The Silent Threat: Exploring the Ecological and Ecotoxicological Impacts of Chlorinated Aniline Derivatives and the Metabolites on the Aquatic Ecosystem
Abstract
:1. Understanding Aromatic Amines
2. Environmental Presence
3. Impact on Aquatic Organisms
4. Status in Water Framework Directive
5. Environmental Concerns about Aromatic Amines
6. Future Developments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McMurry, J.E. Organic Chemistry, 9th ed.; Cengage Learning: Boston, MA, USA, 2015; pp. 1–1518. ISBN 978-1-305-08048-5. [Google Scholar]
- Vogt, P.F.; Gerulis, J.J. Amines, Aromatic. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: New York, NY, USA, 2000. [Google Scholar] [CrossRef]
- Jackson, C.M. Synthetical Experiments and Alkaloid Analogues. Hist. Stud. Nat. Sci. 2014, 44, 319–363. [Google Scholar] [CrossRef]
- Boehncke, A.; Kielhorn, J.; Konnecker, G.; Pohlenz-Michel, C.; Mangelsdorf, I. 4-Chloroaniline; World Health Organization: Hanover, Germany, 2003. [Google Scholar]
- IndexBox, Inc. EU Aniline Market Report: Size, Suppliers, Prices and Forecast to 2030; IndexBox, Inc.: Covina, CA, USA, 2022. [Google Scholar]
- Below, H.; Assadian, O.; Baguhl, R.; Hildebrandt, U.; Jäger, B.; Meissner, K.; Leaper, D.J.; Kramer, A. Measurements of Chlorhexidine, p-Chloroaniline, and p-Chloronitrobenzene in Saliva after Mouth Wash before and after Operation with 0.2% Chlorhexidine Digluconate in Maxillofacial Surgery: A Randomised Controlled Trial. Br. J. Oral Maxillofac. Surg. 2017, 55, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, H.T.; Omelczenko, N.; Friedman, S.K.; McPherson, B.P. Determination of Chloroanilines in Antibacterial Soaps Using Cation-Exchange Chromatography with UV Detection. J. Chromatogr. A 1996, 719, 434–437. [Google Scholar] [CrossRef]
- Rajimon, K.J.; Elangovan, N.; Amir Khairbek, A.; Thomas, R. Schiff Bases from Chlorine Substituted Anilines and Salicylaldehyde: Synthesis, Characterization, Fluorescence, Thermal Features, Biological Studies and Electronic Structure Investigations. J. Mol. Liq. 2023, 370, 121055. [Google Scholar] [CrossRef]
- Thakuri, A.; Banerjee, M.; Chatterjee, A. Microwave-Assisted Rapid and Sustainable Synthesis of Unsymmetrical Azo Dyes by Coupling of Nitroarenes with Aniline Derivatives. iScience 2022, 25, 104497. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, T.; Isama, K.; Nakashima, H.; Tsuchiya, T.; Matsuoka, A. Analysis of Primary Aromatic Amines Originated from Azo Dyes in Commercial Textile Products in Japan. J. Environ. Sci. Health A 2010, 45, 1281–1295. [Google Scholar] [CrossRef]
- IARC. Para-Chloroaniline. IARC Monogr. Eval. Carcinog. Risks Hum. 1993, 57, 305–321. [Google Scholar]
- World Health Organization. Environmental Health Criteria—128 Chlorobenzenes Other than Hexachlorobenzene; World Health Organization: Geneva, Switzerland, 1991. [Google Scholar]
