Thalassemia: Pathophysiology, Diagnosis, and Advances in Treatment
Abstract
:1. Introduction
2. Epidemiology of Thalassemia
3. Hemoglobin Structural Biochemistry
4. Genetic Aspects and Inheritance Patterns
5. Pathophysiology
6. Genetic Basis of Thalassemia
6.1. Alpha-Thalassemia
6.2. Beta-Thalassemia
6.3. Mechanism of Abnormal Hemoglobin Production
Aspect | Description | References |
---|---|---|
Hemoglobin Structure | Heterotetramer of two α- and two non-α-globin chains, each carrying a heme molecule with iron. Maximal oxygen-carrying capacity. | [13,57] |
Types of Hemoglobin | HbA: α and β chains (adult hemoglobin). HbA2: α and δ chains (minor adult hemoglobin). HbF: α and γ chains (fetal hemoglobin). | [58,59] |
Genetic Regulation | α-Globin cluster on chromosome 16 (HBA1 and HBA2), β-globin cluster on chromosome 11 (γ-, δ-, β-globin genes). | [43,60] |
Normal Physiology | Balanced production of α- and non-α-globin chains ensures proper hemoglobin formation. | [61] |
Thalassemia Pathophysiology | Disrupted equilibrium in globin chain production causes excess unpaired chains—α-thalassemia: excess β chains, β-thalassemia: excess α chains. Excess unpaired chains lead to ineffective erythropoiesis, apoptosis of red cell precursors, and anemia. | [62] |
Consequences of Chain Imbalance | β-Thalassemia: Excess α chains cause oxidative damage, apoptosis of red cell precursors, hemolysis, and spleen enlargement. α-Thalassemia: Excess non-α chains form Hb Bart’s (γ4) in utero and HbH (β4) after birth, both poor oxygen carriers. | [13,63,64] |
Erythropoiesis and Anemia Response | Kidneys increase erythropoietin (EPO) secretion, exacerbating ineffective erythropoiesis and leading to bone marrow expansion and bone fragility. Suppressed hepcidin production increases iron absorption, contributing to iron overload. | [65,66] |
Mutation Types | β0 mutations: No β-globin production, β+. β+ [67]+ mutations: Reduced β-globin production. Over 200 known β gene mutations, over 100 α-thalassemia varieties. | [13] |
Iron Overload and Treatment | Excess iron leads to non-transferrin-bound iron (NTBI), generating reactive oxygen species and damaging organs. Daily iron chelation therapy is required to prevent lethal complications. Non-transfusion-dependent β-thalassemia (NTDT) forms have slower iron overload development, with complications appearing in the second and third decades of life. | [67,68] |
6.4. Transcription Factors and Thalassemia
6.5. Clinical Manifestations
7. Symptoms and Signs
7.1. Thalassemia Minor
7.2. Intermedia
7.3. Thalassemia Major
7.4. Other Manifestations
8. Screening and Diagnostic Criteria
8.1. Laboratory Tests
8.2. Hemoglobin Electrophoresis
8.3. High-Performance Liquid Chromatography (HPLC)
8.4. Genetic Testing
9. Treatment and Management
9.1. Blood Transfusion Therapy
9.2. Use of Luspatercept in Thalassemic Patients in TDT and NTDT
9.3. Pharmacological Treatments
9.4. Bone Marrow and Stem Cell Transplantation
9.5. Gene Therapy
10. Targeting Signaling Pathways
11. Supportive Care
12. Advances in Research and Future Directions
13. Impact of Thalassemia on Quality of Life and Health Economics of Patient
14. Limitations/Restrictions of the Research
15. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Benz, E.J. Introduction to the Thalassemia Syndromes: Molecular Medicine’s Index Case. Hematol. Clin. 2023, 37, 245–259. [Google Scholar]
- Shang, X.; Xu, X. Update in the genetics of thalassemia: What clinicians need to know. Best Pract. Res. Clin. Obstet. Gynaecol. 2017, 39, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Yutarti, C.S.; Susilowati, I.T. Hubungan Kadar Feritin Serum dengan Tes Fungsi Hati pada Pasien Thalasemia Mayor. J. Kesehat. 2023, 14, 42–48. [Google Scholar] [CrossRef]
- Iheanacho, C.; Okeke, C. Newborn Screening and Thalassaemia Syndrome. J. Kesehat. 2023, 14, 42–48. [Google Scholar]
- Hokland, P.; Daar, S.; Khair, W.; Sheth, S.; Taher, A.T.; Torti, L.; Hantaweepant, C.; Rund, D. Thalassaemia—A global view. Br. J. Haematol. 2023, 201, 199–214. [Google Scholar] [CrossRef]
- Kattamis, A.; Forni, G.L.; Aydinok, Y.; Viprakasit, V. Changing patterns in the epidemiology of thalassemia. Eur. J. Haematol. 2020, 105, 692–703. [Google Scholar] [CrossRef]
- Hossain, M.S.; Raheem, E.; Sultana, T.A.; Ferdous, S.; Nahar, N.; Islam, S.; Arifuzzaman, M.; Razzaque, M.A.; Alam, R.; Aziz, S. Thalassemias in South Asia: Clinical lessons learnt from Bangladesh. Orphanet J. Rare Dis. 2017, 12, 93. [Google Scholar] [CrossRef]
- Musallam, K.M.; Lombard, L.; Kistler, K.D.; Arregui, M.; Gilroy, K.S.; Chamberlain, C.; Zagadailov, E.; Ruiz, K.; Taher, A.T. Epidemiology of clinically significant forms of alpha and beta thalassemia: A global map of evidence and gaps. Am. J. Hematol. 2023, 98, 1436–1451. [Google Scholar] [CrossRef]
- Soteriades, S.; Angastiniotis, M.; Farmakis, D.; Eleftheriou, A.; Maggio, A. The need for translational epidemiology in Beta thalassemia syndromes: A thalassemia international federation perspective. Hematol. Oncol. Clin. N. Am. 2023, 37, 261–272. [Google Scholar] [CrossRef]
- Tuo, Y.; Li, Y.; Li, Y.; Ma, J.; Yang, X.; Wu, S.; Jin, J.; He, Z. Global, regional, and national burden of thalassemia, 1990–2021: A systematic analysis for the global burden of disease study 2021. Eclinicalmedicine 2024, 72, 102619. [Google Scholar] [CrossRef]
- Lee, J.-S.; Rhee, T.-M.; Jeon, K.; Cho, Y.; Lee, S.-W.; Han, K.-D.; Seong, M.-W.; Park, S.-S.; Lee, Y.K. Epidemiologic trends of thalassemia, 2006–2018: A nationwide population-based study. J. Clin. Med. 2022, 11, 2289. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Huang, Z.; Jiang, X.; Li, Q.; Cao, Y.; Guo, Y. The prevalence and genetic disorders spectrum of thalassemia among breast cancer patients in Jiangxi province, China. Front. Genet. 2022, 13, 1001369. [Google Scholar] [CrossRef] [PubMed]
