Disease-Modifying Effect of HBS1L-MYB in HbE/β-Thalassemia Patients in Bangladeshi Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Site and Ethical Approval
2.3. Hematological and Molecular Test
2.4. Scoring System
2.5. Statistical Analysis
3. Results
3.1. Demographic Information of the Study Population
3.2. Comparison of Hematological Parameters and Severity of the Disease Among Three Groups of HbE/β-Thalassemia Patients
3.3. Genotype Distribution and Genotype Frequencies of Two SNPs
3.3.1. Genotype Distributions Among HbE/β-Thalassemia Patients
3.3.2. Genotype Frequency Among HbE/β-Thalassemia Patients
3.4. Association of SNPs in HBS1L-MYB with Disease Severity of HbE/β-Thalassemia Patients
3.4.1. Comparison of HbF Level Between HbE/β-Thalassemia Patient Groups with Different SNPs of HBS1L-MYB
3.4.2. Correlation Studies of HBF Concentration and Disease Severity
3.5. Demographic, Hematological Information and Genotype Frequency Among Healthy Individuals
3.6. Allele Frequency of rs28384513 and rs4895441 SNP of HBS1L-MYB in Total Study Population
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, S.; Mumtaz, S.; Shakir, H.A.; Khan, M.; Tahir, H.M.; Mumtaz, S.; Mughal, T.A.; Hassan, A.; Kazmi, S.A.R.; Sadia Irfan, M. Current status of beta-thalassemia and its treatment strategies. Mol. Genet. Genomic. Med. 2021, 9, e1788. [Google Scholar] [CrossRef] [PubMed]
- Modell, B.; Darlison, M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull. World Health Organ. 2008, 86, 480–487. [Google Scholar] [CrossRef]
- Noor, F.A.; Sultana, N.; Bhuyan, G.S.; Islam, M.T.; Hossain, M.; Sarker, S.K.; Islam, K.; Khan, W.A.; Rahman, M.; Qadri, S.K.; et al. Nationwide carrier detection and molecular characterization of β-thalassemia and hemoglobin E variants in Bangladeshi population. Orphanet J. Rare Dis. 2020, 15, 15. [Google Scholar] [CrossRef] [PubMed]
- Saad, H.K.M.; Taib, W.R.W.; Ab Ghani, A.S.; Ismail, I.; Al-Rawashde, F.A.; Almajali, B.; Alhawamdeh, M.; Abd Rahman, A.A.; Al-Wajeeh, A.S.; Al-Jamal, H.A.N. HBB Gene Mutations and Their Pathological Impacts on HbE/β-Thalassaemia in Kuala Terengganu, Malaysia. Diagnostics 2023, 13, 1247. [Google Scholar] [CrossRef]
- Sripichai, O.; Makarasara, W.; Munkongdee, T.; Kumkhaek, C.; Nuchprayoon, I.; Chuansumrit, A.; Chuncharunee, S.; Chantrakoon, N.; Boonmongkol, P.; Winichagoon, P.; et al. A scoring system for the classification of beta-thalassemia/Hb E disease severity. Am. J. Hematol. 2008, 83, 482–484. [Google Scholar] [CrossRef]
- Genc, A.; Tastemir Korkmaz, D.; Bayram, S.; Rencuzogullari, E. The Effect of Five Single Nucleotide Polymorphisms on Hb F Variation of β-Thalassemia Traits and Hematologically Normal Individuals in Southeast Turkey. Hemoglobin 2020, 44, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, S.; Iberahim, S.; Wan Ab Rahman, W.S.; Hassan, M.N.; Edinur, H.A.; Azlan, M.; Zulkafli, Z. Single Nucleotide Polymorphisms in XMN1-HBG2, HBS1L-MYB, and BCL11A and Their Relation to High Fetal Hemoglobin Levels That Alleviate Anemia. Diagnostics 2022, 12, 1374. [Google Scholar] [CrossRef]