- Guo, W.-Q.; Guo, S.; Yin, R.-L.; Yuan, Y.; Ren, N.-Q.; Wang, A.-J.; Qu, D.-X. Reduction of 4-Chloronitrobenzene in a Bioelectrochemical Reactor with Biocathode at Ambient Temperature for a Long-Term Operation. J. Taiwan. Inst. Chem. Eng. 2015, 46, 119–124. [Google Scholar] [CrossRef]
- Iihama, S.; Furukawa, S.; Komatsu, T. Efficient Catalytic System for Chemoselective Hydrogenation of Halonitrobenzene to Haloaniline Using PtZn Intermetallic Compound. ACS Catal. 2016, 6, 742–746. [Google Scholar] [CrossRef]
- Oulmil, Y.; Negele, R.-D.; Braunbeck, T. Cytopathology of Liver and Kidney in Rainbow Trout Oncorhynchus mykiss after Long-Term Exposure to Sublethal Concentrations of Linuron. Dis. Aquat Org. 1995, 21, 35–52. [Google Scholar] [CrossRef]
- Marques, R.; Oehmen, A.; Carvalho, G.; Reis, M.A.M. Modelling the Biodegradation Kinetics of the Herbicide Propanil and Its Metabolite 3,4-Dichloroaniline. Environ. Sci. Pollut. Res. 2015, 22, 6687–6695. [Google Scholar] [CrossRef]
- Chen, W.H.; Young, T.M. NDMA Formation during Chlorination and Chloramination of Aqueous Diuron Solutions. Environ. Sci. Technol. 2008, 42, 1072–1077. [Google Scholar] [CrossRef]
- Arora, P.K. Bacterial Degradation of Monocyclic Aromatic Amine. Front. Microbiol. 2015, 6, 820. [Google Scholar] [CrossRef] [PubMed]
- Roberto, L. Priority Chemical Substances in Environmental Waters under the Implementation of the Water Framework Directive; Tesi di dottorato, Università Cà Foscari di Venezia, Facoltà di Scienze Matematiche, Fisiche e Naturali: Venezia, Italy, 2007. [Google Scholar]
- He, Z.; Xu, M.; Deng, Y.; Kang, S.; Kellogg, L.; Wu, L.; Van Nostrand, J.D.; Hobbie, S.E.; Reich, P.B.; Zhou, J. Metagenomic Analysis Reveals a Marked Divergence in the Structure of Belowground Microbial Communities at Elevated CO2. Ecol. Lett. 2010, 13, 564–575. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil Degradation as a Reason for Inadequate Human Nutrition. Food Secur. 2009, 1, 45–57. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. CADDIS Volume 2—Sources, Stressors and Responses; United States Environmental Protection Agency: Chicago, IL, USA, 2023.
- Sughrue, K.M.; Brittingham, M.C.; French, J.B. Endocrine Effects of the Herbicide Linuron on the American Goldfinch (Carduelis tristis). Auk 2008, 125, 411–419. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Prevention, Pesticides and Toxic Substances—Linuron; United States Environmental Protection Agency: Chicago, IL, USA, 1995.
- Moiseenko, T.I.; Dinu, M.I.; Gashkina, N.A.; Jones, V.; Khoroshavin, V.Y.; Kremleva, T.A. Present Status of Water Chemistry and Acidification under Nonpoint Sources of Pollution across European Russia and West Siberia. Environ. Res. Lett. 2018, 13, 105007. [Google Scholar] [CrossRef]