- Angastiniotis, M.; Lobitz, S. Thalassemias: An Overview. Int. J. Neonatal Screen. 2019, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Bellis, G.; Parant, A. Beta-thalassemia in Mediterranean countries. Findings and outlook. Investig. Geogr. 2022, 77, 129–138. [Google Scholar] [CrossRef]
- Waheed, F.; Fisher, C.; Awofeso, A.; Stanley, D. Carrier screening for beta-thalassemia in the Maldives: Perceptions of parents of affected children who did not take part in screening and its consequences. J. Community Genet. 2016, 7, 243–253. [Google Scholar] [CrossRef]
- Modiano, G.; Morpurgo, G.; Terrenato, L.; Novelletto, A.; Di Rienzo, A.; Colombo, B.; Purpura, M.; Mariani, M.; Santachiara-Benerecetti, S.; Brega, A. Protection against malaria morbidity: Near-fixation of the alpha-thalassemia gene in a Nepalese population. Am. J. Hum. Genet. 1991, 48, 390. [Google Scholar]
- Xian, J.; Wang, Y.; He, J.; Li, S.; He, W.; Ma, X.; Li, Q. Molecular epidemiology and hematologic characterization of thalassemia in Guangdong Province, Southern China. Clin. Appl. Thromb. 2022, 28, 10760296221119808. [Google Scholar] [CrossRef]
- Apidechkul, T.; Yeemard, F.; Chomchoei, C.; Upala, P.; Tamornpark, R. Epidemiology of thalassemia among the hill tribe population in Thailand. PLoS ONE 2021, 16, e0246736. [Google Scholar] [CrossRef]
- Abu-Shaheen, A.; Heena, H.; Nofal, A.; Abdelmoety, D.A.; Almatary, A.; Alsheef, M.; AlFayyad, I. Epidemiology of thalassemia in Gulf Cooperation Council countries: A systematic review. Biomed Res. Int. 2020, 2020, 1–15. [Google Scholar] [CrossRef]
- Alam, N.E.; Islam, M.S.; Khabir, M.I.U.; Suriea, U.; Islam, M.M.; Mohiuddin, R.B.; Akter, S.; Mahamud, N.; Bappy, M.N.I.; Sardar, D. The scenario of knowledge, attitude and practice of the Bangladeshi population towards thalassemia prevention: A nationwide study. PLoS Glob. Public Health 2022, 2, e0001177. [Google Scholar] [CrossRef]
- Pearson, H.A.; Cohen, A.R.; Giardina, P.-J.V.; Kazazian, H.H., Jr. The changing profile of homozygous β-thalassemia: Demography, ethnicity, and age distribution of current North American patients and changes in two decades. Pediatrics 1996, 97, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Moirangthem, A.; Phadke, S.R. Socio-demographic profile and economic burden of treatment of transfusion dependent thalassemia. Indian J. Pediatr. 2018, 85, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Alkinani, A.A.; Abbas, A.P.D.M.F.; Faraj, A.P.D.S.A.; Jumaa, R.M. AN Epidemiological Study of Thalassaemia Patients Attending Thalassaemic Center in Wassit Governorate. World J. Pharm. Res. 2017, 6, 1–12. [Google Scholar] [CrossRef]
- Bhatia, P.; Nagar, V.; Meena, J.S.; Singh, D.; Pal, D.K. A study on the demographic and morbidity patterns of thalassemia patients registered at a tertiary-care center of central India. Int. J. Med. Sci. Public Health 2015, 4, 85–88. [Google Scholar] [CrossRef]
- Pour, M.N.; Hagh, M.F.; Akbari, A.A.M.; Feyzi, A.A.H.P.; Malaki, M. Genetic Variation Impacts in Patients with Major Beta-Thalassemia. Iran. J. Public Health 2015, 44, 722–723. [Google Scholar]
- Ajassa, M.; Gaglioti, C.; Longo, F.; Piga, A.; Ferrero, G.; Barbero, U. P165 Cardiovascular Risk Factors and Hypogonadism Influence on Cardiac Outcomes in an Aging Population of Beta Thalassemia Patients: Looking at the Heart of the Problem. Eur. Heart J. Suppl. 2022, 24, suac012-158. [Google Scholar] [CrossRef]
- Rao, V.R.; Gupta, G.; Saroja, K.; Jain, S. Identification and Development of a High-Risk District Model in the Prevention of β-Thalassemia in Telangana State, India. Hemoglobin 2020, 44, 371–375. [Google Scholar] [CrossRef]
- Dahmani, F.; Benkirane, S.; Kouzih, J.; Woumki, A.; Mamad, H.; Masrar, A. Epidemiological profile of hemoglobinopathies: A cross-sectional and descriptive index case study. Pan Afr. Med. J. 2017, 27, 150. [Google Scholar] [CrossRef]
- Atmakusuma, T.D. COVID-19 in patients with transfusion dependent thalassemia (tdt) in indonesia: Characteristics of the disease and patients, and comparison between epidemiological data for COVID-19 and thalassemia in Indonesia and Southeast Asia. Hematol. Rep. 2022, 14, 2–12. [Google Scholar] [CrossRef]
- Marengo-Rowe, A.J. Structure-function relations of human hemoglobins. Bayl. Univ. Med. Cent. Proc. 2006, 19, 239–245. [Google Scholar] [CrossRef]
- Ahmed, M.H.; Ghatge, M.S.; Safo, M.K. Hemoglobin: Structure, function and allostery. In Vertebrate and Invertebrate Respiratory Proteins, Lipoproteins and Other Body Fluid Proteins; Springer: Cham, Switzerland, 2020; pp. 345–382. [Google Scholar]
- Sundaresan, D.D.; Hira, J.K.; Chhabra, S.; Trehan, A.; Khadwal, A.R.; Malhotra, P.; Sharma, P.; Das, R. Hematological and genetic profiles of persons with co-inherited heterozygous β-thalassemia and supernumerary α-globin genes. Eur. J. Haematol. 2023, 110, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Yousuf, R.; Akter, S.; Wasek, S.M.; Sinha, S.; Ahmad, R.; Haque, M. Thalassemia: A Review of the Challenges to the Families and Caregivers. Cureus 2022, 14, e32491. [Google Scholar] [CrossRef] [PubMed]
- Gluba-Brzózka, A.; Franczyk, B.; Rysz-Górzyńska, M.; Rokicki, R.; Koziarska-Rościszewska, M.; Rysz, J. Pathomechanisms of Immunological Disturbances in β-Thalassemia. Int. J. Mol. Sci. 2021, 22, 9677. [Google Scholar] [CrossRef] [PubMed]
- Schrier, S.L. Pathophysiology of thalassemia. Curr. Opin. Hematol. 2002, 9, 123–126. [Google Scholar] [CrossRef]
- Pearson, H.A. Pathophysiology of thalassemias. Ann. N. Y. Acad. Sci. 1974, 241, 274–279. [Google Scholar] [CrossRef]
- Fertakis, A. Thalassemia: Pathophysiology, clinical and laboratory findings. In Radiology of Thalassemia; Springer: Berlin/Heidelberg, Germany, 1989; pp. 13–18. [Google Scholar]
- Origa, R.; Galanello, R. Pathophysiology of beta thalassaemia. Pediatr. Endocrinol. Rev. 2011, 8, 263–270. [Google Scholar]
