Use of Light-Emitting Diodes on the In Vitro Rooting of Apple Tree Rootstocks
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results and Discussion
3.1. Height
3.2. Dry and Fresh Mass of the Aerial Parts
3.3. Roots Dry and Fresh Mass
3.4. Number of Leaves and Roots
3.5. Principal Component Analysis (PCA)
3.6. Chlorophyll a, b, Total (a + b), and Carotenoids Content
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stanger, M.C.; Steffens, C.A.; Soethe, C.; Moreira, M.A.; do Amarante, C.V.T. Phenolic Content and Antioxidant Activity during the Development of ‘Brookfield’ and ‘Mishima’ Apples. J. Agric. Food Chem. 2017, 65, 3453–3459. [Google Scholar] [CrossRef] [PubMed]
- Bueno, M.P.; Silva, A.C.; Nunes, A.L.d.P.F.; Sardinha, A.C.; Lima, P.T.d.S.; Silva, J.F. Análise da Comercialização da Cadeia Produtiva da Maçã Brasileira: Produção, Importação e Exportação No Período 2015 a 2019/ Analysis of the Commercialization of the Brazilian Apple Production Chain: Production, Import and Export in the Year 2015 to 2019. Braz. J. Dev. 2021, 7, 34061–34078. [Google Scholar] [CrossRef]
- FAO. FAOSTAT Crops and Livestock Production. In FAOSTAT Analytical Brief 60: Agricultural Production Statistics 2000–2021; FAO: Rome, Italy, 2021; p. 60. [Google Scholar]
- Purin, S.; Filho, O.K.; Stürmer, S.L. Mycorrhizae Activity and Diversity in Conventional and Organic Apple Orchards from Brazil. Soil Biol. Biochem. 2006, 38, 1831–1839. [Google Scholar] [CrossRef]
- Pertille, R.H.; Citadin, I.; de Oliveira, L.d.S.; Broch, J.d.C.; Kvitschal, M.V.; Araujo, L. The Influence of Temperature on the Phenology of Apple Trees Grown in Mild Winter Regions of Brazil, Based on Long-Term Records. Sci. Hortic. 2022, 305, 111354. [Google Scholar] [CrossRef]
- Marini, R.P. Experimental Designs and Statistical Analyses for Rootstock Trials. Agronomy 2024, 14, 2312. [Google Scholar] [CrossRef]
- Mahmud, I.; Kousik, C.; Hassell, R.; Chowdhury, K.; Boroujerdi, A.F. NMR Spectroscopy Identifies Metabolites Translocated from Powdery Mildew Resistant Rootstocks to Susceptible Watermelon Scions. J. Agric. Food Chem. 2015, 63, 8083–8091. [Google Scholar] [CrossRef] [PubMed]
- Orazem, P.; Stampar, F.; Hudina, M. Fruit Quality of Redhaven and Royal Glory Peach Cultivars on Seven Different Rootstocks. J. Agric. Food Chem. 2011, 59, 9394–9401. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Sun, H.; Sun, T.; Wang, Q.; Yao, Y. Modifications of ‘Gold Finger’ Grape Berry Quality as Affected by the Different Rootstocks. J. Agric. Food Chem. 2016, 64, 4189–4197. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Huang, M.; Chen, J. Mechanisms for the Influence of Citrus Rootstocks on Fruit Size. J. Agric. Food Chem. 2015, 63, 2618–2627. [Google Scholar] [CrossRef]
- De Macedo, T.A.; da Silva, P.S.; Sander, G.F.; Welter, J.F.; Rufato, L.; de Rossi, A. Productivity and Quality of “Fuji Suprema” Apple Fruit in Different Rootstocks and Growing Conditions. Sci. Hortic. 2019, 256, 108651. [Google Scholar] [CrossRef]
