Bone Marrow Transplantation in Nonmalignant Haematological Diseases: What Have We Learned about Thalassemia?
Abstract
:1. Introduction
2. General Results
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lucarelli, G.; Polchi, P.; Galimberti, M.; Izzi, T.; Delfini, C.; Manna, M.; Agostinelli, F.; Baronciani, D.; Giorgi, C.; Angelucci, E.; et al. Marrow transplantation for thalassaemia following busulphan and cyclophosphamide. Lancet 1985, 1, 1355–1357. [Google Scholar] [CrossRef]
- Lucarelli, G.; Galimberti, M.; Polchi, P.; Giardini, C.; Politi, P.; Baronciani, D.; Angelucci, E.; Manenti, F.; Delfini, C.; Aureli, G.; et al. Marrow transplantation in patients with advanced thalassemia. N. Engl. J. Med. 1987, 316, 1050–1055. [Google Scholar] [CrossRef] [PubMed]
- Baronciani, D.; Angelucci, E.; Potschger, U.; Gaziev, J.; Yesilipek, A.; Zecca, M.; Orofino, M.G.; Giardini, C.; Al-Ahmari, A.; Marktel, S.; et al. Hemopoietic stem cell transplantation in thalassemia: A report from the European Society for Blood and Bone Marrow Transplantation Hemoglobinopathy Registry, 2000–2010. Bone Marrow Transplant. 2016, 51, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Jagannath, V.A.; Puri, L. Hematopoietic stem cell transplantation for people with β-thalassaemia. Cochrane Database Syst. Rev. 2021, 4, CD008708. [Google Scholar] [PubMed]
- Li, C.; Mathews, V.; Kim, S.; George, B.; Hebert, K.; Jiang, H.; Li, C.; Zhu, Y.; Keesler, D.A.; Boelens, J.J.; et al. Related and unrelated donor transplantation for β-thalassemia major: Results of an international survey. Blood Adv. 2019, 3, 2562–2570. [Google Scholar] [CrossRef] [PubMed]
- Eapen, M.; Wang, T.; Veys, P.A.; Boelens, J.J.; St Martin, A.; Spellman, S.; Bonfim, C.S.; Brady, C.; Cant, A.J.; Dalle, J.H.; et al. Allele-level HLA matching for umbilical cord blood transplantation for non-malignant diseases in children: A retrospective analysis. Lancet Haematol. 2017, 4, e325–e333. [Google Scholar] [CrossRef]
- Sabloff, M.; Chandy, M.; Wang, Z.; Logan, B.R.; Ghavamzadeh, A.; Li, C.K.; Irfan, S.M.; Bredeson, C.N.; Cowan, M.J.; Gale, R.P.; et al. HLA-matched sibling bone marrow transplantation for β-thalassemia major. Blood 2011, 117, 1745–1750. [Google Scholar] [CrossRef] [PubMed]
- Galambrun, C.; Pondarré, C.; Bertrand, Y.; Loundou, A.; Bordigoni, P.; Frange, P.; Lutz, P.; Mialou, V.; Rubie, H.; Socié, G.; et al. French multicenter 22-year experience in stem cell transplantation for beta-thalassemia major: Lessons and future directions. Biol. Blood Marrow Transplant. 2013, 19, 62–68. [Google Scholar] [CrossRef]
- Santos, G.W.; Tutschka, P.J.; Brookmeyer, R.; Saral, R.; Beschorner, W.E.; Bias, W.B.; Braine, H.G.; Burns, W.H.; Elfenbein, G.J.; Kaizer, H.; et al. Marrow transplantation for acute nonlymphocytic leukemia after treatment with busulfan and cyclophosphamide. N. Engl. J. Med. 1983, 309, 1347–1353. [Google Scholar] [CrossRef] [PubMed]
