Governance of Ecosystem Services in Agroecology: When Coordination is Needed but Difficult to Achieve
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Framework of Analysis: Characterizing Interdependencies to Identify Obstacles for Coordination
2.3. Data Collection: A Participatory Modelling Process
- (i)
- Context analysis: We conducted 30 semi-structured individual interviews with stakeholders (farmers, technical advisors, public institutions, landowners) in order to identify key stakeholders, including beneficiaries and providers of pest control ecosystem services.
- (ii)
- Framing key issues with stakeholders: We carried out individual interviews with public institutions overseeing agriculture in order to identify the highest stakes concerning pest control and which pest control issues were the most salient for local stakeholders.
- (iii)
- Eliciting stakeholders’ representations of the socio-ecological systems: We conducted 20 individual interviews with farmers, technicians and landowners in the study site to formalize their mental model about pest control. These mental models show key socio-ecological interactions from each stakeholder’s subjective perspective (details are presented in reference [35]). From these interactions, the interdependencies were identified and characterized.
- (iv)
- Collective workshops integrating different types of knowledge and exploring scenarios using simulation tools: We organized collective workshops that included scientific, technical and experiential knowledge. Integrating a diversity of knowledge has been emphasized as a key feature in exploring agroecological innovations [24]. With local stakeholders, we co-constructed models to simulate different facets of the socio-ecological system regarding biological pest control in the area. In particular, a Bayesian network model was co-constructed to integrate the different types of knowledge. Simulations were conducted with the stakeholders to explore the potential of landscape-based biological pest control [40], as well as alternative pest control strategies. More details about the Bayesian network model and results of each scenario are presented in references [40,41].
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kremen, C.; Miles, A. Ecosystem Services in Biologically Diversified versus Conventional Farming Systems: Benefits, Externalities, and Trade-Offs. Ecol. Soc. 2012, 17. [Google Scholar] [CrossRef] [Green Version]
- Duru, M.; Therond, O.; Martin, G.; Martin-Clouaire, R.; Magne, M.-A.; Justes, E.; Journet, E.-P.; Aubertot, J.-N.; Savary, S.; Bergez, J.-E.; et al. How to implement biodiversity-based agriculture to enhance ecosystem services: A review. Agron. Sustain. Dev. 2015, 35, 1259–1281. [Google Scholar] [CrossRef]
- Altieri, M.A. Agroecology: The Science of Sustainable Agriculture, 2nd ed.; Westview Press; IT Publications: Boulder, CO, USA; London, UK, 1995; ISBN 978-0-8133-1717-5. [Google Scholar]
- De Schutter, O. Agroecology and the Right to Food; United Nations: New York, NY, USA, 2011; p. 21. [Google Scholar]
- Geiger, F.; Bengtsson, J.; Berendse, F.; Weisser, W.W.; Emmerson, M.; Morales, M.B.; Ceryngier, P.; Liira, J.; Tscharntke, T.; Winqvist, C.; et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 2010, 11, 97–105. [Google Scholar] [CrossRef]
- Rusch, A.; Chaplin-Kramer, R.; Gardiner, M.M.; Hawro, V.; Holland, J.; Landis, D.; Thies, C.; Tscharntke, T.; Weisser, W.W.; Winqvist, C.; et al. Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agric. Ecosyst. Environ. 2016, 221, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Hill, S.B.; MacRae, R.J. Conceptual Framework for the Transition from Conventional to Sustainable Agriculture. J. Sustain. Agric. 1995, 7, 81–87. [Google Scholar] [CrossRef]
- Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 2000, 45, 175–201. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.J.J.A.; Booij, C.J.H.; Tscharntke, T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B 2006, 273, 1715–1727. [Google Scholar] [CrossRef] [PubMed]
- Veres, A.; Petit, S.; Conord, C.; Lavigne, C. Does landscape composition affect pest abundance and their control by natural enemies? A review. Agric. Ecosyst. Environ. 2013, 166, 110–117. [Google Scholar] [CrossRef]
- Östman, Ö.; Ekbom, B.; Bengtsson, J. Yield increase attributable to aphid predation by ground-living polyphagous natural enemies in spring barley in Sweden. Ecol. Econ. 2003, 45, 149–158. [Google Scholar] [CrossRef]
- Östman, Ö.; Ekbom, B.; Bengtsson, J. Landscape heterogeneity and farming practice influence biological control. Basic Appl. Ecol. 2001, 2, 365–371. [Google Scholar] [CrossRef]
- Thies, C.; Tscharntke, T. Landscape Structure and Biological Control in Agroecosystems. Science 1999, 285, 893–895. [Google Scholar] [CrossRef] [PubMed]
- Cong, R.-G.; Smith, H.G.; Olsson, O.; Brady, M. Managing ecosystem services for agriculture: Will landscape-scale management pay? Ecol. Econ. 2014, 99, 53–62. [Google Scholar] [CrossRef]
- Bell, A.; Zhang, W.; Nou, K. Pesticide use and cooperative management of natural enemy habitat in a framed field experiment. Agric. Syst. 2016, 143, 1–13. [Google Scholar] [CrossRef]
- Busck, A.G. Hedgerow planting analysed as a social system—Interaction between farmers and other actors in Denmark. J. Environ. Manag. 2003, 68, 161–171. [Google Scholar] [CrossRef]
- Brodt, S.; Klonsky, K.; Jackson, L.; Brush, S.B.; Smukler, S. Factors affecting adoption of hedgerows and other biodiversity-enhancing features on farms in California, USA. Agrofor. Syst. 2009, 76, 195–206. [Google Scholar] [CrossRef]
- Potier, D. Pesticides et Agro-Écologie—Les Champs du Possible; Ministère de l’agriculture, de l’agroalimentaire et de la forêt: Paris, France, 2014.