- Da Silva, P.S.; de Lima, J.M.; dos Santos, M.F.S.; Petry, D.; Rufato, L.; Nerbass, F.R.; Bogo, A. Performance of ‘Gala Select’ and ‘Fuji Suprema’ Grafted on Geneva Series Rootstocks under Fallow Land and Replanting Conditions in Southern Brazil. Heliyon 2023, 9, e22125. [Google Scholar] [CrossRef] [PubMed]
- Marini, R.P.; Fazio, G. Apple Rootstocks. In Horticultural Reviews; Wiley: Hoboken, NJ, USA, 2018; pp. 197–312. [Google Scholar]
- Jones, O.P.; Hopgood, M.E.; O’Farrell, D. Propagation in Vitro of M.26 Apple Rootstocks. J. Hortic. Sci. 1977, 52, 235–238. [Google Scholar] [CrossRef]
- Dobránszki, J.; da Silva, J.A.T. Micropropagation of Apple—A Review. Biotechnol. Adv. 2010, 28, 462–488. [Google Scholar] [CrossRef] [PubMed]
- Luiz de Oliveira, J.; Ramos Campos, E.V.; Fraceto, L.F. Recent Developments and Challenges for Nanoscale Formulation of Botanical Pesticides for Use in Sustainable Agriculture. J. Agric. Food Chem. 2018, 66, 8898–8913. [Google Scholar] [CrossRef] [PubMed]
- Di Serio, M.G.; D’Ascenzo, D.; Giansante, L.; Del Re, P.; Bendini, A.; Casadei, E.; Gallina Toschi, T.; Mori, N.; Di Giacinto, L. Effect of Halyomorpha halys Infestation on the Physicochemical Composition and Sensory Characteristics of Olive Fruits and Olive Oils. ACS Food Sci. Technol. 2024, 4, 821–832. [Google Scholar] [CrossRef]
- Naz, B.; Afzal, A.; Ali, H.; Ahmad, N.; Fazal, H.; Ullah, R.; Ali, E.A.; Ali, M.; Ullah, Z.; Ali, A.; et al. Melatonin-Induced Stress Enhanced Biomass and Production of High-Value Secondary Cell Products in Submerged Adventitious Root Cultures of Stevia Rebaudiana (Bert.). ACS Omega 2024, 9, 5548–5562. [Google Scholar] [CrossRef]
- Clemente, I.; Menicucci, F.; Colzi, I.; Sbraci, L.; Benelli, C.; Giordano, C.; Gonnelli, C.; Ristori, S.; Petruccelli, R. Unconventional and Sustainable Nanovectors for Phytohormone Delivery: Insights on Olea europaea. ACS Sustain. Chem. Eng. 2018, 6, 15022–15031. [Google Scholar] [CrossRef]
- Hussain, N.; Ali, H.; Mustafa, G.; Sarwar Khan, M.; Ali, B.; Ameer, S.; Zamir, S.; Iqbal, R.; Ali, B.; Khan, M.N.; et al. In Vitro Plant Regeneration from Petioles of Spinach (Spinacia Oleracea L.). ACS Agric. Sci. Technol. 2024, 4, 57–62. [Google Scholar] [CrossRef]
- Ma, X.; Gang, D.R. Metabolic Profiling of Turmeric (Curcuma Longa L.) Plants Derived from in Vitro Micropropagation and Conventional Greenhouse Cultivation. J. Agric. Food Chem. 2006, 54, 9573–9583. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, K.; Iqrar, S.; Saifi, M.; Khan, S.; Qamar, F.; Quadri, S.N.; Mishra, A.; Abdin, M.Z. Influence of Plant Growth Regulators on Glandular Trichome Density and Steviol Glycosides Accumulation in Stevia rebaudiana. ACS Omega 2022, 7, 30967–30977. [Google Scholar] [CrossRef] [PubMed]
- Gulzar, B.; Mujib, A.; Qadir Malik, M.; Mamgain, J.; Syeed, R.; Zafar, N. Plant Tissue Culture: Agriculture and Industrial Applications. In Transgenic Technology Based Value Addition in Plant Biotechnology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 25–49. [Google Scholar]