- Kienle, M.; Dubbaka, S.R.; Brade, K.; Knochel, P. Modern Amination Reactions. Eur. J. Org. Chem. 2007, 2007, 4166–4176. [Google Scholar] [CrossRef]
- Alonso-Moreno, C.; Carrillo-Hermosilla, F.; Garcés, A.; Otero, A.; López-Solera, I.; Rodríguez, A.M.; Antiñolo, A. Simple, Versatile, and Efficient Catalysts for Guanylation of Amines. Organometallics 2010, 29, 2789–2795. [Google Scholar] [CrossRef]
- Laroche, B.; Ishitani, H.; Kobayashi, S. Direct Reductive Amination of Carbonyl Compounds with H2 Using Heterogeneous Catalysts in Continuous Flow as an Alternative to N-Alkylation with Alkyl Halides. Adv. Synth. Catal. 2018, 360, 4699–4704. [Google Scholar] [CrossRef]
- Nishizawa, A.; Takahira, T.; Yasui, K.; Fujimoto, H.; Iwai, T.; Sawamura, M.; Chatani, N.; Tobisu, M. Nickel-Catalyzed Decarboxylation of Aryl Carbamates for Converting Phenols into Aromatic Amines. J. Am. Chem. Soc. 2019, 141, 7261–7265. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Kumar, S.; Haritash, A.K. A Comprehensive Review of Chlorophenols: Fate, Toxicology and Its Treatment. J. Environ. Manag. 2023, 342, 118254. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.J.; Rong, Z.Y.; Gu, W.; Fan, D.L.; Liu, J.N.; Shi, L.L.; Xu, Y.H.; Liu, Z.Y. Integrated Fate Assessment of Aromatic Amines in Aerobic Sewage Treatment Plants. Environ. Monit. Assess. 2020, 192, 278. [Google Scholar] [CrossRef]
- Jurado-Sánchez, B.; Ballesteros, E.; Gallego, M. Occurrence of Aromatic Amines and N-Nitrosamines in the Different Steps of a Drinking Water Treatment Plant. Water Res. 2012, 46, 4543–4555. [Google Scholar] [CrossRef] [PubMed]
- Scholz, B.; Palauschek, N. The Determination of Substituted Aromatic Amines in Water and Sediment Samples. Fresenius’ Z. Für Anal. Chem. 1988, 331, 282–289. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, W.; Wang, S.; Zhao, J.; Xu, S.; Yao, H.; Wang, H.; Bai, L.; Wang, Y.; Gu, H.; et al. Risk Assessments of Emerging Contaminants in Various Waters and Changes of Microbial Diversity in Sediments from Yangtze River Chemical Contiguous Zone, Eastern China. Sci. Total Environ. 2022, 803, 149982. [Google Scholar] [CrossRef]
- Akyüz, M.; Ata, Ş. Simultaneous Determination of Aliphatic and Aromatic Amines in Water and Sediment Samples by Ion-Pair Extraction and Gas Chromatography–Mass Spectrometry. J. Chromatogr. A 2006, 1129, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Barber, L.B.; Keefe, S.H.; Brown, G.K.; Taylor, H.E.; Antweiler, R.C.; Peart, D.B.; Plowman, T.I.; Roth, D.A.; Wass, R.D. Organic and Trace Element Contaminants in Water, Biota, Sediment, and Semipermeable Membrane Devices at the Tres Rios Treatment Wetlands, Phenix, Arizona; US Department of the Interior, US Geological Survey: Denver, CO, USA, 2003.