- Hariharan, P.; Nadkarni, A. Insight of fetal to adult hemoglobin switch: Genetic modulators and therapeutic targets. Blood Rev. 2021, 49, 100823. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Wu, Y.; Ma, Y.; Xiao, J.; Zhou, Y.; Yin, X. The association of HBG2, BCL11A, and HBS1L-MYB polymorphisms to thalidomide response in Chinese β-thalassemia patients. Blood Cells Mol. Dis. 2020, 84, 102442. [Google Scholar] [CrossRef]
- Borg, J.; Papadopoulos, P.; Georgitsi, M.; Gutiérrez, L.; Grech, G.; Fanis, P.; Phylactides, M.; Verkerk, A.J.; van der Spek, P.J.; Scerri, C.A.; et al. Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin. Nat. Genet. 2010, 42, 801–805. [Google Scholar] [CrossRef]
- Badens, C.; Joly, P.; Agouti, I.; Thuret, I.; Gonnet, K.; Fattoum, S.; Francina, A.; Simeoni, M.C.; Loundou, A.; Pissard, S. Variants in genetic modifiers of β-thalassemia can help to predict the major or intermedia type of the disease. Haematologica 2011, 96, 1712–1714. [Google Scholar] [CrossRef] [PubMed]
- Brancaleoni, V.; Di Pierro, E.; Motta, I.; Cappellini, M.D. Laboratory diagnosis of thalassemia. Int. J. Lab. Hematol. 2016, 38 (Suppl. S1), 32–40. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Sarkar, S.K.; Sultana, N.; Begum, M.N.; Bhuyan, G.S.; Talukder, S.; Muraduzzaman, A.K.M.; Alauddin, M.; Islam, M.S.; Biswas, P.P.; et al. High resolution melting curve analysis targeting the HBB gene mutational hot-spot offers a reliable screening approach for all common as well as most of the rare beta-globin gene mutations in Bangladesh. BMC Genet. 2018, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, S.; Farooq, M.; Naeem, S.; Uddin, N.; Naeem, M.A.; Jabeen, S. Diagnostic efficacy of red blood cell indices in diagnosis of beta thalassemia trait taking haemoglobin electrophoresis as gold standard. Pak. Armed Forces Med. J. 2021, 71, 1006–1010. [Google Scholar] [CrossRef]
- Escamilla, R.; Camarena, B.; Hernández-Muñoz, S.; Aguliar-García, A. Procedure to Extract DNA from Peripheral Blood with FlexiGene DNA Kit (Qiagen) and Genotyping Genomic DNA; ACM: New York, NY, USA, 2018. [Google Scholar]
- Lai, Y.; Zhou, L.; Yi, S.; Chen, Y.; Tang, Y.; Yi, S.; Yang, Z.; Wei, H.; Zheng, C.; He, S. The association between four SNPs (rs7482144, rs4671393, rs28384513 and rs4895441) and fetal hemoglobin levels in Chinese Zhuang β-thalassemia intermedia patients. Blood Cells Mol. Dis. 2017, 63, 52–57. [Google Scholar] [CrossRef]
- Keyhani, E.; Jafari Vesiehsari, M.; Talebi Kakroodi, S.; Darabi, E.; Zamani, F.; Karimlou, M.; Kamali, K.; Neishabury, M. The Impact of XmnI-HBG2, BCL11A and HBS1L-MYB Single Nucleotide Polymorphisms on Hb F Variation of Hematologically Normal Iranian Individuals. Hemoglobin 2016, 40, 198–201. [Google Scholar] [CrossRef]
