Reducing Greenhouse Gas Emissions and Costs with the Alternative Structural System for Slab: A Comparative Analysis of South Korea Cases
Abstract
:1. Introduction
2. Research Method
2.1. Life Cycle Assessment (LCA)
2.1.1. Definition of Goal and Scope
2.1.2. Life Cycle Inventory (LCI)
2.1.3. Assessment of the Life Cycle Impact
2.2. The Cost of Construction
2.3. Description of the Cases
3. Results and Discussions
3.1. The Emissions of Greenhouse Gases
3.2. Costs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. Global Warming of 1.5C. 2018. Available online: https://www.ipcc.ch/sr15/ (accessed on 20 June 2019).
- UN. Kyoto Protocol to the United Nations Framework Convention on Climate Change; United Nations: Kyoto, Japan, 1997. [Google Scholar]
- Zhang, X.; Wang, F. Assessment of embodied carbon emissions for building construction in China: Comparative case studies using alternative methods. Energy Build. 2016, 130, 330–340. [Google Scholar] [CrossRef]
- Yi, I.S.; Seo, K.S. Social Indicators in Korea; National Statistical Office: Seoul, Korea, 2010. [Google Scholar]
- Cole, R.J. Energy and Greenhouse Gas Emissions Associated with the Construction of Alternative Structural Systems. Build. Environ. 1999, 34, 335–348. [Google Scholar] [CrossRef]
- Yan, H.; Shen, Q.; Fan, L.C.; Wang, Y.; Zhang, L. Greenhouse gas emissions in building construction: A case study of One Peking in Hong Kong. Build. Environ. 2010, 45, 949–955. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.H.; Chae, C.U.; Kim, G.H.; Jang, H.J. Analysis of CO2 Emission Characteristics of Concrete Used at Construction Sites. Sustainability 2016, 8, 348. [Google Scholar] [CrossRef]
- Xing, S.; Xu, Z.; Jun, G. Inventory analysis of LCA on steel- and concrete-construction office buildings. Energy Build. 2008, 40, 1188–1193. [Google Scholar] [CrossRef]
- Hong, J.; Shen, G.Q.; Feng, Y.; Lau, W.S.-T.; Mao, C. Greenhouse gas emissions during the construction phase of a building: A case study in China. J. Clean. Prod. 2015, 103, 249–259. [Google Scholar] [CrossRef]
- Wang, J.; Tam, V.W.Y. Construction industry carbon dioxide emissions in Shenzhen, China. Proc. Inst. Civ. Eng. Waste Resour. Manag. 2016, 169, 114–122. [Google Scholar] [CrossRef]
- Cho, S.-H.; Chae, C.-U. A Study on Life Cycle CO2 Emissions of Low-Carbon Building in South Korea. Sustainability 2016, 8, 579. [Google Scholar] [CrossRef]
- Mao, C.; Shen, Q.; Shen, L.; Tang, L. Comparative study of greenhouse gas emissions between off-site prefabrication and conventional construction methods: Two case studies of residential projects. Energy Build. 2013, 66, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Gan, V.J.; Chan, C.; Tse, K.; Lo, I.M.; Cheng, J.C. A comparative analysis of embodied carbon in high-rise buildings regarding different design parameters. J. Clean. Prod. 2017, 161, 663–675. [Google Scholar] [CrossRef]
- Nadoushani, Z.S.M.; Akbarnezhad, A. Effects of structural system on the life cycle carbon footprint of buildings. Energy Build. 2015, 102, 337–346. [Google Scholar] [CrossRef]
- Peng, C. Calculation of a building’s life cycle carbon emissions based on Ecotect and building information modeling. J. Clean. Prod. 2016, 112, 453–465. [Google Scholar] [CrossRef]
- Ahmadian, F.F.A.; Rashidi, T.H.; Akbarnezhad, A.; Waller, S.T. BIM-enabled sustainability assessment of material supply decisions. Eng. Constr. Archit. Manag. 2016, 24, 668–695. [Google Scholar] [CrossRef]