- Mettananda, S.; Higgs, D.R. Molecular basis and genetic modifiers of thalassemia. Hematol. Clin. 2018, 32, 177–191. [Google Scholar] [CrossRef]
- Lal, A.; Vichinsky, E. The clinical phenotypes of alpha thalassemia. Hematol. Clin. 2023, 37, 327–339. [Google Scholar] [CrossRef]
- Higgs, D.R. The molecular basis of α-thalassemia. Cold Spring Harb. Perspect. Med. 2013, 3, a011718. [Google Scholar] [CrossRef]
- Uçucu, S. Molecular Spectrum and Chromatographic-Haematological Characterisation of Alpha Thalassemia Minor (-α/-α), and Alpha Silent Carriers (-α/-αα). medRxiv 2023. [Google Scholar] [CrossRef]
- Cao, A.; Galanello, R. Beta-thalassemia. Genet. Med. 2010, 12, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Villalobos, M.; Blanquer, M.; Moraleda, J.M.; Salido, E.J.; Perez-Oliva, A.B. New insights into pathophysiology of β-thalassemia. Front. Med. 2022, 9, 880752. [Google Scholar] [CrossRef] [PubMed]
- Longo, F.; Piolatto, A.; Ferrero, G.B.; Piga, A. Ineffective erythropoiesis in β-thalassaemia: Key steps and therapeutic options by drugs. Int. J. Mol. Sci. 2021, 22, 7229. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Sharma, P. Disorders of abnormal hemoglobin. In Clinical Molecular Medicine; Elsevier: Amsterdam, The Netherlands, 2020; pp. 327–339. [Google Scholar]
- Kaewsakulthong, W.; Suriyun, T.; Chumchuen, S.; Anurathapan, U.; Hongeng, S.; Fucharoen, S.; Sripichai, O. In vitro study of ineffective erythropoiesis in thalassemia: Diverse intrinsic pathophysiological features of erythroid cells derived from various thalassemia syndromes. J. Clin. Med. 2022, 11, 5356. [Google Scholar] [CrossRef]
- Bollekens, J.A.; Forget, B.G. Thalassemia and hereditary persistence of fetal hemoglobin. Hematol. Oncol. Clin. N. Am. 1991, 5, 399–422. [Google Scholar] [CrossRef]
- Thein, S.L. The molecular basis of β-thalassemia. Cold Spring Harb. Perspect. Med. 2013, 3, a011700. [Google Scholar] [CrossRef]
- Handayani, N.S.N.; Husna, N.; Sanka, I. α-globin Alteration in α-thalassemia Disorder: Prediction and Interaction Defect. Pak. J. Biol. Sci. 2017, 20, 343–349. [Google Scholar] [CrossRef]
- de la Fuente-Gonzalo, F.; Nieto, J.M.; Villegas, A.; González, F.A.; Martínez, R.; Ropero, P. Characterization of deletional and non-deletional alpha globin variants in a large cohort from Spain between 2009 and 2014. Ann. Hematol. 2019, 98, 1537–1545. [Google Scholar] [CrossRef]
- Ferrão, J.; Silva, M.; Gonçalves, L.; Gomes, S.; Coelho, A.; Miranda, A.; Seuanes, F.; Batalha-Reis, A.; Valtonen-Andrá, C.; Sonesson, A.; et al. Novel deletions and unusual genetic mechanisms underlying alpha-thalassemia. In Proceedings of the 20a Reunião Anual da Sociedade Portuguesa de Genética Humana, Coimbra, Portugal, 10–12 November 2016. [Google Scholar]
- Steinberg, M.H.; Forget, B.G.; Higgs, D.R.; Weatherall, D.J. Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management; Cambridge University Press: Cambridge, UK, 2009; ISBN 1139480804. [Google Scholar]
- Lu, H.Y.; Orkin, S.H.; Sankaran, V.G. Fetal hemoglobin regulation in beta-thalassemia. Hematol. Clin. 2023, 37, 301–312. [Google Scholar] [CrossRef]
- Hançer, V.; Fışgın, T.; Büyükdoğan, M. Two rare pathogenic HBB variants in a patient with β-thalassemia intermedia. Turk. J. Hematol. 2020, 37, 125–138. [Google Scholar]
- Bou-Fakhredin, R.; Rivella, S.; Cappellini, M.D.; Taher, A.T. Pathogenic Mechanisms in Thalassemia I: Ineffective Erythropoiesis and Hypercoagulability. Hematol. Clin. 2023, 37, 341–351. [Google Scholar]
- Farid, Y.; Bowman, N.S.; Lecat, P. Biochemistry, Hemoglobin Synthesis; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Steinberg, M.H.; Nagel, R.L. Hemoglobins of the embryo, fetus, and adult. Disord. Hemoglobin Genet. Pathophysiol. Clin. Manag. 2009, 17, 119–135. [Google Scholar]
- Manca, L.; Masala, B. Disorders of the synthesis of human fetal hemoglobin. IUBMB Life 2008, 60, 94–111. [Google Scholar] [CrossRef] [PubMed]
- Cao, A.; Moi, P. Regulation of the globin genes. Pediatr. Res. 2002, 51, 415–421. [Google Scholar] [CrossRef]
- Vadolas, J.; Nualkaew, T.; Voon, H.P.J.; Vilcassim, S.; Grigoriadis, G. Interplay between α-thalassemia and β-hemoglobinopathies: Translating genotype–phenotype relationships into therapies. HemaSphere 2024, 8, e78. [Google Scholar] [CrossRef]
- Tari, K.; Valizadeh Ardalan, P.; Abbaszadehdibavar, M.; Atashi, A.; Jalili, A.; Gheidishahran, M. Thalassemia an update: Molecular basis, clinical features and treatment. Int. J. Biomed. Public Health 2018, 1, 48–58. [Google Scholar] [CrossRef]
- Srinoun, K.; Svasti, S.; Chumworathayee, W.; Vadolas, J.; Vattanaviboon, P.; Fucharoen, S.; Winichagoon, P. Imbalanced globin chain synthesis determines erythroid cell pathology in thalassemic mice. Haematologica 2009, 94, 1211. [Google Scholar] [CrossRef]
- Songdej, D.; Fucharoen, S. Alpha-thalassemia: Diversity of clinical phenotypes and update on the treatment. Thalass. Rep. 2022, 12, 157–172. [Google Scholar] [CrossRef]
- Yang, J.; Li, Q.; Feng, Y.; Zeng, Y. Iron deficiency and iron deficiency anemia: Potential risk factors in bone loss. Int. J. Mol. Sci. 2023, 24, 6891. [Google Scholar] [CrossRef]
- Zivot, A.; Lipton, J.M.; Narla, A.; Blanc, L. Erythropoiesis: Insights into pathophysiology and treatments in 2017. Mol. Med. 2018, 24, 1–15. [Google Scholar] [CrossRef]
- Pinto, V.M.; Forni, G.L. Management of iron overload in beta-thalassemia patients: Clinical practice update based on case series. Int. J. Mol. Sci. 2020, 21, 8771. [Google Scholar] [CrossRef] [PubMed]
- Bou-Fakhredin, R.; Bazarbachi, A.-H.; Chaya, B.; Sleiman, J.; Cappellini, M.D.; Taher, A.T. Iron overload and chelation therapy in non-transfusion dependent thalassemia. Int. J. Mol. Sci. 2017, 18, 2778. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, N.A.; Islam, M.A.; Abdullah, W.Z.; Bahar, R.; Mohamed Yusoff, A.A.; Abdul Wahab, R.; Shamsuddin, S.; Johan, M.F. Epigenetic insights and potential modifiers as therapeutic targets in β-thalassemia. Biomolecules 2021, 11, 755. [Google Scholar] [CrossRef] [PubMed]
