---|---|---|---|
Island | 2 | 0.00484 | 0.0024213 | 8.324 | 0.000295 *** |
Comparison | 1 | 0.00001 | 0.0000062 | 0.021 | 0.884459 |
Island × Comparison | 2 | 0.00000 | 0.0000011 | 0.004 | 0.996125 |
Residuals | 344 | 0.10007 | 0.0002909 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penet, L.; Gumbau, M.; Dentika, P.; Poliphème, F.; Guyader, S.; Bussière, F.; Alleyne, A.T.; Blazy, J.-M. Seed Tubers Are Not the Primary Inoculum Source in Water Yam (Dioscorea alata) Anthracnose Epidemics in the Caribbean. Int. J. Plant Biol. 2024, 15, 733-743. https://doi.org/10.3390/ijpb15030053
Penet L, Gumbau M, Dentika P, Poliphème F, Guyader S, Bussière F, Alleyne AT, Blazy J-M. Seed Tubers Are Not the Primary Inoculum Source in Water Yam (Dioscorea alata) Anthracnose Epidemics in the Caribbean. International Journal of Plant Biology. 2024; 15(3):733-743. https://doi.org/10.3390/ijpb15030053
Chicago/Turabian StylePenet, Laurent, Margot Gumbau, Pauline Dentika, Fritz Poliphème, Sébastien Guyader, François Bussière, Angela T. Alleyne, and Jean-Marc Blazy. 2024. "Seed Tubers Are Not the Primary Inoculum Source in Water Yam (Dioscorea alata) Anthracnose Epidemics in the Caribbean" International Journal of Plant Biology 15, no. 3: 733-743. https://doi.org/10.3390/ijpb15030053
APA StylePenet, L., Gumbau, M., Dentika, P., Poliphème, F., Guyader, S., Bussière, F., Alleyne, A. T., & Blazy, J. -M. (2024). Seed Tubers Are Not the Primary Inoculum Source in Water Yam (Dioscorea alata) Anthracnose Epidemics in the Caribbean. International Journal of Plant Biology, 15(3), 733-743. https://doi.org/10.3390/ijpb15030053