Temperature Effects on Seed Germination and Seedling Biochemical Profile of Cannabis Landraces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Landrace Collection
2.2. Experimental Design
2.3. Seed Viability Test
2.4. Germination Test
2.5. Biochemical Profiling
2.5.1. Extraction and Quantification of Carbohydrates
2.5.2. Extraction and Quantification of Amino Acids
2.5.3. Extraction and Quantification of Fatty Acid Methyl Esters (FAMEs)
2.6. Data Analysis
3. Results
3.1. Seed Viability
3.2. Germination
3.2.1. Germination Percentage
3.2.2. Germination Rate Index
3.3. Biochemical Profiling
3.3.1. Carbohydrate Concentration and Composition
3.3.2. Amino Acids Concentration and Composition
3.3.3. Fatty Acid Methyl Esters Concentration and Composition
3.4. Multivariate Analysis
3.4.1. The Pearson’s Correlation between the Germination Indexes and Biochemical Composition of Cannabis Landraces
3.4.2. Principal Component Analysis for the Biochemical Composition of Cannabis Landraces
4. Discussion
4.1. Seed Germination
4.2. Germination Rate Index
4.3. Biochemical Profiling
4.3.1. Carbohydrates
4.3.2. Amino Acids
4.3.3. Fatty Acid Methyl Esters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hills, P.N.; Van Staden, J. Thermo-inhibition of seed germination. S. Afr. J. Bot. 2003, 69, 455–461. [Google Scholar] [CrossRef]
- Sikder, S.; Hasan, M.A.; Hossain, M.S. Germination characteristics and mobilization of seed reserves in maize varieties as influenced by temperature regimes. J. Agric. Rural. Dev. 2009, 7, 51–58. [Google Scholar] [CrossRef]
- Kumar, B.; Gupta, E.; Yadav, R.; Singh, S.C.; Lal, R.K. Temperature effects on seed germination potential of holy basil (Ocimum tenuiflorum). Seed Technol. 2014, 36, 75–79. [Google Scholar]
- Zucareli, V.; Henrique, L.A.V.; Ono, E.O. Influence of light and temperature on the germination of Passiflora incarnata L. seeds. J. Seed Sci. 2015, 37, 162–167. [Google Scholar] [CrossRef]
- Laghmouchi, Y.; Belmehdi, O.; Bouyahya, A.; Senhaji, N.S.; Abrini, J. Effect of temperature, salt stress and pH on seed germination of medicinal plant Origanum compactum. Biocatal. Agric. Biotechnol. 2017, 10, 156–160. [Google Scholar] [CrossRef]
- Singh, K.; Gupta, N.; Dhingra, M. Effect of temperature regimes, seed priming and priming duration on germination and seedling growth on American cotton. J. Environ. Biol. 2018, 39, 83–91. [Google Scholar] [CrossRef]
- Reis, L.P.; Souza, G.A.D.; Brito, D.S. Relationships between substrate and the mobilization of reserve with temperature during seed germination of Ormosia coarctata Jack. J. Seed Sci. 2020, 42, e202042017. [Google Scholar] [CrossRef]
- Cabrera-Santos, D.; Ordoñez-Salanueva, C.A.; Sampayo-Maldonado, S.; Campos, J.E.; Orozco-Segovia, A.; Flores-Ortiz, C.M. Chia (Salvia hispanica L.) seed soaking, germination, and fatty acid behavior at different temperatures. Agriculture 2021, 11, 498. [Google Scholar] [CrossRef]
- Langa, S.; Magwaza, L.S.; Mditshwa, A.; Tesfay, S.Z. Characterization of cannabis varieties and the intrinsic and extrinsic factors affecting cannabis germination and seedling establishment: A descriptive review. Ind. Crops Prod. 2024, 208, 117861. [Google Scholar] [CrossRef]
- Rosa, M.; Prado, C.; Podazza, G.; Interdonato, R.; González, J.A.; Hilal, M.; Prado, F.E. Soluble sugars: Metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant Signal Behav. 2009, 4, 388–393. [Google Scholar] [CrossRef]
- Ribeiro, P.R.; Fernandez, L.G.; de Castro, R.D.; Ligterink, W.; Hilhorst, H.W. Physiological and biochemical responses of Ricinus communis seedlings to different temperatures: A metabolomics approach. BMC Plant Biol. 2014, 14, 233. [Google Scholar] [CrossRef] [PubMed]