- Rosales, F.; Peylan-Ramu, N.; Cividalli, G.; Varadi, G.; Or, R.; Naparstek, E.; Slavin, S.; Nagler, A. The role of thiotepa in allogeneic bone marrow transplantation for genetic diseases. Bone Marrow Transplant. 1999, 23, 861–865. [Google Scholar] [CrossRef]
- Sauer, M.; Bettoni, C.; Lauten, M.; Ghosh, A.; Rehe, K.; Grigull, L.; Beilken, A.; Welte, K.; Sykora, K.W. Complete substitution of cyclophosphamide by fludarabine and ATG in a busulfan-based preparative regimen for children and adolescents with beta-thalassemia. Bone Marrow Transplant. 2005, 36, 383–387. [Google Scholar] [CrossRef]
- Sodani, P.; Gaziev, D.; Polchi, P.; Erer, B.; Giardini, C.; Angelucci, E.; Baronciani, D.; Andreani, M.; Manna, M.; Nesci, S.; et al. New approach for bone marrow transplantation in patients with class 3 thalassemia aged younger than 17 years. Blood 2004, 104, 1201–1203. [Google Scholar] [CrossRef]
- Gaziev, J.; Isgrò, A.; Sodani, P.; Marziali, M.; Paciaroni, K.; Gallucci, C.; De Angelis, G.; Andreani, M.; Testi, M.; Alfieri, C.; et al. Optimal Outcomes in Young Class 3 Patients with Thalassemia Undergoing HLA-Identical Sibling Bone Marrow Transplantation. Transplantation 2016, 100, 925–932. [Google Scholar] [CrossRef]
- Bacigalupo, A.; Ballen, K.; Rizzo, D.; Giralt, S.; Lazarus, H.; Ho, V.; Apperley, J.; Slavin, S.; Pasquini, M.; Sandmaier, B.M.; et al. Defining the intensity of conditioning regimens: Working definitions. Biol. Blood Marrow Transplant. 2009, 15, 1628–1633. [Google Scholar] [CrossRef] [PubMed]
- Ciurea, S.O.; Andersson, B.S. Busulfan in hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2009, 15, 523–536. [Google Scholar] [CrossRef]
- van der Stoep, M.Y.E.C.; Oostenbrink, L.V.E.; Bredius, R.G.M.; Moes, D.J.A.R.; Guchelaar, H.J.; Zwaveling, J.; Lankester, A.C. Therapeutic Drug Monitoring of Conditioning Agents in Pediatric Allogeneic Stem Cell Transplantation; Where do We Stand? Front. Pharmacol. 2022, 13, 826004. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, M.E.; Piras, E.; Vacca, A.; Giorgiani, G.; Zecca, M.; Bertaina, A.; Pagliara, D.; Contoli, B.; Pinto, R.M.; Caocci, G.; et al. Allogeneic hematopoietic stem cell transplantation in thalassemia major: Results of a reduced-toxicity conditioning regimen based on the use of treosulfan. Blood 2012, 120, 473–476. [Google Scholar] [CrossRef]
- Mathews, V.; George, B.; Viswabandya, A.; Abraham, A.; Ahmed, R.; Ganapule, A.; Sindhuvi, E.; Lakshmi, K.M.; Srivastava, A. Improved clinical outcomes of high risk β thalassemia major patients undergoing a HLA matched related allogeneic stem cell transplant with a treosulfan based conditioning regimen and peripheral blood stem cell grafts. PLoS ONE 2013, 8, e61637. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, D.; Sharma, S.K.; Gupta, N.; Kharya, G.; Pavecha, P.; Handoo, A.; Setia, R.; Katewa, S. Treosulfan-thiotepa-fludarabine-based conditioning regimen for allogeneic transplantation in patients with thalassemia major: A single-center experience from north India. Biol. Blood Marrow Transplant. 2013, 19, 492–495. [Google Scholar] [CrossRef]