- Chau, C.-K.; Yik, F.; Hui, W.; Liu, H.; Yu, H. Environmental impacts of building materials and building services components for commercial buildings in Hong Kong. J. Clean. Prod. 2007, 15, 1840–1851. [Google Scholar] [CrossRef]
- Lave, L.; Hendrickson, C.; Horvath, A. Economic input-output models for environment life-cycle assessment. Environ. Sci. Technol. 2002, 32, 184–191. [Google Scholar]
- Lee, J.; Tae, S.; Kim, R. A Study on the Analysis of CO2 Emissions of Apartment Housing in the Construction Process. Sustainability 2018, 10, 365. [Google Scholar] [CrossRef]
- Lee, S.; Park, W.; Lee, H. Life cycle CO2 assessment method for concrete using CO2 balance and suggestion to decrease LCCO2 of concrete in South-Korean apartment. Energy Build. 2013, 58, 93–102. [Google Scholar] [CrossRef]
- González, M.J.; Navarro, J.G. Assessment of the decrease of CO2 emissions in the construction field through the selection of materials: Practical case study of three houses of low environmental impact. Build. Environ. 2006, 41, 902–909. [Google Scholar] [CrossRef]
- Cho, S.; Na, S. The Reduction of CO2 Emissions by Application of High-Strength Reinforcing Bars to Three Different Structural Systems in South Korea. Sustainability 2017, 9, 1652. [Google Scholar]
- Baek, C.; Tae, S.; Kim, R.; Shin, S. Life Cycle CO2 Assessment by Block Type Changes of Apartment Housing. Sustainability 2016, 8, 752. [Google Scholar] [CrossRef]
- Park, J.; Tae, S.; Kim, T. Life cycle CO2 assessment of concrete by compressive strength on construction site in Korea. Renew. Sustain. Energy Rev. 2012, 16, 2940–2946. [Google Scholar] [CrossRef]
- Tae, S.; Baek, C.; Shin, S. Life cycle CO2 evaluation on reinforced concrete structures with high-strength concrete. Environ. Impact Assess. Rev. 2011, 31, 253–260. [Google Scholar] [CrossRef]
- Tae, S.; Shin, S.; Woo, J.; Roh, S. The development of apartment house life cycle CO2 simple assessment system using standard apartment houses of South Korea. Renew. Sustain. Energy Rev. 2011, 15, 1454–1467. [Google Scholar] [CrossRef]
- Pacheco-Torres, R.; Jadraque, E.; Roldán-Fontana, J.; Ordóñez, J. Analysis of CO2 emissions in the construction phase of single-family detached houses. Sustain. Cities Soc. 2014, 12, 63–68. [Google Scholar] [CrossRef]
- Basbagill, J.; Flager, F.; Lepech, M.; Fischer, M. Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts. Build. Environ. 2013, 60, 81–92. [Google Scholar] [CrossRef]
- Martí, V.J.; García-Segura, T.; Yepes, V. Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. J. Clean. Prod. 2016, 120, 231–240. [Google Scholar] [CrossRef]
- Guggemos, A.A.; Horvath, A. Comparison of Environmental Effects of Steel- and Concrete-Framed Buildings. J. Infrastruct. Syst. 2005, 11, 93–101. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Rincón, L.; Vilariño, V.; Pérez, G.; Castell, A. Life cycle assessment (LCA) and life cycel energy analysis (LCEA) of buildings and the building sector: a review. Renew. Sustain. Energy Rev. 2014, 29, 394–416. [Google Scholar] [CrossRef]
- Ibrahim, I.; Elliott, K.; Abdullah, R.; Kueh, A.; Sarbini, N. Experimental study on the shear behaviour of precast concrete hollow core slabs with concrete topping. Eng. Struct. 2016, 125, 80–90. [Google Scholar] [CrossRef]
- Hwang, H.; Kim, S.; Hwang, H.; Lee, K.; Lee, J. Structural performance of hollow reinforced concrete half slabs. Proc. Korea Concr. Inst. 2008, 20, 45–48. [Google Scholar]