- Wani, M.A.; Jan, N.; Qazi, H.A.; Andrabi, K.I.; John, R. Cold stress induces biochemical changes, fatty acid profile, antioxidant system and gene expression in Capsella bursa pastoris L. Acta Physiol. Plant 2018, 40, 167. [Google Scholar] [CrossRef]
- Aidoo, M.K.; Bdolach, E.; Fait, A.; Lazarovitch, N.; Rachmilevitch, S. Tolerance to high soil temperature in foxtail millet (Setaria italica L.) is related to shoot and root growth and metabolism. Plant Physiol. Biochem. (PPB) 2016, 106, 73–81. [Google Scholar] [CrossRef]
- Wei, S.; Yang, X.; Huo, G.; Ge, G.; Liu, H.; Luo, L.; Hu, J.; Huang, D.; Long, P. Distinct metabolome changes during seed germination of lettuce (Lactuca sativa L.) in response to thermal stress as revealed by untargeted metabolomics analysis. Int. J. Mol. Sci. 2020, 21, 1481. [Google Scholar] [CrossRef]
- Van Wagenen, J.; Miller, T.W.; Hobbs, S.; Hook, P.; Crowe, B.; Huesemann, M. Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies 2012, 5, 731–740. [Google Scholar] [CrossRef]
- Belo, R.G.; Tognetti, J.; Benech-Arnold, R.; Izquierdo, N.G. Germination responses to temperature and water potential as affected by seed oil composition in sunflower. Ind. Crops Prod. 2014, 62, 537–544. [Google Scholar] [CrossRef]
- Dhaliwal, L.K.; Angeles-Shim, R.B. Cell membrane features as potential breeding targets to improve cold germination ability of seeds. Plants 2022, 11, 3400. [Google Scholar] [CrossRef]
- Singh, J.; Guzman, I.; Begna, S.; Trostle, C.; Angadi, S. Germination and early growth response of guar cultivars to low temperatures. Ind. Crops Prod. 2021, 159, 113082. [Google Scholar] [CrossRef]
- Kumar, B.; Yadav, R.; Singh, S.C.; Singh, H.P. Seed Germination Behaviour of Withania spp. under Different Temperature Regimes. J. Crop Improv. 2016, 30, 287–292. [Google Scholar] [CrossRef]
- Malabarba, J.; Windels, D.; Xu, W.; Verdier, J. Regulation of DNA (de) methylation positively impacts seed germination during seed development under heat stress. Genes 2021, 12, 457. [Google Scholar] [CrossRef]
- Decorte, T.; Potter, G.R.; Bouchard, M. (Eds.) World Wide Weed. In Global Trends in Cannabis Cultivation and Its Control; Ashgate: Farnham, UK, 2011. [Google Scholar] [CrossRef]
- Salentijn, E.M.J.; Zhang, Q.; Amaducci, S.; Yang, M.; Trindade, L.M. New developments in fiber hemp (Cannabis sativa L.) breeding. Ind. Crops Prod. 2015, 68, 32–41. [Google Scholar] [CrossRef]
- Chaohua, C.; Gonggu, Z.; Lining, Z.; Chunsheng, G.; Qing, T.; Jianhua, C.; Xinbo, G.; Dingxiang, P.; Jianguang, S. A rapid shoot regeneration protocol from the cotyledons of hemp (Cannabis sativa L.). Ind. Crops Prod. 2016, 83, 61–65. [Google Scholar] [CrossRef]
- Citti, C.; Braghiroli, D.; Vandelli, M.A.; Cannazza, G. Pharmaceutical and biochemical analysis of cannabinoids: A critical review. J. Pharm. Biomed. Anal. 2018, 147, 565–579. [Google Scholar] [CrossRef]
- Qin, C.; Wang, F.; Wen, D.; Qin, W. Effect of Different Temperatures on the Germination of Fire Hemp Seeds. Med. Plant 2014, 5, 70–72. [Google Scholar]
- Humphries, T.; Florentine, S. Cultivation of low tetrahydrocannabinol (THC) ‘Cannabis sativa L’. Cultivation in Victoria, Australia: Do we know enough? Aust. J. Crop Sci. 2019, 13, 911–918. [Google Scholar] [CrossRef]
- Geneve, R.L.; Janes, E.W.; Kester, S.T.; Hildebrand, D.F.; Davis, D. Temperature limits for seed germination in industrial hemp (Cannabis sativa L.). Crops 2022, 2, 415–427. [Google Scholar] [CrossRef]
- Bajwa, P.; Singh, S.; Singh, M.; Kafle, A.; Parkash, V.; Saini, R. Assessing the production potential of industrial hemp in the semi-arid west Texas. Technol. Agron. 2023, 3, 17. [Google Scholar] [CrossRef]
- Byrd, J. Industrial Hemp (Cannabis sativa L.) Germination Temperatures and Herbicide Tolerance Screening. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2019. Available online: http://hdl.handle.net/10919/91431 (accessed on 30 May 2022).