- Lüftinger, R.; Zubarovskaya, N.; Galimard, J.E.; Cseh, A.; Salzer, E.; Locatelli, F.; Algeri, M.; Yesilipek, A.; de la Fuente, J.; Isgrò, A.; et al. EBMT Pediatric Diseases, Inborn Errors Working PartiesBusulfan-fludarabine- or treosulfan-fludarabine-based myeloablative conditioning for children with thalassemia major. Ann. Hematol. 2022, 101, 655–665. [Google Scholar] [CrossRef]
- Mohanan, E.; Panetta, J.C.; Lakshmi, K.M.; Edison, E.S.; Korula, A.; Na, F.; Abraham, A.; Viswabandya, A.; George, B.; Mathews, V.; et al. Pharmacokinetics and Pharmacodynamics of Treosulfan in Patients with Thalassemia Major Undergoing Allogeneic Hematopoietic Stem Cell Transplantation. Clin. Pharmacol. Ther. 2018, 104, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, R.; Standing, J.F.; Winter, R.; Nademi, Z.; Chu, J.; Pinner, D.; Kloprogge, F.; McLellen, S.; Amrolia, P.J.; Rao, K.; et al. Proposed Therapeutic Range of Treosulfan in Reduced Toxicity Pediatric Allogeneic Hematopoietic Stem Cell Transplant Conditioning: Results from a Prospective Trial. Clin. Pharmacol. Ther. 2020, 108, 264–273. [Google Scholar] [CrossRef]
- Li, C.; Wu, X.; Feng, X.; He, Y.; Liu, H.; Pei, F.; Liao, J.; He, L.; Shi, L.; Li, N.; et al. A novel conditioning regimen improves outcomes in β-thalassemia major patients using unrelated donor peripheral blood stem cell transplantation. Blood 2012, 120, 3875–3881. [Google Scholar] [CrossRef] [PubMed]
- Andreani, M.; Manna, M.; Lucarelli, G.; Tonucci, P.; Agostinelli, F.; Ripalti, M.; Rapa, S.; Talevi, N.; Galimberti, M.; Nesci, S. Persistence of mixed chimerism in patients transplanted for the treatment of thalassemia. Blood 1996, 87, 3494–3499. [Google Scholar] [CrossRef]
- Fouzia, N.A.; Edison, E.S.; Lakshmi, K.M.; Korula, A.; Velayudhan, S.R.; Balasubramanian, P.; Abraham, A.; Viswabandya, A.; George, B.; Mathews, V.; et al. Long-term outcome of mixed chimerism after stem cell transplantation for thalassemia major conditioned with busulfan and cyclophosphamide. Bone Marrow Transplant. 2018, 53, 169–174. [Google Scholar] [CrossRef]
- Shenoy, S.; Walters, M.C.; Ngwube, A.; Soni, S.; Jacobsohn, D.; Chaudhury, S.; Grimley, M.; Chan, K.; Haight, A.; Kasow, K.A.; et al. Unrelated Donor Transplantation in Children with Thalassemia using Reduced-Intensity Conditioning: The URTH Trial. Biol. Blood Marrow Transplant. 2018, 24, 1216–1222. [Google Scholar] [CrossRef] [PubMed]
- King, A.A.; Kamani, N.; Bunin, N.; Sahdev, I.; Brochstein, J.; Hayashi, R.J.; Grimley, M.; Abraham, A.; Dioguardi, J.; Chan, K.W.; et al. Successful matched sibling donor marrow transplantation following reduced intensity conditioning in children with hemoglobinopathies. Am. J. Hematol. 2015, 90, 1093–1098. [Google Scholar] [CrossRef]
- Andreani, M.; Nesci, S.; Lucarelli, G.; Tonucci, P.; Rapa, S.; Angelucci, E.; Persini, B.; Agostinelli, F.; Donati, M.; Manna, M. Long-term survival of ex-thalassemic patients with persistent mixed chimerism after bone marrow transplantation. Bone Marrow Transplant. 2000, 25, 401–404. [Google Scholar] [CrossRef]