- Foster, A.L.; Katz, B.G.; Meyer, M.T. Occurrence and Potential Transport of Selected Pharmaceuticals and Other Organic Wastewater Compounds from Wastewater-Treatment Plant Influent and Effluent to Groundwater and Canal Systems in Miami-Dade County, Florida; Prepared in Cooperation with the Miami-Dade Water and Sewer Department and the Department of Environmental Resources Management: Reston, VA, USA, 2012. [Google Scholar]
- Silva, E.; Pereira, A.C.; Estalagem, S.P.; Moreira-Santos, M.; Ribeiro, R.; Cerejeira, M.J. Assessing the Quality of Freshwaters in a Protected Area within the Tagus River Basin District (Central Portugal). J. Environ. Qual. 2012, 41, 1413–1426. [Google Scholar] [CrossRef]
- Andrade, A.I.A.S.S.; Stigter, T.Y. Multi-Method Assessment of Nitrate and Pesticide Contamination in Shallow Alluvial Groundwater as a Function of Hydrogeological Setting and Land Use. Agric. Water Manag. 2009, 96, 1751–1765. [Google Scholar] [CrossRef]
- Silva, E.; Batista, S.; Viana, P.; Antunes, P.; Serôdio, L.; Cardoso, A.T.; Cerejeira, M.J. Pesticides and Nitrates in Groundwater from Oriziculture Areas of the ‘Baixo Sado’ Region (Portugal). Int. J. Environ. Anal. Chem. 2006, 86, 955–972. [Google Scholar] [CrossRef]
- Soares, J.; Fernandes, R.; Brito, D.; Oliveira, H.; Neuparth, T.; Martins, I.; Santos, M.M. Environmental Risk Assessment of Accidental Marine Spills: A New Approach Combining an Online Dynamic Hazardous and Noxious Substances Database with Numerical Dispersion, Risk and Population Modelling. Sci. Total Environ. 2020, 715, 136801. [Google Scholar] [CrossRef] [PubMed]
- Knox, A.S.; Gamerdinger, A.P.; Adriano, D.C.; Kolka, R.K.; Kaplan, D.I. Sources and Practices Contributing to Soil Contamination. In Bioremediation of Contaminated Soils; Adriano, D.C., Bollag, J.M., Frankenberger, W.T., Sims, R.C., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 1999; Volume 37, Chapter 4; pp. 53–87. [Google Scholar]
- Kwon, J.-W.; Xia, K. Fate of Triclosan and Triclocarban in Soil Columns with and without Biosolids Surface Application. Environ. Toxicol. Chem. 2012, 31, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Ha, D.D. Investigation of the Biodegradation of Chloroaniline by Acinetobacter baumannii Strain GFJ1. Sci. Technol. Dev. J. 2016, 19, 153–159. [Google Scholar] [CrossRef]
- Termo Fisher Scientific. Material Safety Data Sheet 4-Chloroaniline, 99% (Titr.); Termo Fisher Scientific: Waltham, MA, USA, 2001. [Google Scholar]
- Termo Fisher Scientific. Safety Data Sheet—3,4-Dichloroaniline; Termo Fisher Scientific: Waltham, MA, USA, 2021. [Google Scholar]
- Institute for Health and Consumer Protection; European Commission; Directorate-General Joint Research Centre; European Chemicals Bureau. European Union Risk Assessment Report: 3,4-Dichloroaniline (3,4-DCA); Office for Official Publications of the European Communities: Luxembourg, 2006. [Google Scholar]
- Harrison, I.; Abell, R.; Darwall, W.; Thieme, M.L.; Tickner, D.; Timboe, I. The Freshwater Biodiversity Crisis. Science 2018, 362, 1369. [Google Scholar] [CrossRef]
- Cazzolla Gatti, R. Freshwater Biodiversity: A Review of Local and Global Threats. Int. J. Environ. Stud. 2016, 73, 887–904. [Google Scholar] [CrossRef]
- Moss, B. The Dynamics of Lakes in Relation to Fishes and Fisheries. In Freshwater Fisheries Ecology; Craig, J.F., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 31–47. [Google Scholar] [CrossRef]
- Van Rees, C.B.; Waylen, K.A.; Schmidt-Kloiber, A.; Thackeray, S.J.; Kalinkat, G.; Martens, K.; Domisch, S.; Lillebø, A.I.; Hermoso, V.; Grossart, H.P.; et al. Safeguarding Freshwater Life beyond 2020: Recommendations for the New Global Biodiversity Framework from the European Experience. Conserv. Lett. 2021, 14, e12771. [Google Scholar] [CrossRef]
- Könnecker, G.; Schmidt, S. Ecotoxicological Assessment of P-Chloroaniline-Fate and Effects in Aquatic Systems. Fresenius Environ. Bull. 2003, 12, 589–593. [Google Scholar]
- Ibrahim, M.A.; Zulkifli, S.Z.; Azmai, M.N.A.; Mohamat-Yusuff, F.; Ismail, A. Reproductive Toxicity of 3,4-Dichloroaniline (3,4-DCA) on Javanese Medaka (Oryzias javanicus, Bleeker 1854). Animals 2021, 11, 798. [Google Scholar] [CrossRef]
- Heugens, E.H.W.; Verbruggen, E.M.J. Environmental Risk Limits for Monochloroanilines; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2009.