- Catapano, R.; Sessa, R.; Trombetti, S.; Cesaro, E.; Russo, F.; Izzo, P.; Makis, A.; Grosso, M. Identification and Functional Analysis of Known and New Mutations in the Transcription Factor KLF1 Linked with β-Thalassemia-like Phenotypes. Biology 2023, 12, 510. [Google Scholar] [CrossRef] [PubMed]
- Drachkova, I.A.; Arshinova, T.V.; Ponomarenko, P.M.; Merkulova, T.I.; Kolchanov, N.A.; Savinkova, L.K. Effect of TATA Box polymorphisms in human β-globin gene promoter associated with β-thalassemia on interaction with TATA-binding protein. Russ. J. Genet. Appl. Res. 2011, 1, 183–188. [Google Scholar] [CrossRef]
- Kim, C.G.; Swendeman, S.L.; Barnhart, K.M.; Sheffery, M. Promoter elements and erythroid cell nuclear factors that regulate α-globin gene transcription in vitro. Mol. Cell Biol. 1990, 10, 5958–5966. [Google Scholar]
- Liu, D.; Zhang, X.; Yu, L.; Cai, R.; Ma, X.; Zheng, C.; Zhou, Y.; Liu, Q.; Wei, X.; Lin, L. KLF1 mutations are relatively more common in a thalassemia endemic region and ameliorate the severity of β-thalassemia. Blood J. Am. Soc. Hematol. 2014, 124, 803–811. [Google Scholar] [CrossRef]
- Shokrgozar, N.; Amirian, N.; Ranjbaran, R.; Bazrafshan, A.; Sharifzadeh, S. Evaluation of regulatory T cells frequency and FoxP3/GDF-15 gene expression in β-thalassemia major patients with and without alloantibody; correlation with serum ferritin and folate levels. Ann. Hematol. 2020, 99, 421–429. [Google Scholar] [CrossRef]
- Taher, A.T.; Weatherall, D.J.; Cappellini, M.D. Thalassaemia. Lancet 2018, 391, 155–167. [Google Scholar] [CrossRef]
- Nienhuis, A.W.; Nathan, D.G. Pathophysiology and Clinical Manifestations of the β-Thalassemias. Cold Spring Harb. Perspect. Med. 2012, 2, a011726. [Google Scholar] [CrossRef]
- Faizan, M.; Rashid, N.; Hussain, S.; Khan, A.; Khan, J.; Zeb, S.; Ahmed, S.Q. Prevalence and Clinical Features of Thalassemia Minor Cases. Pakistan J. Med. Health Sci. 2023, 17, 456. [Google Scholar] [CrossRef]
- Lardhi, A.; Ali, R.A.; Ali, R.; Mohammed, T. Thalassemia minor presenting with vitamin B12 deficiency, paraparesis, and microcytosis. J. Blood Med. 2018, 9, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Nang, M.K. Pathophysiology, Clinical Manifestations, and Carrier Detectionin Thalassemia. IOSR J. Dent. Med. Sci. 2016, 15, 122–126. [Google Scholar]
- Raykova, V. Lycopenemia in a patient with thalassemia minor. Scr. Sci. Medica 2019, 51, 35–37. [Google Scholar] [CrossRef]
- Spiridon, M.; Corduneanu, D. Chronic venous insufficiency: A frequently underdiagnosed and undertreated pathology. Mædica 2017, 12, 59. [Google Scholar]
- Singh, N.; Hira, J.K.; Chhabra, S.; Das, R.; Khadwal, A.R.; Sharma, P. β-thalassemia intermedia mimicking β-thalassemia trait: The importance of family studies and HBB genotyping in phenotypically ambiguous cases. Int. J. Lab. Hematol. 2023, 45, 609–612. [Google Scholar] [CrossRef]
- Asadov, C.; Alimirzoeva, Z.; Mammadova, T.; Aliyeva, G.; Gafarova, S.; Mammadov, J. β-Thalassemia intermedia: A comprehensive overview and novel approaches. Int. J. Hematol. 2018, 108, 5–21. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Yen, C.-T.; Lee, Y.-L.; Chen, R.-J. Thalassemia intermedia: Chelator or not? Int. J. Mol. Sci. 2022, 23, 10189. [Google Scholar] [CrossRef]
- Mishra, V.; Sorabjee, J.; Mirgh, S.; Mishra, M. Tophaceous gout in thalassemia intermedia: A rare association. Oxford Med. Case Reports 2016, 2016, 105–106. [Google Scholar] [CrossRef]
- Tamaddoni, A.; Gharehdaghly, L.; Bahadoram, M. Mutation in thalassemia syndrome and clinical manifestation. Immunopathol. Persa 2020, 6, e29. [Google Scholar] [CrossRef]
- Assadi, R.R.; Sadhu, S.; Fatima, F.; Bhat, R.; Shivappa, P. Retrospective analysis of thalassemia patients in secondary care hospital: Ras Al Khaimah, United Arab Emirates. Adv. Biomed. Res. 2022, 11, 53. [Google Scholar] [CrossRef] [PubMed]
- Hajimoradi, M.; Haseli, S.; Abadi, A.; Chalian, M. Musculoskeletal imaging manifestations of beta-thalassemia. Skeletal Radiol. 2021, 50, 1749–1762. [Google Scholar] [CrossRef]
- Tarım, H.Ş.; Öz, F. Thalassemia major and associated psychosocial problems: A narrative review. Iran. J. Public Health 2022, 51, 12. [Google Scholar] [CrossRef]
- Shamsi, T.; Hussain, Z. An Insight into the Symptomatology of β-Thalassaemia Major: Molecular Genetic Basis of the Disease—III. Natl. J. Health Sci. 2018, 3, 1–2. [Google Scholar] [CrossRef]
- Pines, M.; Sheth, S. Clinical Classification, Screening, and Diagnosis in Beta-Thalassemia and Hemoglobin E/Beta-Thalassemia. Hematol. Oncol. Clin. N. Am. 2023, 37, 313–325. [Google Scholar] [CrossRef]
- Zaylaa, A.J.; Makki, M.; Kassem, R. Thalassemia Diagnosis Through Medical Imaging: A New Artificial Intelligence-Based Framework. In Proceedings of the 2022 International Conference on Smart Systems and Power Management (IC2SPM), Beirut, Lebanon, 10–12 November 2022; pp. 41–46. [Google Scholar]
- Zhu, S.; Yin, J.; Luo, Y.; Chen, Y.; Lin, Z.; Fu, X.; Li, H.; Su, H. Clinical experience using peripheral blood parameters to analyse the mutation type of thalassemia carriers in pregnant women. J. Obstet. Gynaecol. 2023, 43, 2195490. [Google Scholar] [CrossRef]
- Yousif, M.H.; Al-Mamoori, H.S. Evaluation of the levels of the markers of ineffective erythropoiesis (transforming growth factor-beta, growth differentiation factor 15 and erythropoietin) in patient with β-thalassemia syndrome and its correlation to clinical and hematological parameter. Iraqi J. Hematol. 2022, 11, 13–18. [Google Scholar]
- Origa, R.; Comitini, F. Pregnancy in thalassemia. Mediterr. J. Hematol. Infect. Dis. 2019, 11, e2019019. [Google Scholar] [CrossRef]