- Abdalla, N.; El-Ramady, H.; Seliem, M.K.; El-Mahrouk, M.E.; Taha, N.; Bayoumi, Y.; Shalaby, T.A.; Dobránszki, J. An Academic and Technical Overview on Plant Micropropagation Challenges. Horticulturae 2022, 8, 677. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Alañón-Sánchez, N.; Mateluna-Cuadra, R.; Verdugo-Vásquez, N. An Overview about the Impacts of Agricultural Practices on Grape Nitrogen Composition: Current Research Approaches. Food Res. Int. 2020, 136, 109477. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.K.; Park, S.-Y.; Kim, Y.W.; Kim, C.S. Growth of Tsuru-Rindo (Tripterospermum japonicum) Cultured in Vitro under Various Sources of Light-Emitting Diode (LED) Irradiation. J. Plant Biol. 2006, 49, 174–179. [Google Scholar] [CrossRef]
- Dutta Gupta, S.; Jatothu, B. Fundamentals and Applications of Light-Emitting Diodes (LEDs) in in Vitro Plant Growth and Morphogenesis. Plant Biotechnol. Rep. 2013, 7, 211–220. [Google Scholar] [CrossRef]
- Sharma, A.; Hazarika, M.; Heisnam, P.; Pandey, H.; Devadas, V.S.; Wangsu, M.; Kartha, B.D. Factors Affecting Production, Nutrient Translocation Mechanisms, and LED Emitted Light in Growth of Microgreen Plants in Soilless Culture. ACS Agric. Sci. Technol. 2023, 3, 701–719. [Google Scholar] [CrossRef]
- Sharma, A.; Pandey, H.; Nampoothiri Devadas, V.A.S.; Singh, D.; Kartha, B.D.; Wangsu, M. Regulations and Factors Affecting of Light Emitting Diodes Artificial Light in Crop Production under Soilless Culture. ACS Agric. Sci. Technol. 2023, 3, 616–630. [Google Scholar] [CrossRef]
- Soltani, S.; Arouiee, H.; Salehi, R.; Nemati, S.H.; Moosavi-Nezhad, M.; Gruda, N.S.; Aliniaeifard, S. Morphological, Phytochemical, and Photosynthetic Performance of Grafted Tomato Seedlings in Response to Different LED Light Qualities under Protected Cultivation. Horticulturae 2023, 9, 471. [Google Scholar] [CrossRef]
- Yeh, N.; Chung, J.-P. High-Brightness LEDs—Energy Efficient Lighting Sources and Their Potential in Indoor Plant Cultivation. Renew. Sustain. Energy Rev. 2009, 13, 2175–2180. [Google Scholar] [CrossRef]
- Schuerger, A. Anatomical Features of Pepper Plants (Capsicum annuum L.) Grown under Red Light-Emitting Diodes Supplemented with Blue or Far-Red Light. Ann. Bot. 1997, 79, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Nacheva, L.; Dimitrova, N.; Koleva-Valkova, L.; Stefanova, M.; Ganeva, T.; Nesheva, M.; Tarakanov, I.; Vassilev, A. In Vitro Multiplication and Rooting of Plum Rootstock ‘Saint Julien’ (Prunus domestica Subsp. Insititia) under Fluorescent Light and Different LED Spectra. Plants 2023, 12, 2125. [Google Scholar] [CrossRef]
- Geng, F.; Moran, R.; Day, M.; Halteman, W.; Zhang, D. In Vitro Shoot Proliferation of Apple Rootstocks ‘B.9’, ‘G.30’, and ‘G.41’ Grown under Red and Blue Light. HortScience 2015, 50, 430–433. [Google Scholar] [CrossRef]
- Lin, Y.; Li, J.; Li, B.; He, T.; Chun, Z. Effects of Light Quality on Growth and Development of Protocorm-like Bodies of Dendrobium Officinale in Vitro. Plant Cell Tissue Organ Cult. (PCTOC) 2011, 105, 329–335. [Google Scholar] [CrossRef]
- Senger, H. The effect of blue light on plants and microorganisms. Photochem. Photobiol. 1982, 35, 911–920. [Google Scholar] [CrossRef]