- Gaziev, J.; Isgrò, A.; Sodani, P.; Paciaroni, K.; De Angelis, G.; Marziali, M.; Ribersani, M.; Alfieri, C.; Lanti, A.; Galluccio, T.; et al. Haploidentical HSCT for hemoglobinopathies: Improved outcomes with TCRαβ+/CD19+-depleted grafts. Blood Adv. 2018, 2, 263–270. [Google Scholar] [CrossRef]
- Merli, P.; Pagliara, D.; Galaverna, F.; Li Pira, G.; Andreani, M.; Leone, G.; Amodio, D.; Pinto, R.M.; Bertaina, A.; Bertaina, V.; et al. TCRαβ/CD19 depleted HSCT from an HLA-haploidentical relative to treat children with different nonmalignant disorders. Blood Adv. 2022, 6, 281–292. [Google Scholar] [CrossRef]
- Bolaños-Meade, J.; Fuchs, E.J.; Luznik, L.; Lanzkron, S.M.; Gamper, C.J.; Jones, R.J.; Brodsky, R.A. HLA-haploidentical bone marrow transplantation with posttransplant cyclophosphamide expands the donor pool for patients with sickle cell disease. Effect of increased dose of total body irradiation on graft failure associated with HLA-haploidentical transplantation in patients with severe haemoglobinopathies: A prospective clinical trial. Blood 2012, 120, 4285–4291. [Google Scholar]
- Bolaños-Meade, J.; Cooke, K.R.; Gamper, C.J.; Ali, S.A.; Ambinder, R.F.; Borrello, I.M.; Fuchs, E.J.; Gladstone, D.E.; Gocke, C.B.; Huff, C.A.; et al. Effect of increased dose of total body irradiation on graft failure associated with HLA-haploidentical transplantation in patients with severe haemoglobinopathies: A prospective clinical trial. Lancet Haematol. 2019, 6, e183–e193. [Google Scholar] [CrossRef] [PubMed]
- Anurathapan, U.; Hongeng, S.; Pakakasama, S.; Songdej, D.; Sirachainan, N.; Pongphitcha, P.; Chuansumrit, A.; Charoenkwan, P.; Jetsrisuparb, A.; Sanpakit, K.; et al. Andersson BSHematopoietic Stem Cell Transplantation for Severe Thalassemia Patients from Haploidentical Donors Using a Novel Conditioning Regimen. Biol. Blood Marrow Transplant. 2020, 26, 1106–1112. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Gong, S.; Chen, K.; Yang, R.; Wang, L.; Yang, K.; Nie, L.; Zou, L.; Su, T.; Chen, C.; et al. Haploidentical transplant for paediatric patients with severe thalassaemia using post-transplant cyclophosphamide and methotrexate: A prospectively registered multicentre trial from the Bone Marrow Failure Working Group of Hunan Province, China. Br. J. Haematol. 2023, 200, 329–337. [Google Scholar] [CrossRef]
- Vitrano, A.; Musallam, K.M.; Meloni, A.; Karimi, M.; Daar, S.; Ricchi, P.; Costantini, S.; Vlachaki, E.; Di Marco, V.; El-Beshlawy, A.; et al. Development of a Thalassemia International Prognostic Scoring System (TIPSS). Blood Cells Mol. Dis. 2022, 99, 102710. [Google Scholar] [CrossRef] [PubMed]
Cases | Hepatomegaly > 2 cm | Liver Fibrosis | Chelation History |
---|---|---|---|
Class 1 | No | No | Regular |
Class 2 | No/Yes | No/Yes | Regular/irregular |
Class 3 | Yes | Yes | Irregular |