- Pabón-Rivera, S.; Flores, R.R.; Frei-Jones, M. The Complete Blood Count: A Practical Tool for the Pediatrician. Pediatr. Rev. 2023, 44, 363–382. [Google Scholar] [CrossRef]
- Seo, I.-H.; Lee, Y.-J. Usefulness of complete blood count (CBC) to assess cardiovascular and metabolic diseases in clinical settings: A comprehensive literature review. Biomedicines 2022, 10, 2697. [Google Scholar] [CrossRef]
- Nurazizah, R.; Handika, R.S.; Sahiratmadja, E.; Ismiarto, Y.D.; Prihatni, D. Concordance test of various erythrocyte indices for screening of beta thalassemia carrier. Indones. J. Clin. Pathol. Med. Lab. 2022, 28, 137–142. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, H.K. Obtaining Reliable CBC Results in Clinical Laboratories. Ann. Lab. Med. 2022, 42, 505. [Google Scholar] [CrossRef] [PubMed]
- Patel, D. Complete blood cell count interpretation for hypoproliferative anemias. Physician Assist. Clin. 2019, 4, 637–647. [Google Scholar] [CrossRef]
- Pang, X.-L.; HF, D.U.; Yang, Y.; Zhou, X.-P.; Tang, N.; Liu, J.-W.; Xu, Y. Causes of Abnormal Hemoglobin Electrophoresis. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2023, 31, 830–836. [Google Scholar] [PubMed]
- Rana, B.; Joshi, G.K. Electrophoresis: Basic principle, types, and applications. In Basic Biotechniques for Bioprocess and Bioentrepreneurship; Elsevier: Amsterdam, The Netherlands, 2023; pp. 183–193. [Google Scholar]
- Liang, L.-b.; He, H.; Sun, W.-t.; Li, Y.-q.; Zhang, M. Hemoglobin C Variant Affecting Glycated Hemoglobin Test Results: A Rare Case Report. J. Sichuan Univ. Med. Sci. 2023, 54, 659–662. [Google Scholar]
- Guo, C.; Zhang, Q.; Bao, L.; Li, H.; Zheng, Q.; Guo, Z.; Chen, Y. A stable version of capillary electrophoresis for determining human hemoglobin chains aiming at the screening and diagnosis of thalassemia. Anal. Methods 2020, 12, 3277–3284. [Google Scholar] [CrossRef]
- Lee, Y.K.; Kim, H.-J.; Lee, K.; Park, S.H.; Song, S.H.; Seong, M.-W.; Kim, M.; Han, J.Y. Recent progress in laboratory diagnosis of thalassemia and hemoglobinopathy: A study by the Korean Red Blood Cell Disorder Working Party of the Korean Society of Hematology. Blood Res. 2019, 54, 17. [Google Scholar] [CrossRef]
- Sabath, D.E. The role of molecular diagnostic testing for hemoglobinopathies and thalassemias. Int. J. Lab. Hematol. 2023, 45, 71–78. [Google Scholar] [CrossRef]
- Shen, C.H. Molecular diagnosis of gene mutation and inherited diseases. In Diagnostic Molecular Biology; Academic Press: Cambridge, MA, USA, 2023; pp. 425–455. [Google Scholar]
- Sabath, D.E. Molecular diagnosis of thalassemias and hemoglobinopathies: An ACLPS critical review. Am. J. Clin. Pathol. 2017, 148, 6–15. [Google Scholar] [CrossRef]
- Katsanis, S.H.; Katsanis, N. Molecular genetic testing and the future of clinical genomics. Nat. Rev. Genet. 2013, 14, 415–426. [Google Scholar] [CrossRef]
- Tanhehco, Y.C.; Shi, P.A. Transfusion in Patients with Haemoglobinopathies. In Practical Transfusion Medicine; John Wiley & Sons: Hoboken, NJ, USA, 2022; pp. 409–416. [Google Scholar]
- Forni, G.L.; Grazzini, G.; Boudreaux, J.; Agostini, V.; Omert, L. Global burden and unmet needs in the treatment of transfusion-dependent β-thalassemia. Front. Hematol. 2023, 2, 1187681. [Google Scholar] [CrossRef]
- Schiroli, D.; Merolle, L.; Quartieri, E.; Chicchi, R.; Fasano, T.; De Luca, T.; Molinari, G.; Pulcini, S.; Pertinhez, T.A.; Di Bartolomeo, E. Comparison of two alternative procedures to obtain packed red blood cells for β-thalassemia major transfusion therapy. Biomolecules 2021, 11, 1638. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, R.; Abdul Rahman, A.H.; Masra, F.; Abdul Latiff, Z. Barriers to adherence to iron chelation therapy among adolescent with transfusion dependent thalassemia. Front. Pediatr. 2022, 10, 951947. [Google Scholar] [CrossRef] [PubMed]
- Mettananda, S.; Pathiraja, H.; Peiris, R.; Wickramarathne, N.; Bandara, D.; de Silva, U.; Mettananda, C.; Premawardhena, A. Blood transfusion therapy for β-thalassemia major and hemoglobin E β-thalassemia: Adequacy, trends, and determinants in Sri Lanka. Pediatr. Blood Cancer 2019, 66, e27643. [Google Scholar] [CrossRef] [PubMed]
- Lal, A. Challenges in chronic transfusion for patients with thalassemia. Hematol. 2014 Am. Soc. Hematol. Educ. Program Book 2020, 2020, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, J.L. Clinical challenges with iron chelation in beta thalassemia. Hematol. Clin. 2023, 37, 379–391. [Google Scholar] [CrossRef]
- Panzieri, D.L.; Ausenda, G.; Granata, F.; Caponio, N.; Consonni, D.; Duca, L.; Cassinerio, E.; Elli, S.; Ferraresi, M.; Graziadei, G. Effect of Luspatercept on Erythropoiesis and Fetal Hemoglobin in β-Transfusion-Dependent Thalassemia Patients: A Real-Life Experience. Blood 2023, 142, 2478. [Google Scholar] [CrossRef]
- Musallam, K.M.; Taher, A.T.; Kattamis, A.; Cappellini, M.D.; Lord-Bessen, J.; Glassberg, M.; Pelligra, C.; Guo, S.; Medlin, L.F.; Bueno, L.M. Durable Symptom Improvement for Patients with Non-Transfusion Dependent Thalassemia Treated with Luspatercept: Patient-Reported Outcomes from the BEYOND Study. Blood 2023, 142, 2474. [Google Scholar] [CrossRef]
- Musallam, K.M.; Taher, A.T.; Kattamis, A.; Kuo, K.H.M.; Sheth, S.; Cappellini, M.D. Profile of Luspatercept in the Treatment of Anemia in Adults with Non-Transfusion-Dependent β-Thalassemia (NTDT): Design, Development and Potential Place in Therapy. Drug Des. Devel. Ther. 2023, 17, 1583–1591. [Google Scholar] [CrossRef]
- Manganas, K.M.; Kotsiafti, K.A.; Xydaki, X.A.; Patsourakos, D.P.; Aggeli, K.A.; Savvidis, S.C.; Koskinas, K.I.; Delicou, S.D. 5610224 The Use of Luspatercept in Patients with Β-Thalassaemia and Multiple Systemic Complications Increases Hemoglobin Level, Decreases Transfusion Burden, and Is Unaffected by Complications. Single Thalassemia and Sickle Cell Departement’s Experience. HemaSphere 2023, 7, 15–16. [Google Scholar] [CrossRef]