- Wu, M.; Miao, J.; Li, Y.; Wu, J.; Wang, G.; Zhang, D.; Pan, L. Impact of P-Chloroaniline on Oxidative Stress and Biomacromolecules Damage in the Clam Ruditapes philippinarums: A Simulate Toxicity Test of Spill Incident. Int. J. Environ. Res. Public. Health 2022, 19, 5092. [Google Scholar] [CrossRef]
- Office of Environmental Health Hazard Assessment. No Significant Risk Levels (NSRLs) for Proposition 65 Carcinogens: P-Chloroaniline (CAS Registry Number 106-47-8) and p-Chloroaniline Hydrochloride (CAS Registry Number 20265-96-7); Office of Environmental Health Hazard Assessment: Sacramento, CA, USA, 2010.
- Menz, J.; Schneider, M.; Kümmerer, K. Toxicity Testing with Luminescent Bacteria—Characterization of an Automated Method for the Combined Assessment of Acute and Chronic Effects. Chemosphere 2013, 93, 990–996. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, L. An Insight into the Combined Toxicity of 3,4-Dichloroaniline with Two-Dimensional Nanomaterials: From Classical Mixture Theory to Structure-Activity Relationship. Int. J. Mol. Sci. 2023, 24, 3723. [Google Scholar] [CrossRef] [PubMed]
- Oda, S.; Tatarazako, N.; Dorgerloh, M.; Johnson, R.D.; Ole Kusk, K.; Leverett, D.; Marchini, S.; Nakari, T.; Williams, T.; Iguchi, T. Strain Difference in Sensitivity to 3,4-Dichloroaniline and Insect Growth Regulator, Fenoxycarb, in Daphnia magna. Ecotoxicol. Environ. Saf. 2007, 67, 399–405. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Zulkifli, S.Z.; Azmai, M.N.A.; Mohamat-Yusuff, F.; Ismail, A. Embryonic Toxicity of 3,4-Dichloroaniline (3,4-DCA) on Javanese Medaka (Oryzias javanicus Bleeker, 1854). Toxicol. Rep. 2020, 7, 1039–1045. [Google Scholar] [CrossRef] [PubMed]
- Behrens, D.; Rouxel, J.; Burgeot, T.; Akcha, F. Comparative Embryotoxicity and Genotoxicity of the Herbicide Diuron and Its Metabolites in Early Life Stages of Crassostrea gigas: Implication of Reactive Oxygen Species Production. Aquat. Toxicol. 2016, 175, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Schiwy, S.; Herber, A.K.; Hollert, H.; Brinkmann, M. New Insights into the Toxicokinetics of 3,4-Dichloroaniline in Early Life Stages of Zebrafish (Danio rerio). Toxics 2020, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.S.B.; Boscolo, C.N.P.; Silva, D.G.H.; Batlouni, S.R.; Schlenk, D.; Almeida, E.A. de Anti-Androgenic Activities of Diuron and Its Metabolites in Male Nile Tilapia (Oreochromis niloticus). Aquat. Toxicol. 2015, 164, 10–15. [Google Scholar] [CrossRef]
- Topal, A.; Gergit, A.; Özkaraca, M. Assessment of Oxidative DNA Damage, Oxidative Stress Responses and Histopathological Alterations in Gill and Liver Tissues of Oncorhynchus mykiss Treated with Linuron. Hum. Exp. Toxicol. 2021, 40, 1112–1121. [Google Scholar] [CrossRef]
- Knauert, S.; Singer, H.; Hollender, J.; Knauer, K. Phytotoxicity of Atrazine, Isoproturon, and Diuron to Submersed Macrophytes in Outdoor Mesocosms. Environ. Pollut. 2010, 158, 167–174. [Google Scholar] [CrossRef]