- Li, H.; Xu, Z.; Tang, C. Effect of Light-Emitting Diodes on Growth and Morphogenesis of Upland Cotton (Gossypium hirsutum L.) Plantlets in Vitro. Plant Cell Tissue Organ Cult. (PCTOC) 2010, 103, 155–163. [Google Scholar] [CrossRef]
- Ptak, A.; Szewczyk, A.; Simlat, M.; Pawłowska, B.; Warchoł, M. LED Light Improves Shoot Multiplication, Steviol Glycosides and Phenolic Compounds Biosynthesis in Stevia rebaudiana Bertoni in Vitro Culture. Sci. Rep. 2024, 14, 30860. [Google Scholar] [CrossRef]
- Saeedi, S.A.; Vahdati, K.; Sarikhani, S.; Daylami, S.D.; Davarzani, M.; Gruda, N.S.; Aliniaeifard, S. Growth, Photosynthetic Function, and Stomatal Characteristics of Persian Walnut Explants in Vitro under Different Light Spectra. Front. Plant Sci. 2023, 14, 1292045. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Sikorska-Zimny, K.; Lisiecki, P.; Gonciarz, W.; Szemraj, M.; Ambroziak, M.; Suska, O.; Turkot, O.; Stanowska, M.; Rutkowski, K.P.; Chmiela, M.; et al. Influence of Agronomic Practice on Total Phenols, Carotenoids, Chlorophylls Content, and Biological Activities in Dry Herbs Water Macerates. Molecules 2021, 26, 1047. [Google Scholar] [CrossRef]
- Kupčinskienė, A.; Brazaitytė, A.; Rasiukevičiūtė, N.; Valiuškaitė, A.; Morkeliūnė, A.; Vaštakaitė-Kairienė, V. Vegetation Indices for Early Grey Mould Detection in Lettuce Grown under Different Lighting Conditions. Plants 2023, 12, 4042. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Vegetation Stress: An Introduction to the Stress Concept in Plants. J. Plant Physiol. 1996, 148, 4–14. [Google Scholar] [CrossRef]
- Borges, E.M. Hypothesis Tests and Exploratory Analysis Using R Commander and Factoshiny. J. Chem. Educ. 2023, 100, 267–278. [Google Scholar] [CrossRef]
- Navarro, D.J.; Foxcroft, D.R. Learning Statistics with Jamovi: A Tutorial for Psychology Students and Other Beginners; Sage Publishing: Thousand Oaks, CA, USA, 2022. [Google Scholar]
- Borges, E.M. Data Visualization Using Boxplots: Comparison of Metalloid, Metal, and Nonmetal Chemical and Physical Properties. J. Chem. Educ. 2023, 100, 2809–2817. [Google Scholar] [CrossRef]
- Love, J.; Selker, R.; Marsman, M.; Jamil, T.; Dropmann, D.; Verhagen, J.; Ly, A.; Gronau, Q.F.; Smíra, M.; Epskamp, S.; et al. JASP: Graphical Statistical Software for Common Statistical Designs. J. Stat. Softw. 2019, 88, 1–17. [Google Scholar] [CrossRef]
- De Souza, R.S.; Sequeira, C.A.; Borges, E.M. Enhancing Statistical Education in Chemistry and STEAM Using JAMOVI. Part 1: Descriptive Statistics and Comparing Independent Groups. J. Chem. Educ. 2024, 101, 5027–5039. [Google Scholar] [CrossRef]
- Sequeira, C.A.; Borges, E.M. Enhancing Statistical Education in Chemistry and STEAM Using JAMOVI. Part 2. Comparing Dependent Groups and Principal Component Analysis (PCA). J. Chem. Educ. 2024, 101, 5040–5049. [Google Scholar] [CrossRef]
- Tanaka, M.; Takamura, T.; Watanabe, H.; Endo, M.; Yanagi, T.; Okamoto, K. In Vitro Growth of Cymbidium Plantlets Cultured under Superbright Red and Blue Light-Emitting Diodes (LEDs). J. Hortic. Sci. Biotechnol. 1998, 73, 39–44. [Google Scholar] [CrossRef]