- Delicou, S.; Nomikou, E.; Koskinas, I. Luspatercept: A lifesaving therapy for transfusion-dependent thalassemia patients with alloimmunization complications. Hematol. Transfus. Int. J. 2023, 11, 61–62. [Google Scholar] [CrossRef]
- Zeidan, A.M.; Platzbecker, U.; Della Porta, M.G.; Santini, V.; Garcia-Manero, G.; Li, J.; Kreitz, S.; Pozharskaya, V.; Rose, S.; Lai, Y. Clinical benefit of luspatercept treatment (tx) in transfusion-dependent (TD), erythropoiesis-stimulating agent (ESA)—Naive patients (pts) with very low-, low-or intermediate-risk myelodysplastic syndromes (MDS) in the COMMANDS trial. J. Clin. Oncol. 2024, 42, 6565. [Google Scholar] [CrossRef]
- Kargutkar, N.; Nadkarni, A. Effect of hydroxyurea on erythrocyte apoptosis in hemoglobinopathy patients. Expert Rev. Hematol. 2023, 16, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Hatamleh, M.I.; Chenna, V.S.H.; Contractor, H.; Mohan, G.V.K.; Tirumandyam, G.; Dammas, N.; Khan, M.W.; Hirani, S. Efficacy of hydroxyurea in transfusion-dependent major β-thalassemia patients: A meta-analysis. Cureus 2023, 15, e38135. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.A.; Asif, A.; Gorsi, U.; Mushatq, A.; Gohar, U.F.; Shah, A.I. Impact of Hydroxyurea on Blood Transfusions and Its Safety in β-Thalassemia patients. Pakistan J. Med. Health Sci. 2022, 16, 138. [Google Scholar] [CrossRef]
- Akram, S.; Khattak, S.A.K.; Khan, M.A. Efficacy and Safety of Hydroxyurea as Adjuvant Therapy in Pediatric Patients of Transfusion-Dependent Beta-Thalassemia Major at Zhob, Balochistan. Cureus 2022, 14, e26691. [Google Scholar] [CrossRef]
- Sheikh, A.; Bibi, M.; Siddiqui, S.; Perveen, K.; Shamsi, T. Effect of hydroxyurea on quality of life with a moderating role of healthcare professionals’ performance: A view from the beta-thalassemia patients. Int. J. Endorsing Health Sci. Res. 2022, 10, 188–194. [Google Scholar] [CrossRef]
- Ali, Z.; Ismail, M.; Rehman, I.U.; Rani, G.F.; Ali, M.; Khan, M.T.M. Long-term clinical efficacy and safety of thalidomide in patients with transfusion-dependent β-thalassemia: Results from Thal-Thalido study. Sci. Rep. 2023, 13, 13592. [Google Scholar] [CrossRef]
- Zurlo, M.; Nicoli, F.; Proietto, D.; Dallan, B.; Zuccato, C.; Cosenza, L.C.; Gasparello, J.; Papi, C.; d’Aversa, E.; Borgatti, M. Effects of Sirolimus treatment on patients with β-Thalassemia: Lymphocyte immunophenotype and biological activity of memory CD4+ and CD8+ T cells. J. Cell Mol. Med. 2023, 27, 353–364. [Google Scholar] [CrossRef]
- Elalfy, M.S.; Hamdy, M.; Adly, A.; Ebeid, F.S.E.; Temin, N.T.; Rozova, A.; Lee, D.; Fradette, C.; Tricta, F. Efficacy and safety of early start deferiprone in infants and young children with transfusion dependent beta thalassemia: Evidence for iron shuttling to transferrin in a randomized, double blind, placebo controlled, clinical trial (START). Am. J. Hematol. 2023, 98, 1415–1424. [Google Scholar] [CrossRef]
- Haghpanah, S.; Cohan, N.; Bordbar, M.; Bazrafshan, A.; Karimi, M.; Zareifar, S.; Safaei, S.; Aramesh, A.; Moghadam, M.; Fard, S.A.Z. Effects of three months of treatment with vitamin E and N-acetyl cysteine on the oxidative balance in patients with transfusion-dependent β-thalassemia. Ann. Hematol. 2021, 100, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Moayedi, B.; Gharagozloo, M.; Esmaeil, N.; Maracy, M.R.; Hoorfar, H.; Jalaeikar, M. A randomized double blind, placebo controlled study of therapeutic effects of silymarin in β-thalassemia major patients receiving desferrioxamine. Eur. J. Haematol. 2013, 90, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Saeidnia, M.; Nowrouzi-Sohrabi, P.; Erfani, M.; Fazeli, P.; Tamaddon, G.; Karimi, M. The effect of curcumin on serum copper, zinc, and zinc/copper ratio in patients with β-thalassemia intermedia: A randomized double-blind clinical trial. Ann. Hematol. 2021, 100, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Marziali, M.; Isgrò, A.; Gaziev, J.; Lucarelli, G. Hematopoietic stem cell transplantation in thalassemia and sickle cell disease. Unicenter experience in a multi-ethnic population. Mediterr. J. Hematol. Infect. Dis. 2009, 1, e2009027. [Google Scholar]
- Anurathapan, U.; Pakakasama, S.; Songdej, D.; Pongphitcha, P.; Chuansumrit, A.; Andersson, B.S.; Hongeng, S. Haploidentical hematopoietic stem cell transplantation in thalassemia. Hemoglobin 2022, 46, 2–6. [Google Scholar] [CrossRef]
- Rostami, T.; Maleki, N.; Kasaeian, A.; Nikbakht, M.; Kiumarsi, A.; Asadollah Mousavi, S.; Ghavamzadeh, A. Co transplantation of bone marrow derived mesenchymal stem cells with hematopoietic stem cells does not improve transplantation outcome in class III beta thalassemia major: A prospective cohort study with long term follow up. Pediatr. Transplant. 2021, 25, e13905. [Google Scholar] [CrossRef]
- Rostami, T.; Kasaeian, A.; Maleki, N.; Nikbakht, M.; Kiumarsi, A.; Tavangar, S.M.; Taheri, A.P.H.; Mousavi, S.A.; Ghavamzadeh, A. The effect of bone marrow-derived mesenchymal stem cell co-transplantation with hematopoietic stem cells on liver fibrosis alleviation and survival in patients with class III β-thalassemia major. Stem Cell Res. Ther. 2021, 12, 1–12. [Google Scholar] [CrossRef]
- Ghavamzadeh, A.; Kasaeian, A.; Rostami, T.; Kiumarsi, A. Comparable outcomes of allogeneic peripheral blood versus bone marrow hematopoietic stem cell transplantation in major thalassemia: A multivariate long-term cohort analysis. Biol. Blood Marrow Transplant. 2019, 25, 307–312. [Google Scholar] [CrossRef]
- Suvatte, V.; Tanphaichitr, V.S.; Visuthisakchai, S.; Mahasandana, C.; Veerakul, G.; Chongkolwatana, V.; Chandanayingyong, D.; Issaragrisil, S. Bone marrow, peripheral blood and cord blood stem cell transplantation in children: Ten years’ experience at Siriraj Hospital. Int. J. Hematol. 1998, 68, 411–419. [Google Scholar] [CrossRef]