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity—Ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Schellhorn, N.A.; Parry, H.R.; Macfadyen, S.; Wang, Y.; Zalucki, M.P. Connecting scales: Achieving in-field pest control from areawide and landscape ecology studies: Connecting scales. Insect Sci. 2015, 22, 35–51. [Google Scholar] [CrossRef]
- Tscharntke, T.; Karp, D.S.; Chaplin-Kramer, R.; Batáry, P.; DeClerck, F.; Gratton, C.; Hunt, L.; Ives, A.; Jonsson, M.; Larsen, A.; et al. When natural habitat fails to enhance biological pest control—Five hypotheses. Biol. Conserv. 2016, 204, 449–458. [Google Scholar] [CrossRef]
- Sigwalt, A.; Pain, G.; Pancher, A.; Vincent, A. Collective Innovation Boosts Biodiversity in French Vineyards. J. Sustain. Agric. 2012, 36, 337–352. [Google Scholar] [CrossRef]
- Zhang, W.; Ricketts, T.H.; Kremen, C.; Carney, K.; Swinton, S.M. Ecosystem services and dis-services to agriculture. Ecol. Econ. 2007, 64, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Barnaud, C.; Corbera, E.; Muradian, R.; Salliou, N.; Sirami, C.; Vialatte, A.; Choisis, J.-P.; Dendoncker, N.; Mathevet, R.; Moreau, C.; et al. Ecosystem services, social interdependencies, and collective action: A conceptual framework. Ecol. Soc. 2018, 23, 1–14. [Google Scholar] [CrossRef]
- Ledyard, J.O. Public Goods: A Survey of Experimental Research; California Institute of Technology: Pasadena, CA, USA, 1994. [Google Scholar]
- Olson, M. The Logic of Collective Action Public Goods and the Theory of Groups; Harvard University Press: Cambridge, MA, USA, 1965; ISBN 0-674-53751-3. [Google Scholar]
- Lant, C.L.; Ruhl, J.B.; Kraft, S.E. The Tragedy of Ecosystem Services. BioScience 2008, 58, 969–974. [Google Scholar] [CrossRef] [Green Version]
- Brewer, M.J.; Goodell, P.B. Approaches and Incentives to Implement Integrated Pest Management that Addresses Regional and Environmental Issues. Annu. Rev. Entomol. 2012, 57, 41–59. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, M.; Langrell, S.R.H.; Gomez-y-Paloma, S. Incentives and policies for integrated pest management in Europe: A review. Agron. Sustain. Dev. 2015, 35, 27–45. [Google Scholar] [CrossRef]
- Malone, T.W.; Crowston, K. The interdisciplinary study of coordination. ACM Comput. Surv. CSUR 1994, 26, 87–119. [Google Scholar] [CrossRef] [Green Version]
- Williamson, O.E. Comparative Economic Organization: The Analysis of Discrete Structural Alternatives. Adm. Sci. Q. 1991, 36, 269–296. [Google Scholar] [CrossRef]
- Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1990; ISBN 0-521-37101-5. [Google Scholar]
- Stallman, H.R. Ecosystem services in agriculture: Determining suitability for provision by collective management. Ecol. Econ. 2011, 71, 131–139. [Google Scholar] [CrossRef]
- Stallman, H.R.; James, H.S. Determinants affecting farmers’ willingness to cooperate to control pests. Ecol. Econ. 2015, 117, 182–192. [Google Scholar] [CrossRef]
- Salliou, N.; Barnaud, C. Landscape and biodiversity as new resources for agro-ecology? Insights from farmers’ perspectives. Ecol. Soc. 2017, 22, 1–10. [Google Scholar] [CrossRef]
- Guichard, L.; Dedieu, F.; Jeuffroy, M.-H.; Meynard, J.-M.; Reau, R.; Savini, I. Le plan Ecophyto de réduction d’usage des pesticides en France: Décryptage d’un échec et raisons d’espérer. Cahiers Agric. 2017, 26, 14002. [Google Scholar] [CrossRef]
- Dib, H.; Sauphanor, B.; Capowiez, Y. Effect of codling moth exclusion nets on the rosy apple aphid, Dysaphis plantaginea, and its control by natural enemies. Crop. Prot. 2010, 29, 1502–1513. [Google Scholar] [CrossRef]