- Kim, H.-S.; Kang, I.-S.; Lee, H.-S. Experimental study on the flexural behavior of I-slab. Proc. Korea Concr. Inst. 2007, 19, 5–8. [Google Scholar]
- Lee, K.; Lee, G.; Hwang, H. Hollow Core Slab by Light Weight Assembly. Patent 1009584070000, 10 May 2010. [Google Scholar]
- Chung, J.-H.; Jung, H.-S.; Bae, B.-I.; Choi, C.-S.; Choi, H.-K. Two-Way Flexural Behavior of Donut-Type Voided Slabs. Int. J. Concr. Struct. Mater. 2018, 12, 26. [Google Scholar] [CrossRef]
- Aldejohann, M.; Schnellenbach-Held, M. Investigations on the shear capacity of biaxial hollow slabs-test results and evaluation. Darmst. Concr. 2003, 18, 532–545. [Google Scholar]
- Schnellenbach-Held, M.; Pfeffer, K. Punching behavior of biaxial hollow slabs. Cem. Concr. Compos. 2002, 24, 551–556. [Google Scholar] [CrossRef]
- Song, L.; Mohamed, Y.; Abourizk, S.M. Early Contractor Involvement in Design and Its Impact on Construction Schedule Performance. J. Manag. Eng. 2009, 25, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Azhar, S.; Carlton, W.A.; Olsen, D.; Ahmad, I. Building information modeling for sustainable design and LEED® rating analysis. Autom. Constr. 2011, 20, 217–224. [Google Scholar] [CrossRef]
- Zimina, D.; Ballard, G.; Pasquire, C. Target value design: using collaboration and a lean approach to reduce construction cost. Constr. Manag. Econ. 2012, 30, 383–398. [Google Scholar] [CrossRef]
- Chau, C.-K.; Leung, T.; Ng, W. A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings. Appl. Energy 2015, 143, 395–413. [Google Scholar] [CrossRef]
- Ferreiro-Cabello, J.; Fraile-Garcia, E.; de Pison Ascacibar, E.M.; de Pison Ascacibar, F.J.M. Minimizing greenhouse gas emissions and costs for structures with flat slabs. J. Clean. Prod. 2016, 137, 922–930. [Google Scholar] [CrossRef]
- International Organisation for Standization. ISO: 14040: Environmental Management Life Cycle Assessment Principles and Framework; ISO: Geneva, Switzeland, 2006. [Google Scholar]
- The Korea Environmental Industry and Technology Institute (KEITI). Korea LCI DB Information Network. Available online: http://www.epd.or.kr/en/lci/lci_intro.asp (accessed on 20 June 2019).
- International Organistion for Standard. ISO14044: Life Cycle Assessment (Requirement and Guidelines); Interantional Organisation for Standization: Geneva, Switzeland, 2006. [Google Scholar]
- International Organisation for Standization. ISO: 21930: Environmental Declaration of Building Product; ISO: Geneva, Switzeland, 2007. [Google Scholar]
- Korea Price Information Corporation. Korea Price Information; Korea Price Information Corporation: Seoul, Korea, 2017. [Google Scholar]
- American Concrete Institute Committee. Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (ACI 318R-05); American Concrete Institute: Farmington Hills, MI, USA, 2005. [Google Scholar]
- American Society of Civil Engineers. Minimum Design Loads and Associated Criteria for Buildings and Other Structures (7–10); American Society of Civil Engineers: Preston, WV, USA, 2010. [Google Scholar]
- Kim, S.; Jang, T.; Kim, S. Structural performance tests of two-way void slabs. J. Archit. Inst. Korea Struct. Constr. 2009, 25, 35–42. [Google Scholar]
Material | Unit | GHG Emission Factors (kg⋅CO2⋅eq/unit) | Resource |
---|---|---|---|
Ready-mixed concrete | m3 | 4.29 × 102 | National LCI DB [45] |