- Galasso, I.; Russo, R.; Mapelli, S.; Ponzoni, E.; Brambilla, I.M.; Battelli, G.; Reggiani, R. Variability in seed traits in a collection of Cannabis sativa L. genotypes. Front. Plant Sci. 2016, 7, 688. [Google Scholar] [CrossRef]
- Farinon, B.; Molinari, R.; Costantini, L.; Merendino, N. The seed of industrial hemp (Cannabis sativa L.): Nutritional quality and potential functionality for human health and nutrition. Nutrients 2020, 12, 1935. [Google Scholar] [CrossRef]
- Sawler, J.; Stout, J.M.; Gardner, K.M.; Hudson, D.; Vidmar, J.; Butler, L.; Page, J.E.; Myles, S. The genetic structure of marijuana and hemp. PLoS ONE 2015, 10, e0133292. [Google Scholar] [CrossRef]
- Gouws, J. Cultivation of cannabis and manufacture of cannabis-related pharmaceutical products for medicinal and research purposes. Med. Control Counc. Appl. Guidel. 2017, V1. [Google Scholar]
- Adebisi, Y.A.; Olaoye, D.Q. Medical use of cannabis in Africa: The pharmacists’ perspective. Innov. Pharm. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.S.; Lynch, A.L.; Von Mark, V.C.; Heinitz, C.C.; Dierig, D.A. Temperature requirements for guayule seed germination. Ind. Crops Prod. 2020, 157, 112934. [Google Scholar] [CrossRef]
- Miraji, K.F.; Capuano, E.; Fogliano, V.; Laswai, H.S.; Linnemann, A.R. Utilization of Pepeta, a locally processed immature rice-based food product, to promote food security in Tanzania. PLoS ONE 2021, 16, e0247870. [Google Scholar] [CrossRef]
- Mandizvo, T.; Odindo, A.O. Seed coat structural and imbibitional characteristics of dark and light-coloured Bambara groundnut (Vigna subterranea L.) landraces. Heliyon 2019, 5, e01249. [Google Scholar] [CrossRef]
- Paiva, E.P.D.; Torres, S.B.; Almeida, J.P.N.D.; Sá, F.V.D.S.; Oliveira, R.R.T. Tetrazolium test for the viability of gherkin seeds1. Rev. Cienc. Agron. 2017, 48, 118–124. [Google Scholar] [CrossRef]
- Khalaki, M.A.; Ghorbani, A.; Dadjou, F. Influence of Nano-Priming on Festuca Ovina Seed Germination and Early Seedling Traits under Drought Stress, in Laboratory Condition. Ecopersia 2019, 7, 974. [Google Scholar] [CrossRef]
- Awasthi, P.; Karki, H.; Bargali, K.; Bargali, S.S. Germination and seedling growth of pulse crop (Vigna spp.) as affected by soil salt stress. Curr. Agric. Res. J. 2016, 4, 159–170. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, Y.; Wang, C.; Zhang, D. Isolation and identification of metabolites in chinese northeast potato (Solanum tuberosum L.) tubers using gas chromatography-mass spectrometry. Food Anal. Methods 2019, 12, 51–58. [Google Scholar] [CrossRef]
- Stenerson, K.K. The derivatization and analysis of amino acids by GC-MS. Rep. US 2011, 25, 1–3. [Google Scholar]
- Pérez-Palacios, T.; Barroso, M.A.; Ruiz, J.; Antequera, T. A rapid and accurate extraction procedure for analysing free amino acids in meat samples by GC-MS. Int. J. Anal. Chem. 2015, 2015, 209214. [Google Scholar] [CrossRef]
- Duminy, J.H.; Goosen, N.; van Rensburg, E.; Arries, W.; Mokwena, L.; Kotobe, L.; Pott, R. Application of different chromatographic techniques to characterise wax by-products generated during cannabinoid extraction. Biomass Convers. Biorefin. 2024, 14, 18923–18936. [Google Scholar] [CrossRef]