- Cormier, D.; Veilleux, J.; Firlej, A. Exclusion net to control spotted wing Drosophila in blueberry fields. IOBC-WPRS Bull. 2015, 109, 181–184. [Google Scholar]
- Leeuwis, C. Reconceptualizing Participation for Sustainable Rural Development: Towards a Negotiation Approach. Dev. Chang. 2000, 31, 931–959. [Google Scholar] [CrossRef]
- Salliou, N.; Barnaud, C.; Vialatte, A.; Monteil, C. A participatory Bayesian Belief Network approach to explore ambiguity among stakeholders about socio-ecological systems. Environ. Model. Softw. 2017, 96, 199–209. [Google Scholar] [CrossRef]
- Salliou, N.; Vialatte, A.; Monteil, C.; Barnaud, C. First use of participatory Bayesian modeling to study habitat management at multiple scales for biological pest control. Agron. Sustain. Dev. 2019, 39, 9. [Google Scholar] [CrossRef]
- Karp, D.S.; Chaplin-Kramer, R.; Meehan, T.D.; Martin, E.A.; DeClerck, F.; Grab, H.; Gratton, C.; Hunt, L.; Larsen, A.E.; Martínez-Salinas, A.; et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. Sci. USA 2018, 115, E7863–E7870. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, G.J.K.; Holland, J.M.; Bailey, A.; Thomas, M.B. Efficacy and economics of shelter habitats for conservation biological control. Biol. Control 2008, 45, 200–209. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; O’Rourke, M.E.; Blitzer, E.J.; Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity: Pest and natural enemy response to landscape complexity. Ecol. Lett. 2011, 14, 922–932. [Google Scholar] [CrossRef]
- Letourneau, D.K.; Bothwell, S.G. Comparison of organic and conventional farms: Challenging ecologists to make biodiversity functional. Front. Ecol. Environ. 2008, 6, 430–438. [Google Scholar] [CrossRef]
- Kelemen, E.; Nguyen, G.; Gomiero, T.; Kovács, E.; Choisis, J.-P.; Choisis, N.; Paoletti, M.G.; Podmaniczky, L.; Ryschawy, J.; Sarthou, J.-P.; et al. Farmers’ perceptions of biodiversity: Lessons from a discourse-based deliberative valuation study. Land Use Policy 2013, 35, 318–328. [Google Scholar] [CrossRef]
- Ostrom, E. A general framework for analyzing sustainability of Socio-ecological systems. Science 2009, 325, 416–419. [Google Scholar] [CrossRef]
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. USA 2010, 107, 5242–5247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estrada-Carmona, N.; Hart, A.K.; DeClerck, F.A.J.; Harvey, C.A.; Milder, J.C. Integrated landscape management for agriculture, rural livelihoods, and ecosystem conservation: An assessment of experience from Latin America and the Caribbean. Landsc. Urban Plan. 2014, 129, 1–11. [Google Scholar] [CrossRef] [Green Version]
- de Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Muradian, R.; Rival, L. Between markets and hierarchies: The challenge of governing ecosystem services. Ecosyst. Serv. 2012, 1, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Cowan, R.; Gunby, P. Sprayed to death: Path dependencies, lock-in and pest control strategies. Econ. J. 1996, 106, 521–542. [Google Scholar] [CrossRef]
- Horlings, L.G.; Marsden, T.K. Towards the real green revolution? Exploring the conceptual dimensions of a new ecological modernisation of agriculture that could ‘feed the world’. Glob. Environ. Chang. 2011, 21, 441–452. [Google Scholar] [CrossRef]
- Goodman, D.; DuPuis, E.M.; Goodman, M.K. Alternative Food Networks: Knowledge, Practice, and Politics; Routledge: London, UK, 2012; ISBN 1-136-64123-8. [Google Scholar]