- Stadhouders, R.; Aktuna, S.; Thongjuea, S.; Aghajanirefah, A.; Pourfarzad, F.; van Ijcken, W.; Lenhard, B.; Rooks, H.; Best, S.; Menzel, S.; et al. HBS1L-MYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers. J. Clin. Investig. 2014, 124, 1699–1710. [Google Scholar] [CrossRef]
- Bhanushali, A.A.; Patra, P.K.; Pradhan, S.; Khanka, S.S.; Singh, S.; Das, B.R. Genetics of fetal hemoglobin in tribal Indian patients with sickle cell anemia. Transl. Res. 2015, 165, 696–703. [Google Scholar] [CrossRef]
- Sales, R.R.; Belisário, A.R.; Faria, G.; Mendes, F.; Luizon, M.R.; Viana, M.B. Functional polymorphisms of BCL11A and HBS1L-MYB genes affect both fetal hemoglobin level and clinical outcomes in a cohort of children with sickle cell anemia. Ann. Hematol. 2020, 99, 1453–1463. [Google Scholar] [CrossRef]
- Cyrus, C.; Vatte, C.; Borgio, J.F.; Al-Rubaish, A.; Chathoth, S.; Nasserullah, Z.A.; Jarrash, S.A.; Sulaiman, A.; Qutub, H.; Alsaleem, H.; et al. Existence of HbF Enhancer Haplotypes at HBS1L-MYB Intergenic Region in Transfusion-Dependent Saudi β-Thalassemia Patients. BioMed Res. Int. 2017, 2017, 1972429. [Google Scholar] [CrossRef]
- Uda, M.; Galanello, R.; Sanna, S.; Lettre, G.; Sankaran, V.G.; Chen, W.; Usala, G.; Busonero, F.; Maschio, A.; Albai, G.; et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc. Natl. Acad. Sci. USA 2008, 105, 1620–1625. [Google Scholar] [CrossRef] [PubMed]
- Phanrahan, P.; Yamsri, S.; Teawtrakul, N.; Fucharoen, G.; Sanchaisuriya, K.; Fucharoen, S. Molecular Analysis of Non-Transfusion Dependent Thalassemia Associated with Hemoglobin E-β-Thalassemia Disease without α-Thalassemia. Mediterr. J. Hematol. Infect. Dis. 2019, 11, e2019038. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Hargreaves, V.V.; Zhu, Q.; Kurland, J.V.; Hong, J.; Kim, W.; Sher, F.; Macias-Trevino, C.; Rogers, J.M.; Kurita, R.; et al. Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell 2018, 173, 430–442.e417. [Google Scholar] [CrossRef]
- Tripathi, P.; Agarwal, S.; Mandal, K.; Gupta, A.; Sarangi, A.N. Impact of genetic polymorphisms in modifier genes in determining fetal hemoglobin levels in beta-thalassemia. Thalass. Rep. 2023, 13, 85–112. [Google Scholar] [CrossRef]
- Galarneau, G.; Palmer, C.D.; Sankaran, V.G.; Orkin, S.H.; Hirschhorn, J.N.; Lettre, G. Fine-mapping at three loci known to affect fetal hemoglobin levels explains additional genetic variation. Nat. Genet. 2010, 42, 1049–1051. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Joly, P.; Bardel, C.; Moulsma, M.; Bonello-Palot, N.; Francina, A. The XmnI (G)gamma polymorphism influences hemoglobin F synthesis contrary to BCL11A and HBS1L-MYB SNPs in a cohort of 57 beta-thalassemia intermedia patients. Blood Cells Mol. Dis. 2010, 45, 124–127. [Google Scholar] [CrossRef]