- Gagnaire, B.; Gay, M.; Huvet, A.; Daniel, J.Y.; Saulnier, D.; Renault, T. Combination of a Pesticide Exposure and a Bacterial Challenge: In Vivo Effects on Immune Response of Pacific Oyster, Crassostrea gigas (Thunberg). Aquat. Toxicol. 2007, 84, 92–102. [Google Scholar] [CrossRef]
- Bouilly, K.; Bonnard, M.; Gagnaire, B.; Renault, T.; Lapègue, S. Impact of Diuron on Aneuploidy and Hemocyte Parameters in Pacific Oyster, Crassostrea gigas. Arch. Environ. Contam. Toxicol. 2007, 52, 58–63. [Google Scholar] [CrossRef]
- Da Rocha, M.S.; Arnold, L.L.; Dodmane, P.R.; Pennington, K.L.; Qiu, F.; De Camargo, J.L.V.; Cohen, S.M. Diuron Metabolites and Urothelial Cytotoxicity: In Vivo, In Vitro and Molecular Approaches. Toxicology 2013, 314, 238–246. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Lin, Z.; Huang, Y.; Bhatt, P.; Chen, S. Emerging Strategies for the Bioremediation of the Phenylurea Herbicide Diuron. Front Microbiol. 2021, 12, 686509. [Google Scholar] [CrossRef] [PubMed]
- Ankley, G.T.; Bennett, R.S.; Erickson, R.J.; Hoff, D.J.; Hornung, M.W.; Johnson, R.D.; Mount, D.R.; Nichols, J.W.; Russom, C.L.; Schmieder, P.K.; et al. Adverse Outcome Pathways: A Conceptual Framework to Support Ecotoxicology Research and Risk Assessment. Environ. Toxicol. Chem. 2010, 29, 730–741. [Google Scholar] [CrossRef] [PubMed]
- Cortes, L.G.; Marinov, D.; Sanseverino, I.; Cuenca, A.N.; Niegowska, M.; Rodriguez, E.P.; Stefanelli, F.; Lettieri, T.; European Commission; Joint Research Centre. Selection of Substances for the 4th Watch List under the Water Framework Directive; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar] [CrossRef]
- Thermo Fisher Scientific. Determination of Aniline and Nitroanilines in Environmental and Drinking Waters by On-Line SPE; Thermo Fisher Scientific: Waltham, MA, USA, 2016. [Google Scholar]
- Guimarães, M.C.; da Mota, E.G.; Silva, D.G.; Freitas, M.P. Aug-MIA-QSPR Modelling of the Toxicities of Anilines and Phenols to Vibrio fischeri and Pseudokirchneriella subcapitata. Chemom. Intell. Lab. Syst. 2014, 134, 53–57. [Google Scholar] [CrossRef]
- Weidlich, T.; Špryncová, M.; Čegan, A. Copper-Catalyzed Reactions of Aryl Halides with N-Nucleophiles and Their Possible Application for Degradation of Halogenated Aromatic Contaminants. Catalysts 2022, 12, 911. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, H.; Shang, Y.; Yang, K. Simultaneous Removal of Aniline, Nitrogen and Phosphorus in Aniline-Containing Wastewater Treatment by Using Sequencing Batch Reactor. Bioresour. Technol. 2016, 207, 422–429. [Google Scholar] [CrossRef]
- Brillas, E.; Casado, J. Aniline Degradation by Electro-Fenton® and Peroxi-Coagulation Processes Using a Flow Reactor for Wastewater Treatment. Chemosphere 2002, 47, 241–248. [Google Scholar] [CrossRef]