- Berthet, E.T.A.; Barnaud, C.; Girard, N.; Labatut, J.; Martin, G. How to foster agroecological innovations? A comparison of participatory design methods. J. Environ. Plan. Manag. 2015, 59, 1–22. [Google Scholar] [CrossRef]
- Kuhn, T.S. The Structure of Scientific Revolutions; University of Chicago Press: Chicago, IL, USA, 2012; ISBN 0-226-45814-8. [Google Scholar]
- Gunderson, L.H.; Holling, C.S. Panarchy: Understanding Transformations in Human and Natural Systems; Island Press: Washington, DC, USA, 2001; ISBN 978-1-55963-857-9. [Google Scholar]
- Mesnage, R.; Antoniou, M.N. Facts and fallacies in the debate on glyphosate toxicity. Front. Public Health 2017, 5, 316. [Google Scholar] [CrossRef]
- Michel-Guillou, E.; Moser, G. Commitment of farmers to environmental protection: From social pressure to environmental conscience. J. Environ. Psychol. 2006, 26, 227–235. [Google Scholar] [CrossRef]
- Walker, W.E.; Harremoës, P.; Rotmans, J.; van der Sluijs, J.P.; van Asselt, M.B.; Janssen, P.; Krayer von Krauss, M.P. Defining uncertainty: A conceptual basis for uncertainty management in model-based decision support. Integr. Assess. 2003, 4, 5–17. [Google Scholar] [CrossRef]
- Funtowicz, S.O.; Ravetz, J.R. The worth of a songbird: Ecological economics as a post-normal science. Ecol. Econ. 1994, 10, 197–207. [Google Scholar] [CrossRef]
- Walker, B.; Carpenter, S.; Anderies, J.; Abel, N.; Cumming, G.; Janssen, M.; Lebel, L.; Norberg, J.; Peterson, G.D.; Pritchard, R. Resilience management in social-ecological systems: A working hypothesis for a participatory approach. Conserv. Ecol. 2002, 6. [Google Scholar] [CrossRef]
- Schultz, A.; Wieland, R. The use of neural networks in agroecological modelling. Comput. Electron. Agric. 1997, 18, 73–90. [Google Scholar] [CrossRef]
- Kay, J.J.; Regier, H.A. Uncertainty, Complexity, and Ecological Integrity: Insights from an Ecosystem Approach. In Implementing Ecological Integrity: Restoring Regional and Global Environmental and Human Health; Crabbé, P., Holland, A., Ryszkowski, L., Westra, L., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 121–156. ISBN 978-94-011-5876-3. [Google Scholar]
- Vanloqueren, G.; Baret, P.V. How agricultural research systems shape a technological regime that develops genetic engineering but locks out agroecological innovations. Res. Policy 2009, 38, 971–983. [Google Scholar] [CrossRef]
- Warner, K.D. Agroecology as Participatory Science: Emerging Alternatives to Technology Transfer Extension Practice. Sci. Technol. Hum. Values 2008, 33, 754–777. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salliou, N.; Muradian, R.; Barnaud, C. Governance of Ecosystem Services in Agroecology: When Coordination is Needed but Difficult to Achieve. Sustainability 2019, 11, 1158. https://doi.org/10.3390/su11041158
Salliou N, Muradian R, Barnaud C. Governance of Ecosystem Services in Agroecology: When Coordination is Needed but Difficult to Achieve. Sustainability. 2019; 11(4):1158. https://doi.org/10.3390/su11041158
Chicago/Turabian StyleSalliou, Nicolas, Roldan Muradian, and Cécile Barnaud. 2019. "Governance of Ecosystem Services in Agroecology: When Coordination is Needed but Difficult to Achieve" Sustainability 11, no. 4: 1158. https://doi.org/10.3390/su11041158
APA StyleSalliou, N., Muradian, R., & Barnaud, C. (2019). Governance of Ecosystem Services in Agroecology: When Coordination is Needed but Difficult to Achieve. Sustainability, 11(4), 1158. https://doi.org/10.3390/su11041158