Rebars | kg | 3.48 × 101 | |
Forms | m2 | 1.49 × 102 | |
Void formers (Expanded polystyrene) | kg | 1.91 × 101 | |
Steel decking | m2 | 3.90 × 101 |
Materials | Distance (unit: km) | Type of Transportation |
---|---|---|
Ready mixed concrete | 25 | 6 m3 concrete mixer |
Rebars | 380 | 11.5 ton lorry |
Steel decking | 110 | 4.5 ton lorry |
Void formers | 40 | 4.5 ton lorry |
Forms | 30 | 4.5 ton lorry |
Materials | Unit | Unit Price | |
---|---|---|---|
Korean Won (KRW) | US Dollar (USD) | ||
Ready mixed concrete | m3 | 56,000 | 47.54 |
Rebars | kg | 780 | 0.66 |
Forms | m2 | 40,850 | 34.68 |
Void formers | kg | 16,000 | 13.58 |
Steel decking | m2 | 27,000 | 22.92 |
Compressive Strength of Concrete | fck = 24 MPa | |
Tensile Strength of Reinforcing Bars | fy = 400 MPa | |
Permanent Load | 7.94 kN/m2 | |
Service Load | Case 1 | 4.00 kN/m2 |
Case 2 | 6.00 kN/m2 | |
Design Guidance |
Case 1 | Case 2 | |||||||
---|---|---|---|---|---|---|---|---|
Ordinary Reinforced Concrete Slab 1 (ORC 1) | Voided Deck System 1 (VDS 1) | Ordinary Reinforced Concrete Slab 2 (ORC 2) | Voided Deck System 2 (VDS 2) | |||||
GHG | Contribution Proportion (%) | GHG | Contribution Proportion (%) | GHG | Contribution Proportion (%) | GHG | Contribution Proportion (%) | |
E1 | 243,280 | 94.8 | 212,716 | 94.6 | 13,285 | 95.0 | 11,490 | 94.1 |
E2 | 12,123 | 4.7 | 11,032 | 4.9 | 641 | 4.6 | 650 | 5.3 |
E3 | 1196 | 0.5 | 1197 | 0.5 | 63 | 0.5 | 71 | 0.6 |
Total (kg·CO2·eq) | 256,599 | 100 | 224,945 | 100 | 13,989 | 100 | 12,211 | 100 |
GHG emissions per square meter(kg·CO2·eq/m2) | 193.82 | 169.91 | 198.24 | 173.04 |
Case 1 | Case 2 | |||
---|---|---|---|---|
V1 − O1 | Reduction Ratio ([V1 − O1]/O1) | V2 − O2 | Reduction Ratio ([V2 − O2]/O2) | |
E1 | −30,564 | −11.9 | −1795 | −12.8 |
E2 | −1091 | −0.5 | 9 | 0.1 |
E3 | 1.3 | 0.1 | 8 | 0.1 |
Total reduction | −31,655 | −12.3 | 1778 | −12.6 |
Reduction per m2 | 23.9 | −12.3 | 25.2 | −12.6 |
Material | Member | ORC 1 | VDS 1 | Reduction (VDS 1 − ORC 1) | |||
---|---|---|---|---|---|---|---|
GHGs | % | GHGs | % | kg·CO2·eq | % | ||
Concrete | Slab | 59,701 | 24.5 | 90,780 | 42.7 | 31,079 | 12.7 |
Beams and girders | 79,594 | 32.7 | 59,968 | 28.2 | −19,627 | −8.1 | |
Subtotal | 139,295 | 57.2 | 150,748 | 70.9 | 11,452 | 4.7 | |
Rebars and steel materials | Slab | 3677 | 1.5 | 5526 | 2.6 | 1849 | 0.8 |
Beams and girders | 8142 | 3.4 | 5787 | 2.7 | −2356 | −1.0 | |
Subtotal | 11,819 | 4.9 | 11,313 | 5.3 | −507 | −0.2 | |
Forms | Slab | 49,542 | 20.4 | 0 | 0 | −49,542 | −20.4 |
Beams and girders | 42,624 | 17.5 | 26,021 | 12.2 | −16,603 | −6.8 | |
Subtotal | 92,166 | 37.9 | 26,021 | 12.2 | 66,145 | −27.2 | |
Steel decking | N.A. | N.A. | 16,790 | 7.9 | 16,790 | 6.9 | |
Void formers | N.A. | N.A. | 7844 | 3.7 | 7844 | 3.2 | |
Total | 243,280 | 100 | 212,716 | 100 | 30,565 | −12.6 |
Material | Member | ORC 2 | VDS 2 | Reduction (VDS 2 − ORC 2) | |||
---|---|---|---|---|---|---|---|
GHGs | % | GHGs | % | kg·CO2·eq | % | ||
Concrete | Slab | 3257 | 24.5 | 4506 | 39.2 | 1249 | 9.4 |
Beams and girders | 4173 | 31.4 | 3048 | 26.5 | −1125 | −8.5 | |
Subtotal | 7430 | 44.9 | 7554 | 65.7 | 124 | 0.9 | |
Rebars and steel materials | Slab | 195 | 1.5 | 279 | 2.4 | 184 | 1.4 |
Beams and girders | 432 | 3.3 | 303 | 2.6 | −129 | −1.0 | |
Subtotal | 627 | 4.8 | 582 | 5.0 | −45 | −0.3 | |
Forms | Slab | 2826 | 21.3 | 0 | 0 | −2826 | −21.3 |
Beams and girders | 2401 | 18.1 | 1745 | 15.2 | −656 | −4.9 | |