- Akinnuoye, D.B.; Modi, A.T. Germination characteristics of SC701 maize hybrid according to size and shape at different temperature regimes. Plant Prod. Sci. 2015, 18, 514–521. [Google Scholar] [CrossRef]
- Fahad Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; Ihsan, M.Z.; et al. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef]
- Cafaro, V.; Alexopoulou, E.; Cosentino, S.L.; Patanè, C. Germination Response of Different Castor Bean Genotypes to Temperature for Early and Late Sowing Adaptation in the Mediterranean Regions. Agriculture 2023, 13, 1569. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, V.; Tanwar, H.; Mor, V.S.; Kumar, M.; Punia, R.C.; Dalal, M.S.; Khan, M.; Sangwan, S.; Bhuker, A.; et al. Impact of high temperature on germination, seedling growth and enzymatic activity of wheat. Agriculture 2022, 12, 1500. [Google Scholar] [CrossRef]
- Jovičić, D.; Nikolić, Z.; Sikora, V.; Tamindžić, G.; Petrović, G.; Ignjatov, M.; Milošević, D. Comparison of methods for germination testing of Cannabis sativa seed. Ratar. Povrt. 2019, 56, 71–75. [Google Scholar] [CrossRef]
- Elias, S.G.; Wu, Y.C.; Stimpson, D.C. Seed Quality and Dormancy of Hemp (Cannabis sativa L.). J. Agric. Hemp Res. 2020, 2, 1–15. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.L.; Fan, R.C.; Peng, C.C.; Sun, H.L.; Zhu, S.Y.; Wang, X.F.; Zhang, L.Y.; Zhang, D.P. Arabidopsis sucrose transporter SUT4 interacts with cytochrome b5-2 to regulate seed germination in response to sucrose and glucose. Mol. Plant 2012, 5, 1029–1041. [Google Scholar] [CrossRef]
- Xu, F.; Tan, X.; Wang, Z. Effects of sucrose on germination and seedling development of Brassica napus. Int. J. Biol. 2010, 2, 150. [Google Scholar] [CrossRef]
- Ciereszko, I. Regulatory roles of sugars in plant growth and development. Acta Soc. Bot. Pol. 2018, 87, 3583. [Google Scholar] [CrossRef]
- Thakur, M.; Sharma, P.; Anand, A.; Pandita, V.K.; Bhatia, A.; Pushkar, S. Raffinose and hexose sugar content during germination are related to infrared thermal fingerprints of primed onion (Allium cepa L.) seeds. Front. Plant Sci. 2020, 11, 579037. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Xie, J.; Wen, S.; Wu, W.; Tan, L.; Lei, M.; Shi, H.; Zhu, J.K. TPST is involved in fructose regulation of primary root growth in Arabidopsis thaliana. Plant Mol. Biol. 2020, 103, 511–525. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Shi, Z.; Zhang, Z.; Zhang, Y.; Li, H. Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. Plant Growth Regul. 2012, 68, 177–188. [Google Scholar] [CrossRef]
- Rognoni, S.; Teng, S.; Arru, L.; Smeekens, S.C.; Perata, P. Sugar effects on early seedling development in Arabidopsis. Plant Growth Regul. 2007, 52, 217–228. [Google Scholar] [CrossRef]
- Wang, J.; Yuan, B.; Xu, Y.; Huang, B. Differential responses of amino acids and soluble proteins to heat stress associated with genetic variations in heat tolerance for hard fescue. J. Am. Soc. Hortic. Sci. 2018, 143, 45–55. [Google Scholar] [CrossRef]
- Hu, X.; Ma, J.; Qian, W.; Cao, Y.; Zhang, Y.; Liu, B.; Tang, L.; Cao, W.; Zhu, Y.; Liu, L. Effects of low temperature on the amino acid composition of wheat grains. Agronomy 2022, 12, 1171. [Google Scholar] [CrossRef]