- Hiyama, A.; Takemiya, A.; Munemasa, S.; Okuma, E.; Sugiyama, N.; Tada, Y.; Murata, Y.; Shimazaki, K. Blue Light and CO2 Signals Converge to Regulate Light-Induced Stomatal Opening. Nat. Commun. 2017, 8, 1284. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.S.; Murthy, H.N.; Heo, J.W.; Hahn, E.J.; Paek, K.Y. The Effect of Light Quality on the Growth and Development of in Vitro Cultured Doritaenopsis Plants. Acta Physiol. Plant. 2008, 30, 339–343. [Google Scholar] [CrossRef]
- Li, H.; Tang, C.; Xu, Z. The Effects of Different Light Qualities on Rapeseed (Brassica napus L.) Plantlet Growth and Morphogenesis in Vitro. Sci. Hortic. 2013, 150, 117–124. [Google Scholar] [CrossRef]
- Murashige, T. Plant Propagation Through Tissue Cultures. Annu. Rev. Plant Physiol. 1974, 25, 135–166. [Google Scholar] [CrossRef]
- Liu, M.; Xu, Z.; Guo, S.; Tang, C.; Liu, X.; Jao, X. Evaluation of Leaf Morphology, Structure and Biochemical Substance of Balloon Flower (Platycodon grandiflorum (Jacq.) A. DC.) Plantlets in Vitro under Different Light Spectra. Sci. Hortic. 2014, 174, 112–118. [Google Scholar] [CrossRef]
- SÆBØ, A.; Krekling, T.; Appelgren, M. Light Quality Affects Photosynthesis and Leaf Anatomy of Birch Plantlets in Vitro. Plant Cell Tissue Organ Cult. 1995, 41, 177–185. [Google Scholar] [CrossRef]
- Kim, S.-J.; Hahn, E.-J.; Heo, J.-W.; Paek, K.-Y. Effects of LEDs on Net Photosynthetic Rate, Growth and Leaf Stomata of Chrysanthemum Plantlets in Vitro. Sci. Hortic. 2004, 101, 143–151. [Google Scholar] [CrossRef]
- Chée, R. In Vitro Culture of Vitis: The Effects of Light Spectrum, Manganese Sulfate and Potassium Iodide on Morphogenesis. Plant Cell Tissue Organ Cult. 1986, 7, 121–134. [Google Scholar] [CrossRef]
- Jao, R.-C.; Lai, C.-C.; Fang, W.; Chang, S.-F. Effects of Red Light on the Growth of Zantedeschia Plantlets in Vitro and Tuber Formation Using Light-Emitting Diodes. HortScience 2005, 40, 436–438. [Google Scholar] [CrossRef]
- Tania, S.S.; Rhaman, M.S.; Rauf, F.; Rahaman, M.M.; Kabir, M.H.; Hoque, M.A.; Murata, Y. Alleviation of Salt-Inhibited Germination and Seedling Growth of Kidney Bean by Seed Priming and Exogenous Application of Salicylic Acid (SA) and Hydrogen Peroxide (H2O2). Seeds 2022, 1, 87–98. [Google Scholar] [CrossRef]
- Hernández-Herrera, R.M.; González-González, M.F.; Velasco-Ramírez, A.P.; Velasco-Ramírez, S.F.; Santacruz-Ruvalcaba, F.; Zamora-Natera, J.F. Seaweed Extract Components Are Correlated with the Seeds Germination and Growth of Tomato Seedlings. Seeds 2023, 2, 436–448. [Google Scholar] [CrossRef]
- Sidou, L.F.; Borges, E.M. Teaching Principal Component Analysis Using a Free and Open Source Software Program and Exercises Applying PCA to Real-World Examples. J. Chem. Educ. 2020, 97, 1666–1676. [Google Scholar] [CrossRef]
- Borges, E.M. How to Select Equivalent and Complimentary Reversed Phase Liquid Chromatography Columns from Column Characterization Databases. Anal. Chim. Acta 2014, 807, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Borges, E.M.; Volmer, D.A.; Gallimberti, M.; Ferreira De Souza, D.; Luiz De Souza, E.; Barbosa, F. Evaluation of Macro- and Microelement Levels for Verifying the Authenticity of Organic Eggs by Using Chemometric Techniques. Anal. Methods 2015, 7, 2577–2584. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.; Zuverza-Mena, N.; Dimkpa, C.O.; White, J.C. Copper-Based Materials as an Effective Strategy for Improving Drought Resistance in Soybean (Glycine max) at the Reproductive Stage. ACS Agric. Sci. Technol. 2024, 4, 735–746. [Google Scholar] [CrossRef]