- Rujito, L.; Basalamah, M.; Siswandari, W.; Setyono, J.; Wulandari, G.; Mulatsih, S.; Sofro, A.S.; Sadewa, A.H.; Sutaryo, S. Modifying effect of XmnI, BCL11A, and HBS1L-MYB on clinical appearances: A study on β-thalassemia and hemoglobin E/β-thalassemia patients in Indonesia. Hematol. Oncol. Stem Cell Ther. 2016, 9, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Yamsri, S.; Sanchaisuriya, K.; Fucharoen, G.; Sae-Ung, N.; Fucharoen, S. Genotype and phenotype characterizations in a large cohort of β-thalassemia heterozygote with different forms of α-thalassemia in northeast Thailand. Blood Cells Mol. Dis. 2011, 47, 120–124. [Google Scholar] [CrossRef]
- Hanafi, S.B.; Abdullah, W.Z.; Adnan, R.A.; Bahar, R.; Johan, M.F.; Azman, N.F.; Rashid, N.D.; Ahmad, S.A.A.; Hassan, R.; Zilfalil, B.A. Genotype-phenotype association of HbE/β-thalassemia disease and the role of genetic modifiers. Malays. J. Paediatr. Child. Health 2016, 22, 1–16. [Google Scholar]
- Prasing, W.; Mekki, C.; Traisathit, P.; Pissard, S.; Pornprasert, S. Genotyping of BCL11A and HBS1L-MYB single nucleotide polymorphisms in β-thalassemia/HbE and homozygous HbE subjects with low and high levels of HbF. Walailak J. Sci. Technol. (WJST) 2018, 15, 627–636. [Google Scholar] [CrossRef]
- Fard, A.D.; Hosseini, S.A.; Shahjahani, M.; Salari, F.; Jaseb, K. Evaluation of Novel Fetal Hemoglobin Inducer Drugs in Treatment of β-Hemoglobinopathy Disorders. Int. J. Hematol. Oncol. Stem Cell Res. 2013, 7, 47–54. [Google Scholar] [PubMed]
- Finotti, A.; Gambari, R. Combined approaches for increasing fetal hemoglobin (HbF) and de novo production of adult hemoglobin (HbA) in erythroid cells from β-thalassemia patients: Treatment with HbF inducers and CRISPR-Cas9 based genome editing. Front. Genome Ed. 2023, 5, 1204536. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, M.; Rahaman, M.; Ray, S.K.; Shukla, P.C.; Dolai, T.K.; Chakravorty, N. Revisiting fetal hemoglobin inducers in beta-hemoglobinopathies: A review of natural products, conventional and combinatorial therapies. Mol. Biol. Rep. 2022, 49, 2359–2373. [Google Scholar] [CrossRef] [PubMed]
SNPs | Chromosome | Location | Gene | Function | Mutation |
---|---|---|---|---|---|
rs28384513 | 6 | 135,376,209 | HBS1L-MYB | Intergenic region | C/A |
rs4895441 | 6 | 135,426,573 | HBS1L-MYB | Intergenic region | G/A |
Primer Name | Sequence (5′-3′) | Tm | Product Length (bp) |
---|---|---|---|
HBS1L-MYB_rs2838p4513_HRM_F | TTGGACTAAATGTTGCAAGCGG | 65.93 | 456 |
HBS1L-MYB_rs28384513_HRM_R | ACTGAGCGCATAGCTTTCTCAG | 62.36 | |
HBS1L-MYB_rs4895441_HRM_F | ATGGGGGTAAGAAGGAAACCAG | 58.17 | 439 |
HBS1L-MYB_rs4895441_HRM_R | CTCCCTGTCCCCAGATACTTAC | 60.18 | |
HBS1L-MYB_rs28384513_SEQ_F | CGGCAATGCCTCAGGGTCACTG | 65.93 | 456 |
HBS1L-MYB_rs28384513_SEQ_R | TATGTTGCTCAGGCTGGTCTCG | 62.36 | |
HBS1L-MYB_rs4895441_SEQ_F | GTGTTGGGATATAGGCCATAGAC | 58.17 | 439 |
HBS1L-MYB_rs4895441_SEQ_R | GGTCTACAAAGCCCTACAGGATC | 60.18 |
Parameters | Total Number of Patients (n = 120) | |
---|---|---|
Age | Range | 3 years to 65 years |
Mean ± SD | 19.66 ± 10.22 | |
Pediatric (n = 45, 37.5%) | Male, n (%) | 23 (19.2%) |
Female, n (%) | 22 (18.3%) | |
Adult (n = 75, 62.5%) | Male, n (%) | 45 (37.5%) |
Female, n (%) | 30 (25.0%) |
