Underestimations in the In Silico-Predicted Toxicities of V-Agents
Abstract
:1. Introduction
2. Methods
2.1. TEST
2.2. ProTox-II
2.3. VEGA
2.4. pkCSM
2.5. Experimental Toxicities and Physical Properties of V-Agents and Pesticides
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pampalakis, G.; Kostoudi, S. Chemical, physical, and toxicological properties of V-agents. Int. J. Mol. Sci. 2023, 24, 8600. [Google Scholar] [CrossRef]
- Tu, A.T. Aum Shinrikyo’s chemical and biological weapons: More than sarin. Forensic. Sci. Rev. 2014, 26, 115–120. [Google Scholar]
- Alsaleh, O.I.; Elsafti Elsaeidy, A.M.; Saeed, S.; Alhallak, A.; Altelawi, M.A.; Van Berlear, G.; Hubloue, I. Acute health effects and outcome following sarin gas attacks in Khan Shaykhyn, Syria. Cureus 2022, 14, e22188. [Google Scholar]
- John, H.; van der Schans, M.; Koller, M.; Spruit, H.E.T.; Worek, F.; Thiermann, H.; Noort, D. Fatal sarin poisoning in Syria 2013: Forensic verification within an international laboratory network. Forensic. Toxicol. 2013, 36, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, T.; Tu, T.A. Murders with VX: Aum Shinrikyo in Japan and the assassination of Kim Jong-Nam in Malaysia. Forensic. Toxicol. 2018, 36, 542–544. [Google Scholar] [CrossRef]
- Haslam, J.D.; Russell, P.; Hill, S.; Emmett, S.R.; Blain, P.G. Chemical, biological, radiological, and nuclear mass casualty medicine: A review of lessons form the Salisbury and Amesbury Novichok nerve agents incidents. Br. J. Anaesth. 2022, 128, e200–e205. [Google Scholar] [CrossRef]
- Steindl, D.; Boehmerie, W.; Körner, R.; Praeger, D.; Haug, M.; Nee, J.; Schreiber, A.; Scheibe, F.; Demin, K.; Jacoby, P.; et al. Novichok nerve agent poisoning. Lancet 2021, 397, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Worek, F.; Wille, T.; Koller, M.; Thiermann, H. Toxicology of organophosphorus compounds in view of an increasing terrorist threat. Arch. Toxicol. 2015, 90, 2131–2145. [Google Scholar] [CrossRef] [PubMed]
- Noga, M.; Michalska, A.; Jurowski, K. Application of toxicology in silico methods for prediction of acute toxicity (LD50) for Novichoks. Arch. Toxicol. 2023, 97, 1691–1700. [Google Scholar] [CrossRef]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic. Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef]
- Noga, M.; Michalska, A.; Jurowski, K. The prediction of hydrolysis and biodegradation of Novichoks using in silico toxicology methods. Sci. Total Environ. 2023, 890, 164241. [Google Scholar] [CrossRef] [PubMed]
- Jeong, K.; Choi, J. Theoretical study on the toxicity of ‘Novichok’ agent candidates. R. Soc. Open Sci. 2019, 6, 190414. [Google Scholar] [CrossRef] [PubMed]
- Drwal, M.N.; Banerjee, P.; Dunkel, M.; Wettig, M.R.; Preissner, R. ProTox: A web server for the in silico prediction of rodent oral toxicity. Nucleic. Acids Res. 2014, 42, W53–W58. [Google Scholar] [CrossRef] [PubMed]
- Danieli, A.; Colombo, E.; Raitano, G.; Lombardo, A.; Roncaglioni, A.; Manganaro, A.; Sommovigo, A.; Carnesecchi, E.; Dorne, J.L.C.M.; Benfenati, E. The VEGA tool to check the applicability domain gives greater confidence in the prediction of in silico models. Int. J. Mol. Sci. 2023, 24, 9894. [Google Scholar] [CrossRef]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Misik, J.; Pavlikova, R.; Cabal, J.; Kuca, K. Acute toxicity of some nerve agents and pesticides in rats. Drug Chem. Toxicol. 2015, 38, 32–36. [Google Scholar] [CrossRef]