- Dubey, R.S.; Rani, M. Influence of NaCl salinity on growth and metabolic status of protein and amino acids in rice seedlings. J. Agron. Crop Sci. 1989, 162, 97–106. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, D.; Liu, Q. Connections between amino acid metabolisms in plants: Lysine as an example. Front. Plant Sci. 2020, 11, 928. [Google Scholar] [CrossRef]
- Kim, H.Y.; Hwang, I.G.; Kim, T.M.; Woo, K.S.; Park, D.S.; Kim, J.H.; Kim, D.J.; Lee, J.; Lee, Y.R.; Jeong, H.S. Chemical and functional components in different parts of rough rice (Oryza sativa L.) before and after germination. Food Chem. 2012, 134, 288–293. [Google Scholar] [CrossRef]
- Özel, H.B.; Şevik, H.; Onat, S.M.; Yigit, N. The effect of geographic location and seed storage time on the content of fatty acids in stone pine (Pinus pinea L.) seeds. BioResources 2022, 17, 5038. [Google Scholar] [CrossRef]
- Wolf, R.B.; Cavins, J.F.; Kleiman, R.; Black, L.T. Effect of temperature on soybean seed constituents: Oil, protein, moisture, fatty acids, amino acids and sugars. J. Am. Oil Chem. Soc. 1982, 59, 230–232. [Google Scholar] [CrossRef]
- Schulte, L.R.; Ballard, T.; Samarakoon, T.; Yao, L.; Vadlani, P.; Staggenborg, S.; Rezac, M. Increased growing temperature reduces content of polyunsaturated fatty acids in four oilseed crops. Ind. Crops Prod. 2013, 51, 212–219. [Google Scholar] [CrossRef]
- Corbineau, F. Oxygen, a key signalling factor in the control of seed germination and dormancy. Seed Sci. Res. 2022, 32, 126–136. [Google Scholar] [CrossRef]
- Rodrigues, L.; Nogales, A.; Hansen, L.D.; Santos, F.; Rato, A.E.; Cardoso, H. Exploring the applicability of calorespirometry to assess seed metabolic stability upon temperature stress conditions—Pisum sativum L. Used as a case study. Front. Plant Sci. 2022, 13, 827117. [Google Scholar] [CrossRef]
- Sharma, P.; Lakra, N.; Goyal, A.; Ahlawat, Y.K.; Zaid, A.; Siddique, K.H. Drought and heat stress mediated activation of lipid signaling in plants: A critical review. Front. Plant Sci. 2023, 14, 1216835. [Google Scholar] [CrossRef]
- Schluttenhofer, C.; Yuan, L. Challenges towards Revitalizing Hemp: A Multifaceted Crop. Trends Plant Sci. 2017, 22, 917–929. [Google Scholar] [CrossRef]
- Jin, D.; Jin, S.; Chen, J. Cannabis indoor growing conditions, management practices, and post-harvest treatment: A review. Am. J. Plant Sci. 2019, 10, 925–946. [Google Scholar] [CrossRef]
- Hu, H.; Liu, H.; Liu, F. Seed germination of hemp (Cannabis sativa L.) cultivars responds differently to the stress of salt type and concentration. Ind. Crops Prod. 2018, 123, 254–261. [Google Scholar] [CrossRef]
- Čanak, P.; Jeromela, A.M.; Vujošević, B.; Kiprovski, B.; Mitrović, B.; Alberghini, B.; Facciolla, E.; Monti, A.; Zanetti, F. Is drought stress tolerance affected by biotypes and seed size in the emerging oilseed crop camelina? Agronomy 2020, 10, 1856. [Google Scholar] [CrossRef]
Location | Geographic Information | Landrace Name | Code | ||||
---|---|---|---|---|---|---|---|
Latitude | Longitude | Elevation | Average Rainfall | Average Temperature | |||