- Datta Majumdar, T.; Ghosh, C.K.; Mukherjee, A. Dual Role of Copper Nanoparticles in Bacterial Leaf Blight-Infected Rice: A Therapeutic and Metabolic Approach. ACS Agric. Sci. Technol. 2021, 1, 160–172. [Google Scholar] [CrossRef]
- Neo, D.C.J.; Ong, M.M.X.; Lee, Y.Y.; Teo, E.J.; Ong, Q.; Tanoto, H.; Xu, J.; Ong, K.S.; Suresh, V. Shaping and Tuning Lighting Conditions in Controlled Environment Agriculture: A Review. ACS Agric. Sci. Technol. 2022, 2, 3–16. [Google Scholar] [CrossRef]
- Perea-Brenes, A.; Garcia, J.L.; Cantos, M.; Cotrino, J.; Gonzalez-Elipe, A.R.; Gomez-Ramirez, A.; Lopez-Santos, C. Germination and First Stages of Growth in Drought, Salinity, and Cold Stress Conditions of Plasma-Treated Barley Seeds. ACS Agric. Sci. Technol. 2023, 3, 760–770. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, X.; Zhao, Y.; Li, L.; Wei, J.; Yang, Z.; Chen, X.; Zheng, H.; Zhou, Z.; Tang, W.; et al. Response of Chlorosis and Growth to Light Intensity in Rice Seedlings. ACS Agric. Sci. Technol. 2024, 4, 234–243. [Google Scholar] [CrossRef]
- Garg, V.K.; Gupta, R.; Kumar, R.; Gupta, R.K. Adsorption of Chromium from Aqueous Solution on Treated Sawdust. Bioresour. Technol. 2004, 92, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, I.C.A.; Pacheco, F.V.; Silva, S.T.; Bertolucci, S.K.V.; Pinto, J.E.B.P. In Vitro Culture of Achillea millefolium L.: Quality and Intensity of Light on Growth and Production of Volatiles. Plant Cell Tissue Organ Cult. (PCTOC) 2015, 122, 299–308. [Google Scholar] [CrossRef]
Mean | Std. Deviation | IQR | ||
---|---|---|---|---|
Dry mass of aerial part (mg) | Blue | 27.400 | 7.287 | 12.750 |
Dry mass of aerial part (mg) | Red | 19.583 | 6.494 | 6.000 |
Dry mass of aerial part (mg) | Red + Blue | 23.563 | 7.668 | 4.500 |
Dry mass of aerial part (mg) | Fluorescent | 13.150 | 5.060 | 7.250 |
Height (cm) | Blue | 1.540 | 0.224 | 0.300 |
Height (cm) | Red | 1.656 | 0.624 | 0.475 |
Height (cm) | Red + Blue | 1.459 | 0.215 | 0.313 |
Height (cm) | Fluorescent | 1.632 | 0.264 | 0.287 |
Number of Leaves | Blue | 12.500 | 3.663 | 3.500 |
Number of Leaves | Red | 11.208 | 1.933 | 2.000 |
Number of Leaves | Red + Blue | 12.375 | 3.594 | 2.500 |
Number of Leaves | Fluorescent | 10.550 | 2.395 | 3.250 |
Number of Roots | Blue | 7.450 | 3.268 | 5.000 |
Number of Roots | Red | 6.250 | 3.193 | 4.250 |
Number of Roots | Red + Blue | 5.188 | 3.209 | 5.000 |
Number of Roots | Fluorescent | 7.500 | 3.269 | 4.250 |
Fresh mass of aerial part (mg) | Blue | 118.250 | 34.865 | 47.500 |
Fresh mass of aerial part (mg) | Red | 85.833 | 27.998 | 27.500 |
Fresh mass of aerial part (mg) | Red + Blue | 101.813 | 34.083 | 40.500 |
Fresh mass of aerial part (mg) | Fluorescent | 63.850 | 27.017 | 40.250 |
Roots dry mass (mg) | Blue | 141.800 | 55.981 | 71.000 |