- Munro, N.B.; Talmage, S.S.; Griffin, G.D.; Waters, L.C.; Watson, A.P.; King, J.F.; Hauschild, V. The sources, fate, and toxicity of chemical warfare agent degradation products. Environ. Health Perspect. 1999, 107, 933–974. [Google Scholar] [CrossRef]
- Sidell, R.F.; Groff, W.A.; Vocci, F. Effects of EA 3148 Administered Intravenously to Humans; CRDL TM 2-31; Army Chemical Center: Aberdeen, MD, USA, 1965. [Google Scholar]
- Bajgar, J. Organophosphates/nerve agent poisoning: Mechanism of action, diagnosis, prophylaxis, and treatment. Adv. Clin. Chem. 2014, 38, 151–216. [Google Scholar]
- Dawson, T.P.; Williamson, C.E. 3-pyridyl Phosphonates. U.S. Patent 3903098, 2 September 1975. [Google Scholar]
- Dawson, T.P.; Williamson, C.E. Phosphonate Esters of Alkyl Acetoacetates. U.S. Patent 3450801, 17 June 1969. [Google Scholar]
- Casida, J.E.; Gatterdam, P.E.; Getzin, L.W., Jr.; Chapman, R.K. Residual properties of the systemic insecticide O,O-dimethyl 1-carbomethoxy-1-propen-2-yl phosphate. J. Agric. Food Chem. 1956, 4, 236–243. [Google Scholar] [CrossRef]
- Akerfeldt, S.; Fagerlind, L. Selenophosphorus compounds as powerful cholinesterase inhibitors. J. Med. Chem. 1967, 10, 115–116. [Google Scholar] [CrossRef]
- Dulsat, J.; López-Nieto, B.; Estrada-Tejedor, R.; Borrell, J.I. Evaluation of free online ADMET tools for academic or small biotech environments. Molecules 2023, 28, 776. [Google Scholar] [CrossRef]
- Samuel, J.B.; Penski, E.C.; Callahan, J.J. Physical Properties of Standard Agents, Candidate Agents, and Related Compounds at Several Temperatures; Chemical Systems Laboratory, US Army Armament Research and Development Command: Aberdeen, MD, USA, 1983. [Google Scholar]
- Ramalho, T.C.; de Castro, A.A.; Leal, D.H.S.; Teixeira, J.P.; da Cunha, E.F.F.; Kuca, K. Assessing the therapeutic and toxicological profile of novel acetylcholinesterase reactivators: Value of in silico and in vitro data. Curr. Med. Chem. 2023, 30, 4149–4166. [Google Scholar] [CrossRef]
- Maxwell, D.M.; Koplovitz, I.; Worek, F.; Sweeney, R.E. A structure-activity analysis of the variation in oxime efficacy against nerve agents. Toxicol. Appl. Pharmacol. 2008, 231, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Garcia, G.E.; Campbell, A.J.; Olson, J.; Moorad-Doctor, D.; Morthole, V.I. Novel oximes as blood-brain barrier penetrating cholinesterase reactivators. Chem. Biol. Interact. 2010, 187, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.C.; Botelho, F.D.; Gonçalves, A.S.; Kitagawa, D.A.S.; Borges, C.V.N.; Carvalho-Silva, T.; Bernardo, L.B.; Ferreira, C.N.; Rodrigues, R.B.; Ferreira Neto, D.C.; et al. Are the current commercially available oximes capable of reactivating acetylcholinesterase inhibited by the nerve agents of the A-series? Arch. Toxicol. 2022, 96, 2559–2572. [Google Scholar] [CrossRef]
- Singh, D.; Chawla, P.A. Prediction of toxicity of nanoparticles using QSAR approach. Curr. Anal. Chem. 2023, 19, 436–439. [Google Scholar] [CrossRef]