- Gang, X.; Wang, Q.; Qian, Y.; Gao, P.; Su, Y.; Liu, Z.; Chen, H.; Li, X.; Chen, J. Simultaneous Removal of Aniline, Antimony and Chromium by ZVI Coupled with H2O2: Implication for Textile Wastewater Treatment. J. Hazard. Mater. 2019, 368, 840–848. [Google Scholar] [CrossRef]
- Peace, A.; Frost, P.C.; Wagner, N.D.; Danger, M.; Accolla, C.; Antczak, P.; Brooks, B.W.; Costello, D.M.; Everett, R.A.; Flores, K.B.; et al. Stoichiometric Ecotoxicology for a Multisubstance World. Bioscience 2021, 71, 132–147. [Google Scholar] [CrossRef]
Compound | Type of Water | Site | µg/L | Reference |
---|---|---|---|---|
4-CA | DWTP influent | Spain | ˂0.00006 | [32] |
0.00022–0.0055 | ||||
WWTP influent and superficial water | Germany | 1.1–67 | [33] | |
WWTP influent, effluent, and superficial water | Yangzhong, Yangtze River and tributaries, China | 0.0382–2.427 | [34] | |
River—Superficial water | Zonguldak, Turkey | 0.00066–0.00082 | [35] | |
3,4-DCA | DWTP influent | Spain | 0.0006–0.0025 | [32] |
0.00092–0.0059 | ||||
0.0012–0.0051 | ||||
WWTP influent and superficial water | Germany | 1.8–3.3 | [33] | |
WWTP effluent | Tres Rios Wetlands—Hayfield Inlet, USA | 0.15 | [36] | |
0.3 | ||||
Tres Rios Wetlands—Hayfield 2 Outlet, USA | 0.34 | |||
0.47 | ||||
Homestead, Florida, USA | 0.095 | [37] | ||
River—superficial water | Zonguldak, Turkey | 0.00113–0.00194 | [35] | |
Almonda River upstream, Portugal | ≤6.82 | [38] | ||
Almonda River downstream, Portugal | ≤20.19 | |||
Tres Rios Wetlands, Gila River, USA | 0.17 | [36] | ||
Homestead, Florida, USA | 0.17 | [37] | ||
Homestead, Florida—Monitoring well 1, USA | 0.11 | |||
0.086 | ||||
Homestead, Florida—Monitoring well 2, USA | 0.2 | |||
0.14 | ||||
Homestead, Florida—Monitoring well 3, USA | 0.15 | |||
0.092 | ||||
River—groundwater | Mondego River drainage basin, Portugal | ≤13.360 | [39] | |
Sado River basin, Portugal | ≤0.71 | [40] |
Compound | Organisms | Updated Species/Strains | Ecotoxicological Effects | µg/L | Reference |
---|---|---|---|---|---|
4-CA | Bacteria | Aliivibrio fischeri (Beijerinck, 1889) | EC50 (15 min) (bioluminescence inhibition) | 3760–34,300 | [54] |
Algae | Raphidocelis subcapitata (Korshikov, 1953) | EC50 (72 h) (growth inhibition) | 1500 | ||
Invertebrates | Daphnia magna (Straus, 1820) | EC50 (48 h) (immobilization) | 100–310 | ||
Ruditapes philippinarum (Payraudeau, 1826) | Oxidative stress, oxidative damage, and genotoxicity (15 days) | ≥500 | [55] | ||
Vertebrates | Danio rerio (F. Hamilton, 1822) | LC50 (96 h) (death of juveniles) | 30,700–46,000 | [54] | |
Mammals | Male F344/N rats Rattus norvegicus (Berkenhout, 1769) | Tumors in the spleen (week 74) 1,* | ≥15,300 µg/kg/day | [56] | |
Male B6C3F1 Mus musculus (Linnaeus, 1758) | Tumors in the spleen, liver and kidney (male: week 72; female: week 89) 2,* | ≥514,000 µg/kg/day | |||
Female B6C3F1 Mus musculus (Linnaeus, 1758) | ≥557,000 µg/kg/day | ||||
