Genome-Wide Identification and Expression Analysis of the CLAVATA3/ESR-Related Gene Family in Tiger Nut
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification and Phylogenetic Analysis of CeCLE Genes
2.2. Sample Collection, DNA Extraction, and Biochemical Analysis
2.3. Genome Sequencing and Variant Detection
2.4. RNA-Seq Data Analysis
3. Results
3.1. CeCLE Genes Identification
3.2. CeCLE Genes Expression Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yamaguchi, Y.L.; Ishida, T.; Sawa, S. CLE Peptides and Their Signaling Pathways in Plant Development. J. Exp. Bot. 2016, 67, 4813–4826. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, J.C. Recent Advances in Arabidopsis CLE Peptide Signaling. Trends Plant Sci. 2020, 25, 1005–1016. [Google Scholar] [CrossRef] [PubMed]
- Goad, D.M.; Zhu, C.; Kellogg, E.A. Comprehensive Identification and Clustering of CLV3/ESR-related (CLE) Genes in Plants Finds Groups with Potentially Shared Function. New Phytol. 2017, 216, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Hirakawa, Y.; Fujimoto, T.; Ishida, S.; Uchida, N.; Sawa, S.; Kiyosue, T.; Ishizaki, K.; Nishihama, R.; Kohchi, T.; Bowman, J.L. Induction of Multichotomous Branching by CLAVATA Peptide in Marchantia polymorpha. Curr. Biol. 2020, 30, 3833–3840. [Google Scholar] [CrossRef] [PubMed]
- Mitchum, M.G.; Wang, X.; Wang, J.; Davis, E.L. Role of Nematode Peptides and Other Small Molecules in Plant Parasitism. Annu. Rev. Phytopathol. 2012, 50, 175–195. [Google Scholar] [CrossRef]
- Bai, X.; Chen, T.; Wu, Y.; Tang, M.; Xu, Z.-F. Selection and Validation of Reference Genes for qRT-PCR Analysis in the Oil-Rich Tuber Crop Tiger Nut (Cyperus esculentus) Based on Transcriptome Data. Int. J. Mol. Sci. 2021, 22, 2569. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 1 May 2017).
- Zhao, X.; Yi, L.; Ren, Y.; Li, J.; Ren, W.; Hou, Z.; Su, S.; Wang, J.; Zhang, Y.; Dong, Q.; et al. Chromosome-Scale Genome Assembly of the Yellow Nutsedge (Cyperus esculentus). Genome Biol. Evol. 2023, 15, evad027. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A Fast Spliced Aligner with Low Memory Requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.-C.; Mendell, J.T.; Salzberg, S.L. StringTie Enables Improved Reconstruction of a Transcriptome from RNA-Seq Reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, L.; Kucukoglu, M.; Tian, D.; Larkin, R.M.; Shi, X.; Zheng, B. Predicting and Clustering Plant CLE Genes with a New Method Developed Specifically for Short Amino Acid Sequences. BMC Genom. 2020, 21, 709. [Google Scholar] [CrossRef]
- Niemeyer, P.W.; Irisarri, I.; Scholz, P.; Schmitt, K.; Valerius, O.; Braus, G.H.; Herrfurth, C.; Feussner, I.; Sharma, S.; Carlsson, A.S.; et al. A Seed-like Proteome in Oil-rich Tubers. Plant J. 2022, 112, 518–534. [Google Scholar] [CrossRef] [PubMed]
- Teufel, F.; Almagro Armenteros, J.J.; Johansen, A.R.; Gíslason, M.H.; Pihl, S.I.; Tsirigos, K.D.; Winther, O.; Brunak, S.; Von Heijne, G.; Nielsen, H. SignalP 6.0 Predicts All Five Types of Signal Peptides Using Protein Language Models. Nat. Biotechnol. 2022, 40, 1023–1025. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “One for All, All for One” Bioinformatics Platform for Biological Big-Data Mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Pissard, A.; Ghislain, M.; Bertin, P. Genetic Diversity of the Andean Tuber-Bearing Species, Oca (Oxalis tuberosa Mol.), Investigated by Inter-Simple Sequence Repeats. Genome 2006, 49, 8–16. [Google Scholar] [CrossRef]
- Ermakov, A.I. Metody biokhimicheskogo issledovaniya rasteniy (Russian). Kolos 1987, 143, 456. [Google Scholar]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows–Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Garrison, E.; Marth, G. Haplotype-Based Variant Detection from Short-Read Sequencing. arXiv 2012, arXiv:1207.3907. [Google Scholar]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Podicheti, R.; Mockaitis, K. FEATnotator: A Tool for Integrated Annotation of Sequence Features and Variation, Facilitating Interpretation in Genomics Experiments. Methods 2015, 79–80, 11–17. [Google Scholar] [CrossRef]
- Mu, Z.; Wei, Z.; Liu, J.; Cheng, Y.; Song, Y.; Yao, H.; Yuan, X.; Wang, S.; Gu, Y.; Zhong, J.; et al. RNA-Seq Analysis Demonstrates Different Strategies Employed by Tiger Nuts (Cyperus esculentus L.) in Response to Drought Stress. Life 2022, 12, 1051. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Warnes, G.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Huber, W.; Liaw, A.; Lumley, T.; Maechler, M.; Magnusson, A.; Moeller, S.; et al. gplots: Various R Programming Tools for Plotting Data; R Package Version 3.1.3. 2022. Available online: https://api.semanticscholar.org/CorpusID:224906258 (accessed on 1 September 2024).