Roots dry mass (mg) | Red | 98.500 | 31.903 | 52.000 |
Roots dry mass (mg) | Red + Blue | 129.000 | 61.449 | 58.500 |
Roots dry mass (mg) | Fluorescent | 103.500 | 36.182 | 74.000 |
Roots fresh mass (mg) | Blue | 15.200 | 5.281 | 6.000 |
Roots fresh mass (mg) | Red | 14.944 | 5.620 | 6.250 |
Roots fresh mass (mg) | Red + Blue | 15.091 | 3.885 | 5.000 |
Roots fresh mass (mg) | Fluorescent | 16.600 | 5.604 | 10.000 |
Treatment | Treatment | Mean Difference | SE | t | ptukey |
---|---|---|---|---|---|
Blue | Red | 7.817 | 2.009 | 3.890 | 0.001 |
(Red + Blue) | 3.838 | 2.226 | 1.724 | 0.319 | |
Fluorescent | 14.250 | 2.099 | 6.790 | <0.001 | |
Red | (Red + Blue) | −3.979 | 2.142 | −1.858 | 0.255 |
Fluorescent | 6.433 | 2.009 | 3.202 | 0.011 | |
(Red + Blue) | Fluorescent | 10.413 | 2.226 | 4.678 | <0.001 |
Mean Difference | SE | ptukey | |||
---|---|---|---|---|---|
Blue | Red | 7.817 | 2.009 | 3.890 | 0.001 |
(Red + Blue) | 3.838 | 2.226 | 1.724 | 0.319 | |
Fluorescent | 14.250 | 2.099 | 6.790 | <0.001 | |
Red | (Red + Blue) | −3.979 | 2.142 | −1.858 | 0.255 |
Fluorescent | 6.433 | 2.009 | 3.202 | 0.011 | |
(Red + Blue) | Fluorescent | 10.413 | 2.226 | 4.678 | <0.001 |
Treatment | Treatment | p-Values |
---|---|---|
Blue | Fluorescent | 0.120 |
Blue | Red | 0.055 |
Blue | Red + Blue | 0.094 |
Blue | Red + Blue | 1.000 |
Fluorescent | Red | 0.915 |
Fluorescent | Red + Blue | 0.725 |
Fluorescent | Red + Blue | 0.091 |
Red | Red + Blue | 0.681 |
Red | Red + Blue | 0.026 |
Red + Blue | Red + Blue | 0.290 |
Treatments | Chlorophyll a (mg g−1) | Chlorophyll b (mg g−1) | Total Chlorophyll (a + b) (mg g−1) | Carotenoids (mg g−1) |
---|---|---|---|---|
Blue LED | 2.37 b | 0.54 b | 2.9 b | 0.74 b |
RED LED | 2.49 b | 0.63 b | 3.12 b | 0.78 b |
Red+ Blue LED vermelho + azul | 2.59 b | 0.62 b | 3.21 b | 0.79 b |
Control | 3.17 a | 0.83 a | 3.99 a | 0.94 a |
RSD (%) | 7.7 | 8.1 | 7.7 | 6.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomazini Scolaro, A.M.; De Martin, M.S.; Vieira, R.L.; Schveitzer, B.; de Souza, E.L.; Borges, E.M. Use of Light-Emitting Diodes on the In Vitro Rooting of Apple Tree Rootstocks. Int. J. Plant Biol. 2025, 16, 12. https://doi.org/10.3390/ijpb16010012
Tomazini Scolaro AM, De Martin MS, Vieira RL, Schveitzer B, de Souza EL, Borges EM. Use of Light-Emitting Diodes on the In Vitro Rooting of Apple Tree Rootstocks. International Journal of Plant Biology. 2025; 16(1):12. https://doi.org/10.3390/ijpb16010012
Chicago/Turabian StyleTomazini Scolaro, Adriana Maria, Mariuccia Schlichting De Martin, Renato Luis Vieira, Bianca Schveitzer, Edson Luiz de Souza, and Endler Marcel Borges. 2025. "Use of Light-Emitting Diodes on the In Vitro Rooting of Apple Tree Rootstocks" International Journal of Plant Biology 16, no. 1: 12. https://doi.org/10.3390/ijpb16010012
APA StyleTomazini Scolaro, A. M., De Martin, M. S., Vieira, R. L., Schveitzer, B., de Souza, E. L., & Borges, E. M. (2025). Use of Light-Emitting Diodes on the In Vitro Rooting of Apple Tree Rootstocks. International Journal of Plant Biology, 16(1), 12. https://doi.org/10.3390/ijpb16010012