Author | N | Median Age (y) | Pesaro Class III | Donor | CTX | T-Cell Depletion | BM | PBSCs | CB | OS | EFS | aGVHD II-IV | cGVHD | GF | TRM |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7 Sabloff 2010 | 179 | 7 (<5–20) | 36% | MRD 100% | BUCY | ATG 43% | 100% | / | / | 91% | 88% | 38% | 13% | 10% | 19% |
17 Bernardo 2012 | 60 | 7 (1–37) | 7% | MRD 33% MUD 67% | TreoTTFLU | ATG MUD | 79% | 3% | 18% | 93% | 84% TFS | 21% | 2% | 9% | 7% |
24 Li 2012 | 82 | 6 (0.6–15) | § | MRD 36% MUD 64% | BUCYFLUTT 100% | ATG MUD | 87% / | 13% 100% | 40% / | 90% 92% | 83% TFS 90% | 3.6% 9.6% | / / | 3.5% | 8.5% |
18 Mathews 2013 | 50 | 11 (2–21) | 100% | MRD 97% | TreoTTFLU | / | 26% | 74% | / | 87% | 78% | 35% | 11% | 8% | 12% |
18 Mathews 2013 | 24 | 12 (3–21) | 100% IIIHR | MRD 97% | TreoTTFLU | / | 29% | 71% | 86% | 77% | 35% | 11% | 8% | 13% | |
8 Galambrun 2013 | 108 | 6.2 (0.7–32) | 45% | MRD 89% UD 6% | BUCY 88% BUTTFLU 7% | ATG 53% | 89% | 3% | 9% | 86% | 69% TFS | 22% | 6% | 23% | / |
30 Anurathapan 2014 | 98 | 10–20 | 22% | MRD 65% MUD 33% | BUCY MRD BUCY MUD BUFLU * | / ATG MUD ATG all pts | 65% | 33% | / | 94% | MUD 82% MRD 88% | 23% | 9% | 8% 0% * | 7% |
24 Shenoy 2018 | 33 | 1–17 | / | MUD 51% CB 49% | TTFLUMel | CAMPATH | 51% | / | 49% | BM 82% CB 75% | BM 82% CB 81% | BM 24% CB 44% | BM 29% CB 21% | 3% | 18% |
5 Li 2019 | 1110 | 6 (<1–25) | 54% | MRD 61% MUD 23% | BUCY 22% BUCYFLU 23% BUCYFLUTT 34% TreoTTFLU 15% Others 5% | ATG 75% | 29% | 61% | 10% | 90% <6y 84% 7–15y 63% 16–25y | 86% <6y 80% 7–15y 63% 16–25y | / | / | 9% | / |
22 Chiesa 2019 | 87 | 1.7 | / | MRD 14% MUD 61% mMUD18% Other family D 7% | TreoTTFLU | CAMPATH 87% ATG 1% | 26% | 62% | 12% | * 97% vs. 65% | / | 31% | 2% | 1% | 99% vs. 3% |
20 Luftinger 2022 | 772 | 7 (0.5–17.9) | / | MRD 50% MUD 18% mMUD 8% Other family D 22% | BUFLU-based 410 TREOFLU-based 362 | 77% | 80% | 19% | / | BU-based 92% TREO-based 94% | / | 15% | 13% | 4% vs. 9% | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castagna, L.; Tringali, S.; Sapienza, G.; Bono, R.; Di Maggio, R.; Maggio, A. Bone Marrow Transplantation in Nonmalignant Haematological Diseases: What Have We Learned about Thalassemia? Thalass. Rep. 2023, 13, 122-130. https://doi.org/10.3390/thalassrep13020011
Castagna L, Tringali S, Sapienza G, Bono R, Di Maggio R, Maggio A. Bone Marrow Transplantation in Nonmalignant Haematological Diseases: What Have We Learned about Thalassemia? Thalassemia Reports. 2023; 13(2):122-130. https://doi.org/10.3390/thalassrep13020011
Chicago/Turabian StyleCastagna, Luca, Stefania Tringali, Giuseppe Sapienza, Roberto Bono, Rosario Di Maggio, and Aurelio Maggio. 2023. "Bone Marrow Transplantation in Nonmalignant Haematological Diseases: What Have We Learned about Thalassemia?" Thalassemia Reports 13, no. 2: 122-130. https://doi.org/10.3390/thalassrep13020011
APA StyleCastagna, L., Tringali, S., Sapienza, G., Bono, R., Di Maggio, R., & Maggio, A. (2023). Bone Marrow Transplantation in Nonmalignant Haematological Diseases: What Have We Learned about Thalassemia? Thalassemia Reports, 13(2), 122-130. https://doi.org/10.3390/thalassrep13020011