Group | MCV (fl/red Cell) | HB (g/dL) | Hemoglobin-F |
---|---|---|---|
Pediatric | 71.07 ± 6.52 | 7.51 ± 1.27 | 1.19 ± 1.87 |
Adult | 67.53 ± 7.97 | 7.41 ± 1.37 | 1.25 ± 1.30 |
p Value | 0.007 | 0.37 | 0.11 |
Group | HGB (g/dL) | RDW (%) | MCV (fl/red Cell) | MCH (pg/red Cell) | Hemoglobin-A | Hemoglobin-A2 | Hemoglobin-F | Hemoglobin-E | First Age of Transfusion (Months) Mean ± SD | Transfusion Interval (Days) Mean ± SD |
---|---|---|---|---|---|---|---|---|---|---|
NTD | 7.88 ± 1.23 | 27.05 ± 8.5 | 64.11 ± 7.24 | 20.21 ± 2.9 | 2.27 ± 2.81 | 0.33 ± 0.1 | 2.03 ± 2.05 | 2.88 ± 1.47 | 141.79 ± 131.5 | 100.88 ± 91.48 |
Moderate | 7.69 ± 1.44 | 24.24 ± 8.87 | 69.46 ± 6.85 | 21.99 ± 3.08 | 5.33 ± 2.61 | 0.27 ± 0.1 | 0.58 ± 0.78 | 1.36 ± 1.1 | 33.76 ± 44.3 | 36.14 ± 41.29 |
Severe | 6.82 ± 1.03 | 22.97 ± 7.59 | 73.26 ± 3.82 | 23.28 ± 2.27 | 4.39 ± 2.42 | 0.23 ± 0.07 | 0.84 ± 1.27 | 1.35 ± 0.97 | 17.16 ± 16.11 | 22.23 ± 9.79 |
p Value | 0.009 | 0.0439 | <0.0001 | <0.0001 | <0.0001 | 0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Locus | Genotype | NTD/Mild | Moderate | Severe |
---|---|---|---|---|
rs28384513(T>G) | TT | 13 (10.83%) | 19 (15.83%) | 5 (4.17%) |
TG + GG | 31 (25.83%) | 30 (25%) | 22 (18.33%) | |
rs4895441(A>G) | AA | 32 (26.67%) | 40 (33.33%) | 22 (18.33%) |
AG | 12 (10%) | 9 (7.5%) | 5 (4.17%) |
Gene (Choromosoe) | Locus | Genotype | Numbers | Mean ± SD (HbF) | t Test (p) |
---|---|---|---|---|---|
HBS1L-MYB(6q23) | rs28384513 (T>G) | TT | 37 (31%) | 0.87 ± 1.1 | 0.01 |
TG + GG | 83 (69%) | 1.29 ± 1.63 | |||
HBS1L-MYB(6q23) | rs4895441 (A>G) | AA | 95 (79%) | 1.19 ± 1.65 | 0.03 |
AG | 25 (21%) | 1.49 ± 1.7 |
Genotype | Total Sample (160) |
Allele Frequency of rs28384513 | |
T allele | 184 (0.58) |
G allele | 136 (0.43) |
Allele Frequency of rs28384513 | |
A allele | 285 (0.89) |
G allele | 35 (0.11) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferdous, J.; Tasnim, M.; Qadri, F.; Hosen, M.I.; Chowdhury, E.K.; Shekhar, H.U. Disease-Modifying Effect of HBS1L-MYB in HbE/β-Thalassemia Patients in Bangladeshi Population. Thalass. Rep. 2024, 14, 103-117. https://doi.org/10.3390/thalassrep14040011
Ferdous J, Tasnim M, Qadri F, Hosen MI, Chowdhury EK, Shekhar HU. Disease-Modifying Effect of HBS1L-MYB in HbE/β-Thalassemia Patients in Bangladeshi Population. Thalassemia Reports. 2024; 14(4):103-117. https://doi.org/10.3390/thalassrep14040011
Chicago/Turabian StyleFerdous, Jannatul, Marzia Tasnim, Firdausi Qadri, Md. Ismail Hosen, Emran Kabir Chowdhury, and Hossain Uddin Shekhar. 2024. "Disease-Modifying Effect of HBS1L-MYB in HbE/β-Thalassemia Patients in Bangladeshi Population" Thalassemia Reports 14, no. 4: 103-117. https://doi.org/10.3390/thalassrep14040011
APA StyleFerdous, J., Tasnim, M., Qadri, F., Hosen, M. I., Chowdhury, E. K., & Shekhar, H. U. (2024). Disease-Modifying Effect of HBS1L-MYB in HbE/β-Thalassemia Patients in Bangladeshi Population. Thalassemia Reports, 14(4), 103-117. https://doi.org/10.3390/thalassrep14040011