- Hazhizi, H.; Melkemi, N.; Salah, T.; Bouachrine, M. DFT-based reactivity and combined QSAR, molecular docking of 1,2,4,5-tetrazine derivatives as inhibitors of Pim-1 kinase. Heliyon 2019, 5, e02451. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Z.; Peijnenburg, W.J.G.M.; Vijver, M.G. Machine learning-driven QSAR models for predicting the mixture toxicity of nanoparticles. Environ. Int. 2023, 177, 108025. [Google Scholar] [CrossRef]
- Jeong, K.; Lee, J.Y.; Woo, S.; Kim, D.; Jeon, Y.; Ryu, T.I.; Hwang, S.R.; Jeong, W.H. Vapor pressure and toxicity prediction for Novichok agents candidates using machine learning model: Preparation for unascertained nerve agents after chemical weapons convention schedule 1 update. Chem. Res. Toxicol. 2022, 35, 774–781. [Google Scholar] [CrossRef]
- Bhakhoa, H.; Rhyman, L.; Ramasami, P. Theoretical study of the molecular aspect of the suspected Novichok agent A234 of the Skripal poisoning. R. Soc. Open Sci. 2019, 6, 181831. [Google Scholar] [CrossRef]
- De Farias, R.F. The number of conformers explains the high toxicity of Novichok agents. Pharm. Chem. J. 2019, 6, 24–26. [Google Scholar]
Predicted LD50, mg·kg−1 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Agent | Formula | HC a (TEST) | NN a (TEST) | Con a (TEST) | ProTox | VEGA | pkCSM | Exp a LD50, mg·kg−1 | Other LD50, mg·kg−1 |
VX | MeP(O)(OEt)SCH2CH2NiPr2 | 1.44 | 2.67 | 1.95 | 1 | 3.78 | 778,000 | 0.085 0.122 | |
VS | EtP(O)(OEt)SCH2CH2NiPr2 | 5.14 | 9.86 | 7.12 | 1 | 3.87 | 803,400 | ||
VE | EtP(O)(OEt)SCH2CH2NEt2 | 4.05 | 1.43 | 2.41 | 1 | 3.31 | 795,000 | ||
VM | MeP(O)(OEt)SCH2CH2NEt2 | 0.86 | 1.35 | 1.08 | 1 | 1.49 | 747,000 | 0.212 | |
VR | MeP(O)(OiBu)SCH2CH2NEt2 | 0.72 | 1.51 | 1.05 | 1 | 839,000 | 0.020 1.402 | ||
EA-1728 | MeP(O)(OiPr)SCH2CH2NiPr2 | 1.48 | 23.59 | 5.92 | 1 | 3.9 | 788,800 | 0.056 | |
EA-1763 | MeP(O)(OPr)SCH2CH2NiPr2 | 12.12 | 9.86 | 10.93 | 1 | 3.91 | 817,000 | ||
EA-1694 | EtP(O)(OEt)SCH2CH2NMet2 | 1.71 | 1.27 | 1.48 | 1 | 1.43 | 697,700 | 0.121 | |
EA-1699 | MeP(O)(OEt)SCH2CH2NMet2 | 0.31 | 2.95 | 0.96 | 1 | 1.32 | 648,800 | 0.122 | |
EA-3148 | MeP(O)(Ocp)SCH2CH2NEt2 b | 1.90 | 18.43 | 5.92 | 1 | 79.07 | 885,000 | ||
CVX | MeP(O)(OBu)SCH2CH2NEt2 | 0.99 | 1.51 | 1.23 | 1 | 3.74 | 849,700 | ||
VG | (EtO)2P(O)SCH2CH2NEt2 | 14.01 | 3.70 | 7.20 | 3 | 3.31 | 888,000 | 3.3 | |
VP (cis) | See Figure 1 | 991.24 | 3406.41 | 1837.54 | 9333 | 782.51 | 821,000 | 0.0818 (rabbit pc) | |
VP (trans) | 991.24 | 3406.41 | 1837.54 | 9333 | |||||
V sub x | MeP(O)(OEt)SCH2CH2SEt | 7 | 5.28 | 6.08 | 3 | 7.06 | 690,000 | ||
EA-1576 (E) | See Figure 1 | 166.21 | 49.59 | 90.79 | 44 | 885,000 | More toxic than Z | ||
EA-1576 (Z) | 166.21 | 49.59 | 90.79 | 44 | |||||
EA-2192 | MeP(O)(OH)SCH2CH2NiPr2 | 2.41 | 11.68 | 5.30 | 826 | 3.43 | 565,000 | 0.63 | |
Cyclohexyl-VP | VP with cyclohexyl instead of 3,3,5-trimethylcyclohexyl group | 207.40 | 2924.27 | 778.77 | 720.84 | 726,000 | Less toxic than cis-VP | ||
Demeton-S | (EtO)2P(O)SCH2CH2SEt | 8.43 | 4.7 | 6.29 | 1.49 | 820,000 | 1.5 | ||
E-mevinphos | (MeO)2P(O)OC(CH3) = CHCOOMe | 4.46 | 14.16 | 7.95 | 3.02 | 645,000 | 3 | ||
Z-mevinphos | 4.46 | 6.67 | 5.45 | 3.02 |
Density @25 °C | Surface Tension @25 °C (dyn/cm) | Viscosity @25 °C (cP) | Vapor Pressure @25 °C (×10−4) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HC | G | NN | Con | Exp | HC | G | NN | Con | Exp | HC | G | NN | SM | Con | Exp | HC | G | N | Con | Exp | |