Ladysmith | −28.57533 | 29.85948 | 1009 m | 108.69 mm | 23.31 °C | Ugwayi wesiZulu | L1 |
Iswazi | L2 | ||||||
Bergville | −28.66768 | 29.03411 | 1137 m | 109.36 mm | 23.45 °C | Natal | B2 |
−28.67754 | 29.12555 | Ugwayi wesiZulu | B1 | ||||
Iswazi | B3 | ||||||
Hammersdale | −29.8709 | 30.63352 | 597 m | 110.34 mm | 23.66 °C | Durban Poison | H1 |
Msinga | −28.67989 | 30.27473 | 559 m | 340.0 mm | 23.42 °C | Ugwayi wesiZulu | M1 |
Iswazi | M2 |
Landrace | Temperature (°C) | Sucrose (mg/g DM) | Glucose (mg/g DM) | Sorbitol (mg/g DM) | Myo-Inositol (mg/g DM) | Mannitol (mg/g DM) | Fructose (mg/g DM) |
---|---|---|---|---|---|---|---|
B2 | 20/15 | 3.31 a | 30.21 bc | 8.03 a | 2.98 d | 1.61 g | 14.19 d |
30/25 | 2.21 bc | 31.06 b | 5.21 b | 4.78 c | 2.34 f | 19.69 b | |
40/35 | 0.73 f | 5.94 g | 2.21 de | 1.97 ef | 6.57 b | 4.00 f | |
H1 | 20/15 | 2.62 ab | 5.14 g | 1.71 ef | 1.62 f | 1.09 h | 2.79 f |
30/25 | 1.74 cd | 26.12 d | 3.60 c | 3.17 d | 2.97 e | 20.60 b | |
40/35 | 1.18 def | 29.45 c | 3.99 c | 6.45 b | 6.29 c | 21.36 b | |
B1 | 20/15 | 1.50 cdef | 33.59 a | 4.26 c | 7.68 a | 7.16 a | 26.45 a |
30/25 | 2.12 bc | 23.25 e | 1.59 ef | 4.71 c | 2.59 f | 16.88 c | |
40/35 | 0.84 ef | 6.42 g | 2.76 d | 1.98 ef | 5.49 d | 4.27 f | |
L2 | 20/15 | 1.57 cde | 33.17 a | 3.89 c | 2.06 ef | 1.05 h | 13.67 d |
30/25 | 1.52 cdef | 15.49 f | 2.56 d | 2.61 de | 0.99 h | 10.48 e | |
40/35 | 0.73 f | 5.75 g | 1.44 f | 1.71 f | 5.54 d | 4.28 f | |
p-value | Landrace | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Treatment | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Landrace × Temperature | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
SED | 0.223 | 0.389 | 0.184 | 0.219 | 0.072 | 0.612 | |
LSD | 0.462 | 0.807 | 0.381 | 0.453 | 0.150 | 1.270 | |
%CV | 16.3 | 2.3 | 6.5 | 7.7 | 2.4 | 5.7 |
Landrace | Temperature (°C) | Amino Acids (mg/g DW) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alanine | Aspartic | Cysteine | Cystine | Glutamic Acid | Glycine | Histidine | Isoleucine | Leucine | Lysine | Methionine | Phenylalanine | Proline | Serine | Threonine | Tyrosine | Valine | ||
‘B2’ | 20/15 | 11.96 a | 12.76 b | 6.26 a | 11.25 a | 12.82 a | 12.88 a | 17.52 a | 15.31 a | 18.37 a | 28.00 a | 7.83 a | 14.80 a | 15.59 a | 7.81 ab | 12.88 a | 10.41 a | 16.99 a |
30/25 | 4.11 i | 2.85 h | 0.05 d | 2.19 f | 2.56 h | 3.87 g | 0.00 h | 7.66 h | 10.91 g | 3.47 h | 2.38 h | 6.64 j | 4.28 j | 2.38 f | 1.62 i | 3.45 h | 8.43 g | |
40/35 | 8.03 f | 10.63 de | 0.50 d | 2.89 e | 6.97 f | 7.99 e | 4.06 f | 11.22 e | 15.10 d | 9.64 f | 4.09 f | 11.05 g | 7.81 f | 6.35 d | 4.20 f | 7.55 e | 13.72 d | |
‘H1’ | 20/15 | 5.84 g | 4.53 g | 0.07 d | 2.09 fg | 4.42 g | 5.29 f | 3.30 g | 9.37 f | 12.75 e | 4.64 g | 2.97 g | 8.70 h | 6.21 g | 3.87 e | 2.26 h | 4.90 f | 10.29 e |
30/25 | 10.34 c | 10.68 d | 0.31 d | 3.27 d | 10.11 e | 9.73 cd | 3.97 f | 14.90 b | 18.48 a | 18.93 c | 5.23 e | 13.73 b | 11.47 b | 7.46 abc | 5.04 e | 9.07 c | 17.13 a | |
40/35 | 10.61 b | 13.21 a | 1.99 c | 3.95 c | 11.69 b | 9.84 c | 5.61 d | 14.60 b | 18.41 a | 16.53 d | 5.67 d | 13.09 c | 11.36 b | 7.86 a | 9.18 c | 10.50 a | 17.16 a | |