- Baronciani, D.; Angelucci, E.; Potschger, U.; Gaziev, J.; Yesilipek, A.; Zecca, M.; Orofino, M.G.; Giardini, C.; Al-Ahmari, A.; Marktel, S. Hemopoietic stem cell transplantation in thalassemia: A report from the European Society for Blood and Bone Marrow Transplantation Hemoglobinopathy Registry, 2000–2010. Bone Marrow Transplant. 2016, 51, 536–541. [Google Scholar] [CrossRef]
- Thomas, E.D. Bone marrow transplantation: A historical review. Medicina 2000, 33, 209–218. [Google Scholar]
- Gaziev, J.; Marziali, M.; Isgro, A.; Sodani, P.; Paciaroni, K.; Gallucci, C.; Andreani, M.; Testi, M.; De Angelis, G.; Alfieri, C. Bone marrow transplantation for thalassemia from alternative related donors: Improved outcomes with a new approach. Blood J. Am. Soc. Hematol. 2013, 122, 2751–2756. [Google Scholar] [CrossRef] [PubMed]
- Han, N.; Li, Y.; Ouyang, W.; Dong, G.; Guo, H.; Chen, Y.; Huang, Y.; Zeng, X.; Zou, H.; He, J. Gene therapy using optimized LentiHBBT87Q vector in two patients with transfusion dependent β-thalassemia. medRxiv 2023. [Google Scholar] [CrossRef]
- Christakopoulos, G.E.; Telange, R.; Yen, J.; Weiss, M.J. Gene therapy and gene editing for β-thalassemia. Hematol. Clin. 2023, 37, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Gamage, U.; Warnakulasuriya, K.; Hansika, S.; Silva, G.N. CRISPR Gene Therapy: A Promising One-Time Therapeutic Approach for Transfusion-Dependent β-Thalassemia—CRISPR-Cas9 Gene Editing for β-Thalassemia. Thalass. Rep. 2023, 13, 51–69. [Google Scholar] [CrossRef]
- Quarmyne, M.-O.; Ross, D.; Sinha, C.; Bakshi, N.; Boudreaux, J.; Krishnamurti, L. Decision-making about gene therapy in transfusion dependent thalassemia. BMC Pediatr. 2022, 22, 536. [Google Scholar] [CrossRef]
- Thuret, I.; Ruggeri, A.; Angelucci, E.; Chabannon, C. Hurdles to the adoption of gene therapy as a curative option for transfusion-dependent thalassemia. Stem Cells Transl. Med. 2022, 11, 407–414. [Google Scholar] [CrossRef]
- Thompson, A.A.; Walters, M.C.; Kwiatkowski, J.; Rasko, J.E.J.; Ribeil, J.-A.; Hongeng, S.; Magrin, E.; Schiller, G.J.; Payen, E.; Semeraro, M. Gene therapy in patients with transfusion-dependent β-thalassemia. N. Engl. J. Med. 2018, 378, 1479–1493. [Google Scholar] [CrossRef]
- Locatelli, F.; Thompson, A.A.; Kwiatkowski, J.L.; Porter, J.B.; Thrasher, A.J.; Hongeng, S.; Sauer, M.G.; Thuret, I.; Lal, A.; Algeri, M. Betibeglogene autotemcel gene therapy for non–β0/β0 genotype β-thalassemia. N. Engl. J. Med. 2022, 386, 415–427. [Google Scholar] [CrossRef]
- Frangoul, H.; Altshuler, D.; Cappellini, M.D.; Chen, Y.-S.; Domm, J.; Eustace, B.K.; Foell, J.; de la Fuente, J.; Grupp, S.; Handgretinger, R. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 2021, 384, 252–260. [Google Scholar] [CrossRef]
- Fu, B.; Liao, J.; Chen, S.; Li, W.; Wang, Q.; Hu, J.; Yang, F.; Hsiao, S.; Jiang, Y.; Wang, L. CRISPR—Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia. Nat. Med. 2022, 28, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- Magrin, E.; Semeraro, M.; Hebert, N.; Joseph, L.; Magnani, A.; Chalumeau, A.; Gabrion, A.; Roudaut, C.; Marouene, J.; Lefrere, F. Long-term outcomes of lentiviral gene therapy for the β-hemoglobinopathies: The HGB-205 trial. Nat. Med. 2022, 28, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Casu, C.; Lo Presti, V.; Oikonomidou, P.R.; Melchiori, L.; Abdulmalik, O.; Ramos, P.; Rivella, S. Short-term administration of JAK2 inhibitors reduces splenomegaly in mouse models of β-thalassemia intermedia and major. Haematologica 2018, 103, e46. [Google Scholar] [CrossRef]
- Thomas, S.; Fisher, K.H.; Snowden, J.A.; Danson, S.J.; Brown, S.; Zeidler, M.P. Methotrexate is a JAK/STAT pathway inhibitor. PLoS ONE 2015, 10, e0130078. [Google Scholar] [CrossRef]
- Ikuta, T.; Kuroyanagi, Y.; Odo, N.; Liu, S. A common signaling pathway is activated in erythroid cells expressing high levels of fetal hemoglobin: A potential role for cAMP-elevating agents in β-globin disorders. J. Blood Med. 2013, 4, 149–159. [Google Scholar] [CrossRef]
- Elghobashy, Y.A.; Assar, M.F.A.; Mahmoud, A.A.; Eltorgoman, A.M.A.; Elmasry, S. The relation between mitogen activated protein kinase (MAPK) pathway and different genes expression in patients with beta Thalassemia. Biochem. Biophys. Rep. 2020, 24, 100836. [Google Scholar] [CrossRef]
- Rahim, F.; Allahmoradi, H.; Salari, F.; Shahjahani, M.; Fard, A.D.; Hosseini, S.A.; Mousakhani, H. Evaluation of signaling pathways involved in γ-globin gene induction using fetal hemoglobin inducer drugs. Int. J. Hematol. Stem cell Res. 2013, 7, 41. [Google Scholar]
- Saad, H.K.M.; Abd Rahman, A.A.; Ab Ghani, A.S.; Taib, W.R.W.; Ismail, I.; Johan, M.F.; Al-Wajeeh, A.S.; Al-Jamal, H.A.N. Activation of STAT and SMAD signaling induces hepcidin re-expression as a therapeutic target for β-Thalassemia patients. Biomedicines 2022, 10, 189. [Google Scholar] [CrossRef]
- Soliman, A.; Yassin, M.; Alyafei, F.; Alaaraj, N.; Hamed, N.; Osman, S.; Soliman, N. Nutritional studies in patients with β-thalassemia major: A short review. Acta Bio Medica Atenei Parm. 2023, 94, e2023187. [Google Scholar]
- Bahadoram, M.; Keikhaei, B.; Davoodi, M.; Fard, N.N.G.; Ghiasi, P. Hypocalcemia in thalassemia major patients requires an extra-careful approach. J. Parathyr. Dis. 2023, 11, e11203. [Google Scholar] [CrossRef]
- Lidoriki, I.; Stavrou, G.; Schizas, D.; Frountzas, M.; Fotis, L.; Kapelouzou, A.; Kokkota, S.; Fyntanidou, B.; Kotzampassi, K. Nutritional Status in a Sample of Patients with β-Thalassemia Major. Cureus 2022, 14, e27985. [Google Scholar] [CrossRef] [PubMed]
- Lidoriki, I.; Stavrou, G.; Fotis, L.; Kapelouzou, A.; Kokkota, S.; Tsaousi, G.; Fyntanidou, B.; Kotzampassi, K. Nutritional Status of β-Thalassemia major patients. ResearchSquare 2022, 1–17. [Google Scholar] [CrossRef]