Subtotal | 5227 | 39.2 | 1745 | 15.2 | −3532 | −26.6 | |
Steel decking | N.A. | N.A. | 1191 | 10.4 | −1191 | −9.0 | |
Void formers | N.A. | N.A. | 418 | 3.6 | 418 | 3.1 | |
Total | 13,284 | 100 | 11,490 | 100 | −1794 | −13.5 |
Type | Case 1 | Case 2 | ||||||
---|---|---|---|---|---|---|---|---|
ORC 1 | VDS 1 | ORC 2 | VDS 2 | |||||
Phase | Cost | % | Cost | % | Cost | % | Cost | % |
C1 | 101,301 | 89.3 | 86,286 | 88.7 | 5606 | 85.9 | 4950 | 85.5 |
C2 | 9117 | 8.0 | 7755 | 7.9 | 505 | 7.7 | 446 | 7.7 |
C2 | 3002 | 2.7 | 3178 | 2.9 | 415 | 6.4 | 396 | 6.8 |
Total | 113,420 | 100 | 97,230 | 100 | 6526 | 100 | 5792 | 100 |
Costs per square meter ($/m2) | 86 | 73 | 93 | 82 |
Members | Case 1 | Case 2 | Reduction of Costs | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ORC 1 | VDS 1 | ORC 2 | VDS 2 | Case 1 | Case 2 | ||||||||
Cost | % | Cost | % | Cost | % | Cost | % | Cost | % | Cost | % | ||
Ready-mixed concrete | Slab | 6909 | 6.8 | 10,506 | 12.1 | 377 | 6.7 | 522 | 10.5 | 3597 | 3.6 | 145 | 2.6 |
Beam and girder | 9212 | 9.1 | 6940 | 8.0 | 483 | 8.6 | 353 | 7.1 | −2272 | −2.2 | −130 | −2.3 | |
Subtotal | 16,121 | 15.9 | 17,446 | 20.2 | 860 | 15.3 | 875 | 17.7 | 1325 | 1.4 | 15 | 0.3 | |
Rebars | Slab | 7111 | 7.0 | 10,687 | 12.4 | 376 | 6.7 | 539 | 10.9 | 3567 | 3.5 | 163 | 2.9 |
Beam and girder | 15,746 | 15.5 | 11,190 | 13.0 | 835 | 14.9 | 587 | 11.9 | −4556 | −4.5 | −248 | −4.4 | |
Subtotal | 22,857 | 22.6 | 21,877 | 25.4 | 1212 | 21.6 | 1126 | 22.7 | −980 | −1.0 | −86 | −1.5 | |
Forms | Slab | 33,501 | 33.1 | 0 | 0 | 1911 | 34.1 | 0 | 0 | −33,501 | −33.1 | −1911 | −34.1 |
Beam and girder | 28,822 | 28.5 | 17,595 | 20.4 | 1624 | 29.0 | 1180 | 23.8 | −11,227 | −11.1 | −444 | −7.9 | |
Subtotal | 62,323 | 61.5 | 17,595 | 20.4 | 3534 | 63.0 | 1180 | 23.8 | −44,728 | −44.2 | −2354 | −42.0 | |
Steel decking | N.A. | N.A. | 11,630 | 13.5 | N.A. | N.A. | 825 | 16.7 | 11,630 | 11.5 | 825 | 14.7 | |
Void formers | N.A. | N.A. | 17,737 | 20.6 | N.A. | N.A. | 945 | 19.1 | 17,737 | 17.5 | 945 | 16.9 | |
Total | 101,301 | 100 | 86,286 | 100 | 5606 | 100 | 4950 | 100 | −15,015 | −14.8 | −656 | −11.7 |
ORC 1 | ORC 2 | ORC AVG. | VDS 1 | VDS 2 | VDS AVG. | |
---|---|---|---|---|---|---|
GHG (kg·CO2·eq) | 194 | 198 | 196 | 170 | 173 | 171.5 |
Cost (USD: $) | 86 | 93 | 89.5 | 73 | 82 | 77.5 |
GHG per unit cost (kg·CO2·eq/$) | 2.26 | 2.13 | 2.20 | 2.33 | 2.11 | 2.22 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Na, S.; Paik, I. Reducing Greenhouse Gas Emissions and Costs with the Alternative Structural System for Slab: A Comparative Analysis of South Korea Cases. Sustainability 2019, 11, 5238. https://doi.org/10.3390/su11195238
Na S, Paik I. Reducing Greenhouse Gas Emissions and Costs with the Alternative Structural System for Slab: A Comparative Analysis of South Korea Cases. Sustainability. 2019; 11(19):5238. https://doi.org/10.3390/su11195238
Chicago/Turabian StyleNa, Seunguk, and Inkwan Paik. 2019. "Reducing Greenhouse Gas Emissions and Costs with the Alternative Structural System for Slab: A Comparative Analysis of South Korea Cases" Sustainability 11, no. 19: 5238. https://doi.org/10.3390/su11195238
APA StyleNa, S., & Paik, I. (2019). Reducing Greenhouse Gas Emissions and Costs with the Alternative Structural System for Slab: A Comparative Analysis of South Korea Cases. Sustainability, 11(19), 5238. https://doi.org/10.3390/su11195238