‘B1’ | 20/15 | 3.94 i | 2.63 h | 0.05 d | 2.13 f | 2.66 h | 3.68 g | 0.00 h | 7.05 i | 10.78 g | 3.01 h | 2.29 h | 6.81 j | 5.00 i | 2.27 f | 1.34 ij | 3.19 h | 7.92 h |
30/25 | 5.56 h | 5.05 f | 0.18 d | 2.10 fg | 4.27 g | 5.17 f | 0.00 h | 8.59 g | 11.97 f | 5.05 g | 2.87 g | 7.97 i | 5.73 h | 4.20 e | 2.69 g | 4.43 g | 9.79 f | |
40/35 | 9.59 e | 11.89 c | 1.81 c | 3.71 c | 10.44 de | 9.43 d | 4.88 e | 13.17 c | 17.11 b | 15.39 e | 5.67 d | 12.22 e | 9.04 e | 7.33 abc | 7.44 d | 9.55 b | 16.01 b | |
‘L2’ | 20/15 | 2.95 j | 1.82 i | 0.05 d | 1.80 g | 1.91 i | 2.67 h | 0.00 h | 5.46 j | 8.10 h | 2.54 i | 1.64 i | 5.18 k | 3.61 k | 2.04 f | 1.09 j | 2.38 i | 6.35 i |
30/25 | 9.94 d | 10.29 e | 5.38 b | 8.36 b | 11.06 c | 10.66 b | 13.40 c | 12.96 c | 16.33 c | 23.34 b | 7.01 b | 12.62 d | 10.48 c | 7.29 bc | 10.89 b | 8.57 d | 14.14 c | |
40/35 | 9.92 d | 10.95 d | 5.38 b | 8.07 b | 10.67 d | 10.67 b | 15.10 b | 12.25 d | 15.34 d | 23.41 b | 6.08 c | 11.52 f | 9.37 d | 7.17 c | 11.04 b | 8.81 cd | 13.97 cd | |
p-value | Landraces | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Temperature | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Landrace × Temperature | <0.001 | <0.001 | <0.001 | < 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
SED | 0.121 | 0.181 | 0.224 | 0.148 | 0.169 | 0.143 | 0.301 | 0.192 | 0.190 | 0.223 | 0.150 | 0.147 | 0.160 | 0.260 | 0.199 | 0.138 | 0.151 | |
LSD | 0.252 | 0.376 | 0.464 | 0.307 | 0.351 | 0.297 | 0.624 | 0.399 | 0.394 | 0.462 | 0.312 | 0.304 | 0.332 | 0.540 | 0.414 | 0.287 | 0.313 | |
%CV | 1.9 | 2.7 | 14.9 | 4.2 | 2.8 | 2.3 | 6.5 | 2.1 | 1.6 | 2.1 | 4.1 | 1.7 | 2.4 | 5.8 | 4.2 | 2.5 | 1.5 |
FAMEs (mg/g DW) | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Landrace | Temperature (°C) | C14 | C15 | C16.1 | C16 | C17 | C18.1 | C18.2 | C18.3n6 | C18 | C20.1 + C18.3n3 | C20.2 | C20.3n3 | C20.5n3 | C20 | C21 | C22.1 | C22.2 | C22 | C23 | C24.1 | C24 |
B2 | 20/15 | 0.19 c | 0.05 de | 0.25 abc | 12.02 e | 0.14 dcd | 21.09 d | 96.28 h | 0.87 e | 6.79 c | 22.70 e | 0.154 bcde | 0.027 g | 0.085 c | 1.52 bcd | 0.07 bc | 0.032 ef | 0.038 d | 0.761 f | 0.095 d | 0.0345 de | 0.238 f |
30/25 | 0.18 cd | 0.07 bc | 0.23 bc | 14.74 c | 0.16 c | 23.52 c | 107.90 c | 0.92 e | 7.82 b | 25.09 c | 0.175 bc | 0.055 b | 0.037 g | 1.80 b | 0.09 b | 0.037 b | 0.044 c | 1.121 b | 0.134 bc | 0.0381 bc | 0.355 b | |
40/35 | 0.10 g | 0.04 e | 0.09 e | 6.97 g | 0.08 e | 9.98 h | 47.74 l | 0.44 g | 3.81 g | 9.11 j | 0.078 f | 0.032 f | 0.034 g | 0.83 f | 0.05 c | 0.035 bcde | 0.084 a | 0.513 g | 0.065 e | 0.0274 f | 0.170 g | |
H1 | 20/15 | 0.14 ef | 0.07 cd | 0.24 abcc | 16.48 b | 0.14 cd | 25.55 b | 129.61 b | 1.35 ab | 6.84 c | 29.78 b | 0.178 b | 0.046 cd | 0.045 f | 1.49 bcd | 0.07 bc | 0.035 bcd | 0.027 g | 0.776 ef | 0.098 d | 0.0386 bc | 0.275 e |
30/25 | 0.23 b | 0.06 cde | 0.17 d | 13.15 d | 0.13 cd | 20.56 e | 100.02 g | 1.19 cd | 5.82 d | 21.37 f | 0.157 bcd | 0.043 d | 0.074 d | 1.27 cde | 0.07 bc | 0.031 f | 0.034 f | 0.766 f | 0.163 a | 0.0343 de | 0.288 e | |
40/35 | 0.28 a | 0.10 a | 0.18 d | 9.81 f | 0.12 d | 15.99 g | 76.62 j | 0.92 e | 4.50 f | 11.27 i | 0.147 bcde | 0.037 e | 0.085 c | 1.15 e | 0.06 bc | 0.034 cdef | 0.034 f | 1.066 c | 0.117 cd | 0.0368 cde | 0.318 cd | |