- Kon’kova, N.G.; Safina, G.F. Valuable Agronomic Traits of Chufa (Cyperus esculentus L.) Accessions from the VIR Collection: Methods of Preparing Nodules for Long-Term Storage. Tr. Po Prikl. Bot. Genet. I Sel. 2021, 182, 34–44. [Google Scholar] [CrossRef]
- Okonechnikov, K.; Golosova, O.; Fursov, M. UGENE team Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 2012, 28, 1166–1167. [Google Scholar] [CrossRef]
- Hirakawa, Y.; Kondo, Y.; Fukuda, H. TDIF Peptide Signaling Regulates Vascular Stem Cell Proliferation via the WOX4 Homeobox Gene in Arabidopsis. Plant Cell 2010, 22, 2618–2629. [Google Scholar] [CrossRef] [PubMed]
- Depuydt, S.; Rodriguez-Villalon, A.; Santuari, L.; Wyser-Rmili, C.; Ragni, L.; Hardtke, C.S. Suppression of Arabidopsis Protophloem Differentiation and Root Meristem Growth by CLE45 Requires the Receptor-like Kinase BAM3. Proc. Natl. Acad. Sci. USA 2013, 110, 7074–7079. [Google Scholar] [CrossRef]
- Ren, S.; Song, X.; Chen, W.; Lu, R.; Lucas, W.J.; Liu, C. CLE25 Peptide Regulates Phloem Initiation in Arabidopsis through a CLERK-CLV2 Receptor Complex. J. Integr. Plant Biol. 2019, 61, 1043–1061. [Google Scholar] [CrossRef]
- Hill, D.; Nelson, D.; Hammond, J.; Bell, L. Morphophysiology of Potato (Solanum tuberosum) in Response to Drought Stress: Paving the Way Forward. Front. Plant Sci. 2021, 11, 597554. [Google Scholar] [CrossRef]
- Plunkert, M.L.; Martínez-Gómez, J.; Madrigal, Y.; Hernández, A.I.; Tribble, C.M. Tuber, or Not Tuber: Molecular and Morphological Basis of Underground Storage Organ Development. Curr. Opin. Plant Biol. 2024, 80, 102544. [Google Scholar] [CrossRef]
- Hou, G.; Wu, G.; Jiang, H.; Bai, X.; Chen, Y. RNA-Seq Reveals That Multiple Pathways Are Involved in Tuber Expansion in Tiger Nuts (Cyperus esculentus L.). Int. J. Mol. Sci. 2024, 25, 5100. [Google Scholar] [CrossRef]
- Gancheva, M.; Dodueva, I.; Lebedeva, M.; Lutova, L. CLAVATA3/EMBRYO SURROUNDING REGION (CLE) Gene Family in Potato (Solanum tuberosum L.): Identification and Expression Analysis. Agronomy 2021, 11, 984. [Google Scholar] [CrossRef]
- Gancheva, M.; Losev, M.; Dodueva, I.; Lutova, L. Phloem-Expressed CLAVATA3/ESR-like Genes in Potato. Horticulturae 2023, 9, 1265. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gancheva, M.; Kon’kova, N.; Solovyeva, A.; Danilov, L.; Gusev, K.; Lutova, L. Genome-Wide Identification and Expression Analysis of the CLAVATA3/ESR-Related Gene Family in Tiger Nut. Int. J. Plant Biol. 2024, 15, 1054-1062. https://doi.org/10.3390/ijpb15040074
Gancheva M, Kon’kova N, Solovyeva A, Danilov L, Gusev K, Lutova L. Genome-Wide Identification and Expression Analysis of the CLAVATA3/ESR-Related Gene Family in Tiger Nut. International Journal of Plant Biology. 2024; 15(4):1054-1062. https://doi.org/10.3390/ijpb15040074
Chicago/Turabian StyleGancheva, Maria, Nina Kon’kova, Alla Solovyeva, Lavrentii Danilov, Konstantin Gusev, and Ludmila Lutova. 2024. "Genome-Wide Identification and Expression Analysis of the CLAVATA3/ESR-Related Gene Family in Tiger Nut" International Journal of Plant Biology 15, no. 4: 1054-1062. https://doi.org/10.3390/ijpb15040074
APA StyleGancheva, M., Kon’kova, N., Solovyeva, A., Danilov, L., Gusev, K., & Lutova, L. (2024). Genome-Wide Identification and Expression Analysis of the CLAVATA3/ESR-Related Gene Family in Tiger Nut. International Journal of Plant Biology, 15(4), 1054-1062. https://doi.org/10.3390/ijpb15040074