- Goldberg, E.K.; Lal, A.; Fung, E.B. Nutrition in thalassemia: A systematic review of deficiency, relations to morbidity, and supplementation recommendations. J. Pediatr. Hematol. Oncol. 2022, 44, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jaing, T.-H.; Chang, T.-Y.; Chen, S.-H.; Lin, C.-W.; Wen, Y.-C.; Chiu, C.-C. Molecular genetics of β-thalassemia: A narrative review. Medicine 2021, 100, e27522. [Google Scholar] [CrossRef]
- Li, H.; Yang, Y.; Hong, W.; Huang, M.; Wu, M.; Zhao, X. Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects. Signal Transduct. Target. Ther. 2020, 5, 1–23. [Google Scholar] [CrossRef]
- Bayanzay, K.; Alzoebie, L. Reducing the iron burden and improving survival in transfusion-dependent thalassemia patients: Current perspectives. J. Blood Med. 2016, 7, 159–169. [Google Scholar] [CrossRef]
- Patterson, S.; Singleton, A.; Branscomb, J.; Nsonwu, V.; Spratling, R. Transfusion complications in thalassemia: Patient knowledge and perspectives. Front. Med. 2022, 9, 772886. [Google Scholar] [CrossRef]
- Entezari, S.; Haghi, S.M.; Norouzkhani, N.; Sahebnazar, B.; Vosoughian, F.; Akbarzadeh, D.; Islampanah, M.; Naghsh, N.; Abbasalizadeh, M.; Deravi, N. Iron chelators in treatment of iron overload. J. Toxicol. 2022, 2022, 4911205. [Google Scholar] [CrossRef]
- Goodman, M.A.; Malik, P. The potential of gene therapy approaches for the treatment of hemoglobinopathies: Achievements and challenges. Ther. Adv. Hematol. 2016, 7, 302–315. [Google Scholar] [CrossRef]
- Bashor, C.J.; Hilton, I.B.; Bandukwala, H.; Smith, D.M.; Veiseh, O. Engineering the next generation of cell-based therapeutics. Nat. Rev. Drug Discov. 2022, 21, 655–675. [Google Scholar] [CrossRef]
- Kumar, S.R.P.; Markusic, D.M.; Biswas, M.; High, K.A.; Herzog, R.W. Clinical development of gene therapy: Results and lessons from recent successes. Mol. Ther. Methods Clin. Dev. 2016, 3, 16034. [Google Scholar] [CrossRef]
- Shah, R.; Badawy, S.M. Health related quality of life with standard and curative therapies in thalassemia: A narrative literature review. Ann. N. Y. Acad. Sci. 2024, 1532, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Gafer, A.A. Factors Affecting Quality of Life Among Thalassemia Patients Sana’a-Yemen. J. Pediatr. Neonatal. Biol. 2023, 8, 257–262. [Google Scholar]
- Adam, S.; Afifi, H.; Thomas, M.; Magdy, P.; El-Kamah, G. Quality of life outcomes in a pediatric thalassemia population in Egypt. Hemoglobin 2017, 41, 16–20. [Google Scholar] [CrossRef]
- Etemad, K.; Mohseni, P.; Aghighi, M.; Bahadorimonfared, A.; Hantooshzadeh, R.; Taherpour, N.; Piri, N.; Sotoodeh Ghorbani, S.; Malek, F.; Kheiry, F. Quality of life and related factors in β-thalassemia patients. Hemoglobin 2021, 45, 245–249. [Google Scholar] [CrossRef]
- Sankaran, V.G.; Orkin, S.H. The switch from fetal to adult hemoglobin. Cold Spring Harb. Perspect. Med. 2013, 3, a011643. [Google Scholar] [CrossRef]
- Antoniani, C.; Meneghini, V.; Lattanzi, A.; Felix, T.; Romano, O.; Magrin, E.; Weber, L.; Pavani, G.; El Hoss, S.; Kurita, R. Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus. Blood J. Am. Soc. Hematol. 2018, 131, 1960–1973. [Google Scholar] [CrossRef]
Treatment | Effectiveness | Limitations and Controversies |
---|---|---|
Hydroxyurea | Reduces phosphatidylserine expression, extends transfusion intervals, elevates hemoglobin, decreases ferritin levels [123,124] | Significant variability in patient response (11.5% excellent, 65.5% good response) [125]. Limited impact on physical health problems, indicating need for further research [127] |
Thalidomide | Increases hemoglobin levels, 76.7% of patients achieve transfusion independence [128] | Long-term safety and potential side effects require careful consideration and further investigation |
Sirolimus | Positively impacts immune function, increases activity and number of memory T cells [129] | Long-term impact on immune deficiencies associated with thalassemia remains unclear, necessitating more extensive clinical trials |
Deferiprone | Reduces iron overload, well tolerated, increases transferrin saturation levels [130] | Long-term safety and efficacy compared to other iron chelation therapies require further study |
Vitamin E and N-acetyl cysteine (NAC) | Improves oxidative stress markers, decreases total oxidative stress [131] | Long-term benefits and potential side effects need more thorough investigation to confirm safety and effectiveness |
Silymarin | Reduces serum ferritin and iron, improves liver function in combination with desferrioxamine [132] | Standalone efficacy as an iron burden treatment requires additional research |
Curcumin | Regulates zinc homeostasis, reduces copper toxicity [133] | More comprehensive studies needed to confirm findings and determine optimal dosage and long-term safety |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadiq, I.Z.; Abubakar, F.S.; Usman, H.S.; Abdullahi, A.D.; Ibrahim, B.; Kastayal, B.S.; Ibrahim, M.; Hassan, H.A. Thalassemia: Pathophysiology, Diagnosis, and Advances in Treatment. Thalass. Rep. 2024, 14, 81-102. https://doi.org/10.3390/thalassrep14040010
Sadiq IZ, Abubakar FS, Usman HS, Abdullahi AD, Ibrahim B, Kastayal BS, Ibrahim M, Hassan HA. Thalassemia: Pathophysiology, Diagnosis, and Advances in Treatment. Thalassemia Reports. 2024; 14(4):81-102. https://doi.org/10.3390/thalassrep14040010
Chicago/Turabian StyleSadiq, Idris Zubairu, Fatima Sadiq Abubakar, Hauwa Salisu Usman, Aliyu Dantani Abdullahi, Bashiru Ibrahim, Babangida Sanusi Kastayal, Maryam Ibrahim, and Hassan Aliyu Hassan. 2024. "Thalassemia: Pathophysiology, Diagnosis, and Advances in Treatment" Thalassemia Reports 14, no. 4: 81-102. https://doi.org/10.3390/thalassrep14040010
APA StyleSadiq, I. Z., Abubakar, F. S., Usman, H. S., Abdullahi, A. D., Ibrahim, B., Kastayal, B. S., Ibrahim, M., & Hassan, H. A. (2024). Thalassemia: Pathophysiology, Diagnosis, and Advances in Treatment. Thalassemia Reports, 14(4), 81-102. https://doi.org/10.3390/thalassrep14040010