B1 | 20/15 | 0.13 f | 0.05 de | 0.17 d | 12.65 d | 0.14 cd | 25.53 b | 107.13 d | 1.14 d | 7.08 c | 23.98 d | 0.183 b | 0.045 cd | 0.097 b | 1.57 bc | 0.14 a | 0.034 cde | 0.037 de | 0.770 ef | 0.094 d | 0.0360 cde | 0.291 de |
30/25 | 0.13 f | 0.07 bcd | 0.22 c | 12.12 e | 0.13 cd | 23.62 c | 103.46 e | 1.28 bc | 6.25 d | 16.62 g | 0.154 bcde | 0.043 d | 0.074 d | 1.40 cde | 0.07 bc | 0.032 ef | 0.038 d | 0.830 d | 0.095 d | 0.0362 cde | 0.341 bc | |
40/35 | 0.23 b | 0.12 a | 0.27 ab | 12.03 e | 0.26 a | 18.90 f | 87.71 i | 0.96 e | 5.27 e | 13.56 h | 0.130 de | 0.049 c | 0.067 e | 1.25 de | 0.05 c | 0.033 def | 0.034 ef | 1.161 b | 0.129 c | 0.0411 b | 0.323 c | |
L2 | 20/15 | 0.18 cd | 0.06 cde | 0.176 d | 12.94 d | 0.15 cd | 23.95 c | 102.79 f | 0.95 e | 7.20 c | 24.14 d | 0.156 bcd | 0.045 cd | 0.084 c | 1.55 bcd | 0.06 bc | 0.036 bc | 0.036 def | 0.871 d | 0.096 d | 0.0378 bcd | 0.284 e |
30/25 | 0.22 b | 0.09 b | 0.28 a | 20.73 a | 0.23 b | 38.10 a | 160.26 a | 1.43 a | 10.27 a | 34.63 a | 0.227 a | 0.073 a | 0.109 a | 2.48 a | 0.07 bc | 0.041 a | 0.056 b | 1.360 a | 0.154 ab | 0.0523 a | 0.443 a | |
40/35 | 0.16 de | 0.07 bcd | 0.23 bc | 9.77 f | 0.13 d | 15.83 g | 67.87 k | 0.66 f | 4.92 ef | 11.12 i | 0.125 e | 0.036 ef | 0.047 f | 1.15 e | 0.07 bc | 0.033 def | 0.034 ef | 0.821 de | 0.095 d | 0.0342 e | 0.262 ef | |
p-value | Landraces | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Temperature | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Landrace × Temperature | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
SED | 0.0071 | 0.0050 | 0.01 | 0.137 | 0.0088 | 0.14 | 0.164 | 0.0307 | 0.1273 | 0.18 | 0.008 | 0.0012 | 0.00133 | 0.0874 | 0.0085 | 0.0 | 0.001 | 0.0144 | 0.0069 | 0.00 | 0.0077 | |
LSD | 0.0147 | 0.0103 | 0.02 | 0.2836 | 0.0182 | 0.28 | 0.340 | 0.0636 | 0.2640 | 0.37 | 0.017 | 0.0025 | 0.00277 | 0.1813 | 0.0175 | 0.0 | 0.002 | 0.0299 | 0.0143 | 0.00 | 0.0160 | |
%CV | 4.8 | 8.6 | 7.1 | 1.3 | 7.1 | 0.8 | 0.2 | 3.7 | 2.4 | 1.1 | 6.6 | 3.4 | 2.3 | 7.4 | 14.5 | 2.6 | 2.7 | 2.0 | 7.6 | 3.2 | 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langa, S.; Magwaza, L.S.; Mditshwa, A.; Tesfay, S.Z. Temperature Effects on Seed Germination and Seedling Biochemical Profile of Cannabis Landraces. Int. J. Plant Biol. 2024, 15, 1032-1053. https://doi.org/10.3390/ijpb15040073
Langa S, Magwaza LS, Mditshwa A, Tesfay SZ. Temperature Effects on Seed Germination and Seedling Biochemical Profile of Cannabis Landraces. International Journal of Plant Biology. 2024; 15(4):1032-1053. https://doi.org/10.3390/ijpb15040073
Chicago/Turabian StyleLanga, Sabeliwe, Lembe Samukelo Magwaza, Asanda Mditshwa, and Samson Zeray Tesfay. 2024. "Temperature Effects on Seed Germination and Seedling Biochemical Profile of Cannabis Landraces" International Journal of Plant Biology 15, no. 4: 1032-1053. https://doi.org/10.3390/ijpb15040073
APA StyleLanga, S., Magwaza, L. S., Mditshwa, A., & Tesfay, S. Z. (2024). Temperature Effects on Seed Germination and Seedling Biochemical Profile of Cannabis Landraces. International Journal of Plant Biology, 15(4), 1032-1053. https://doi.org/10.3390/ijpb15040073