3,4-DCA | Bacteria | Aliivibrio fischeri | EC50 (30 min) (bioluminescence inhibition) | 610–1500 | [38,57] |
Algae | Scenedesmus obliquus (Kützing, 1833) | EC50 (96 h) (growth inhibition) | 7940 | [58] | |
Chlorella pyrenoidosa (Chick, 1903) | EC50 (72 h) (growth inhibition) | 8440 | |||
Invertebrates | Daphnia magna | EC50 (48 h) (immobilization) | 310–226,000 | [59,60] | |
Magallana gigas (Thunberg, 1793) | Genotoxicity (6 h) | ≥0.05 # | [61] | ||
Vertebrates | Danio rerio | LC50 (96 h) (death of juveniles) | 3200 | [62] | |
Carassius auratus (Linnaeus, 1758) | Oxidative stress and oxidative damage (15 days) | ≥200 | [60] | ||
Oryzias javanicus (Bleeker, 1854) | Decrease in fecundity in females (21 days) 3 | ≥250 # | [53] | ||
Oreochromis niloticus (Linnaeus, 1758) | Antiandrogenic activity in males (25 days) | ≥0.2 # | [63] | ||
Linuron (parent compound and/or byproduct of 4-CA and 3,4-DCA) | Vertebrates | Oncorhynchus mykiss (Walbaum, 1792) | Histopathological damage in the liver and gills and oxidative stress (21 days) | ≥30 | [64] |
Diuron (parent compound and/or byproduct of 3,4-DCA) | Plants | Elodea canadensis (Michaux, 1803) | Phytotoxic (5 weeks) | ≥0.2 | [65] |
Myriophyllum spicatum (Linnaeus, 1753) | |||||
Potamogeton lucens (Linnaeus, 1753) | |||||
Invertebrates | Magallana gigas | Genotoxic, embryotoxic (24 h) | ≥0.05 | [61,66] | |
Immunotoxic (4 weeks) | ≥0.3 | [67] | |||
Vertebrates | Oreochromis niloticus | Endocrine disruptor (25 days) | ≥0.2 | [63] | |
Mammals | Male Wistar rat and human urothelial cell | Carcinogenic, mutagenic, cytotoxic and neurotoxic alterations. Disruption of endocrine, cardiovascular and respiratory functions (3 days) | 0.05–0.5 | [68,69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rebelo, D.; Antunes, S.C.; Rodrigues, S. The Silent Threat: Exploring the Ecological and Ecotoxicological Impacts of Chlorinated Aniline Derivatives and the Metabolites on the Aquatic Ecosystem. J. Xenobiot. 2023, 13, 604-614. https://doi.org/10.3390/jox13040038
Rebelo D, Antunes SC, Rodrigues S. The Silent Threat: Exploring the Ecological and Ecotoxicological Impacts of Chlorinated Aniline Derivatives and the Metabolites on the Aquatic Ecosystem. Journal of Xenobiotics. 2023; 13(4):604-614. https://doi.org/10.3390/jox13040038
Chicago/Turabian StyleRebelo, Daniela, Sara C. Antunes, and Sara Rodrigues. 2023. "The Silent Threat: Exploring the Ecological and Ecotoxicological Impacts of Chlorinated Aniline Derivatives and the Metabolites on the Aquatic Ecosystem" Journal of Xenobiotics 13, no. 4: 604-614. https://doi.org/10.3390/jox13040038
APA StyleRebelo, D., Antunes, S. C., & Rodrigues, S. (2023). The Silent Threat: Exploring the Ecological and Ecotoxicological Impacts of Chlorinated Aniline Derivatives and the Metabolites on the Aquatic Ecosystem. Journal of Xenobiotics, 13(4), 604-614. https://doi.org/10.3390/jox13040038