VX | 1.03 | 0.94 | 1.20 | 1.06 | 1.0083 | 27.80 | 31.6 | 5.21 | 10.04 | 6.59 | 3,71 | 0.214 | 1.75 | 8.78 | |||||||
VS | 1.02 | 0.92 | 1.24 | 1.06 | 1.0016 | 27.85 | 29.9 | 5.21 | 9.37 | 0.937 | 1.33 | 2.94 | 1.54 | ||||||||
VE | 1.03 | 1.01 | 1.20 | 1.08 | 1.0180 | 27.80 | 29.5 | 5.21 | 5.54 | 3.14 | 2.16 | 2.94 | 2.71 | ||||||||
VM | 1.04 | 1.02 | 1.20 | 1.09 | 1.0311 | 27.64 | 31.2 | 5.21 | 6.03 | 5.54 | 6.10 | 2.94 | 4.63 | ||||||||
VR | 1.02 | 0.96 | 1.20 | 1.06 | 1.0065 | 28.06 | 26.9 | 5.21 | 8.39 | 5.44 | 1.7 | 2.94 | 3 | 6.3 | |||||||
EA-1728 | 1.02 | 0.90 | 1.24 | 1.05 | 0.9899 | 27.28 | 29.2 | 5.21 | 11.28 | 6.36 | 2.96 | 2.94 | 3.81 | ||||||||
EA-1763 | 1.02 | 0.92 | 1.24 | 1.06 | 0.9973 | 28.06 | 30.2 | 5.21 | 11.26 | 2.74 | 1.33 | 2.94 | 2.21 | ||||||||
EA-1694 | 1.07 | 1.04 | 1.13 | 1.08 | 1.0453 | 27.58 | 31.5 | 5.21 | 5.14 | 6.61 | 17.3 | 2.94 | 6.95 | ||||||||
EA-1699 | 1.07 | 1.04 | 1.13 | 1.08 | 1.0600 | 27.58 | 32.0 | 5.21 | 5.62 | 7.37 | 48.8 | 2.94 | 10.2 | ||||||||
EA-3148 | 1.07 | 1.06 | 1.23 | 1.12 | 1.05 | 28.20 | 7.69 | 2.06 | 0.375 | 0.175 | 2.94 | 0.578 | 4 | ||||||||
CVX | 1.02 | 0.99 | 1.20 | 1.07 | 1.0125 | 28.06 | 22.68 | 5.21 | 9.41 | 4.31 | 7.63 | 2.94 | 2.13 | 2.5 | |||||||
VG | 1.06 | 1.01 | 1.20 | 1.09 | 1.04557 | 27.80 | 31.0 | 5.21 | 4.96 | 3.15 | 1.69 | 2.94 | 2.51 | ||||||||
VP (cis) | 1.10 | 1.09 | 1.13 | 1.10 | 1.023 | 28.06 | 30.4 | 31.98 | 16.92 | 31.98 | 25.86 | 30.28 | 0.296 | 0.548 | 0.00266 | 0.0755 | |||||
VP (trans) | 1.10 | 1.09 | 1.13 | 1.10 | 28.06 | 31.98 | 16.92 | 31.98 | 0.296 | 0.548 | 0.00266 | 0.0755 | |||||||||
V sub x | 1.13 | 1.15 | 1.17 | 1.15 | 27.64 | 2.58 | 0.773 | 6.86 | 3.83 | 2.73 | |||||||||||
EA-1576 (E) | 1.11 | 1.13 | 1.24 | 1.16 | 1.0829 | 30.98 | 37.24 | 28.07 | 32.08 | 32.4 | 5.21 | 25.23 | 0.0294 | 0.0831 | 0.331 | 0.0931 | |||||
EA-1576 (Z) | 1.11 | 1.13 | 1.24 | 1.16 | 30.98 | 37.24 | 28.07 | 32.08 | 5.21 | 0.0294 | 0.0831 | 0.331 | 0.0931 | ||||||||
EA-2192 | 1.11 | 1.07 | 1.20 | 1.12 | 27.64 | 5.21 | 0.395 | ||||||||||||||
Cyclohex-VP | 1.15 | 1.21 | 1.13 | 1.17 | 28.07 | 32.45 | 16.92 | 32.45 | 26.12 | 0.172 | 0.124 | 0.00266 | 0.0827 | ||||||||
Demeton-S | 1.15 | 1.14 | 1.20 | 1.16 | 1.132 @21 °C | 27.20 | 5.21 | 1.19 | 1.90 | 3.94 | 2.07 | 2.6 @20 °C | |||||||||
E-mevinphos | 1.22 | 1.17 | 1.23 | 1.21 | 27.19 | 34.56 | 28.64 | 33.46 | 5.21 | 65.3 | 1.44 | 9.69 | |||||||||
Z-mevinphos | 1.22 | 1.17 | 1.22 | 1.21 | 37.12 | 34.56 | 28.64 | 33.46 | 5.21 | 65.3 | 1.44 | 9.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pampalakis, G. Underestimations in the In Silico-Predicted Toxicities of V-Agents. J. Xenobiot. 2023, 13, 615-624. https://doi.org/10.3390/jox13040039
Pampalakis G. Underestimations in the In Silico-Predicted Toxicities of V-Agents. Journal of Xenobiotics. 2023; 13(4):615-624. https://doi.org/10.3390/jox13040039
Chicago/Turabian StylePampalakis, Georgios. 2023. "Underestimations in the In Silico-Predicted Toxicities of V-Agents" Journal of Xenobiotics 13, no. 4: 615-624. https://doi.org/10.3390/jox13040039
APA StylePampalakis, G. (2023). Underestimations in the In Silico-Predicted Toxicities of V-Agents. Journal of Xenobiotics, 13(4), 615-624. https://doi.org/10.3390/jox13040039