Contribution of Roof Refurbishment to Urban Sustainability
Abstract
:1. Introduction
Objective and Main Conclusions
2. Materials and Methods
3. Results
3.1. Case Study
3.1.1. Urban Area
3.1.2. Analysis of the Building Stock
3.1.3. Roof Types
- Sloped roofs (SR): roof whose slope is broken by an obtuse angle. A third of the roofs in the area are sloped roofs, finished mainly by ceramic gables
- Flat non-walkable roof (NWR): limited access and sometimes used to contain facilities. It is frequently found in nonresidential uses where facilities are centralized
- Flat walkable roof (WR): a flat roof that is almost level, unlike many of sloped roof types, up to approximately 10° for draining rainwater. Two WR can be distinguished depending on the property regime:
- ○
- Community walkable roof (CWR), with access to all dwellers. They are usually intended for different purposes, such as clothes lines, storage rooms, etc.
- ○
- Private walkable roofs (PWR) for personal use. They were not included in this study because they are terraces for private use.
- Flat roofs in inner courtyard (IC): the inner courtyard is a central space within the building that provides light and ventilation. In some buildings it is located on the ground floor. Two subtypes were considered:
- ○
- Private inner courtyards (PIC): often used by first-floor dwellers;
- ○
- Community inner courtyard (CIC).
3.2. Refurbishment Solutions
3.2.1. Green Roofs
3.2.2. Solar Panels
3.2.3. Residents’ Association Meeting Area
3.2.4. Adding a New Floor on the Existent Building
3.2.5. Selecting the Proposed Solutions
3.3. Type of Roofs Vs. Refurbishment Solution
- All the combinations representing under 2% of the area were not considered;
- Roofs that imply private uses (private walkable roofs and private inner courtyards) were not included;
- Solar panels for DHW are considered in sloped roofs, preferably in solar orientation;
- For community inner courtyards, only the residents’ area solution is considered. As community inner courtyards are located on ground floors, green roof and solar-panel solutions are most likely to be affected by solar obstacles.
- SP-SR: Solar panel/Sloped roof;
- GR-NWR: Green roof/Non-walkable roof;
- GR-CWR: Green roof/Community walkable roof;
- RA-CWR: Resident area/Community walkable roof;
- RA-CIC: Resident area/Community inner courtyard.
3.4. Estimating the Benefits of Refurbishment
- 1960–1979/MfH/CWR-NWR: multi-family houses built during period 1960–1979 with community walkable roof and non-walkable roof;
- 1980–2006/MfH/SR: multi-family houses built during period 1980–2006 with sloped roof;
- 1980–2006/MfH/CWR-NWR: multi-family houses built during period 1980–2006 with community walkable roof and non-walkable roof;
- 1980–2006/SfH/SR: single-family houses built during period 1980–2006 with sloped roof;
- 2007–2012/MfH/SR: multi-family houses built during period 2007–2012 with sloped roof.
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 on the Energy Performance of Buildings. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:001:0065:0071:EN:PDF (accessed on 16 June 2020).
- Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings (recast). Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:153:0013:0035:EN:PDF (accessed on 16 June 2020).
- Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2012:315:TOC (accessed on 16 June 2020).
- Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2018:156:TOC (accessed on 16 June 2020).
- Spanish Statistic Institute INE. 2011. Available online: https://www.ine.es/jaxi/Datos.htm?path=/t20/e244/viviendas/p01/&file=01011a.px#!tabs-tabla, (accessed on 18 May 2020).
- Royal Decree 2429/79, 6 July 1979, Approving Basic Housing Regulation on Thermal Conditions, NBE-CT-79; The Ministry of Public Works and Urbanism of Spain: Madrid, Spain, 1979.
- Codigotecnico.org. Available online: https://www.codigotecnico.org/index.php/menu-documentoscte.html (accessed on 18 May 2002).
- Ministry of Transports, Mobility and Urban Agenda. 2020. Available online: https://www.fomento.gob.es/BE2/?nivel=2&orden=33000000 (accessed on 18 May 2020).
- Roldán, J. Evaluación de Sobrecargas de Uso de Vivienda en Estructuras de Edificación. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 28 October 2003. [Google Scholar] [CrossRef]
- Intelligent Energy Europe, Typology Approach for Building Stock EnergyAssessment—TABLE Database (National Building Typology). 2016. Available online: http://episcope.eu/building-typology/ (accessed on 15 May 2020).
- Generalitat Valenciana; Instituto Valenciano de la Edificación. Catálogo de Tipología Edificatoria Residencial; Conselleria de Obras Públicas, Urbanismo y Vertebración del Territorio: Valencia, Spain, 2016. [Google Scholar]
- Martín-Consuegra, F.; de Frutos, F.; Oteiza, I.; Hernández-Aja, A. Use of cadastral data to assess urban scale building energy loss. Application to a deprived quarter in Madrid. Energy Build. 2018, 171, 50–63. [Google Scholar] [CrossRef]
- Braulio, M. Propuesta Metodológica Para la Caracterización del Comportamiento Energético Pasivo del Parque Edificatorio Residencial Existente Considerando su Contexto Urbano. Ph.D. Thesis, Universitat Jaume, I., Castellón, España, 9 June 2016. [Google Scholar] [CrossRef] [Green Version]
- Graus, R. La Cubierta Plana, un Paseo por Su Historia; Texsa y Universitat Politècnica de Catalunya: Barcelona, Spain, 2005. [Google Scholar]
- García-Bernal, D.; Huedo, P.; Babiloni, S.; Braulio, M.; Carrascosa, C.; Civera, V.; Ruá, M.J.; Agost-Felip, R. Estudio y Propuesta de Áreas de Rehabilitación, Regeneración y Renovación Urbana, con Motivo de la Tramitación del Plan. General Estructural de Castellón de la Plana. 2017. Tomo I. Available online: https://s3-eu-west-1.amazonaws.com/urbanismo/TOMO_I.pdf (accessed on 18 May 2020).
- García-Bernal, D.; Huedo, P.; Babiloni, S.; Braulio, M.; Carrascosa, C.; Civera, V.; Ruá, M.J.; Agost-Felip, R. Estudio y Propuesta de Áreas de Rehabilitación, Regeneración y Renovación Urbana, con Motivo de la Tramitación del Plan. General Estructural de Castellón de la Plana. 2017. Tomo II. Available online: https://s3-eu-west-1.amazonaws.com/urbanismo/TOMO_II.pdf (accessed on 18 May 2020).
- García-Bernal, D.; Huedo, P.; Babiloni, S.; Braulio, M.; Carrascosa, C.; Civera, V.; Ruá, M.J.; Agost-Felip, R. Estudio y Propuesta de Áreas de Rehabilitación, Regeneración y Renovación Urbana, con Motivo de la Tramitación del Plan. General Estructural de Castellón de la Plana. 2017. Tomo III. Available online: https://s3-eu-west-1.amazonaws.com/urbanismo/TOMO_III.pdf (accessed on 18 May 2020).
- García-Bernal, D.; Huedo, P.; Babiloni, S.; Braulio, M.; Carrascosa, C.; Civera, V.; Ruá, M.J.; Agost-Felip, R. Estudio y Propuesta de Áreas de Rehabilitación, Regeneración y Renovación Urbana, con Motivo de la Tramitación del Plan. General Estructural de Castellón de la Plana. 2017. Tomo IV. Available online: https://s3-eu-west-1.amazonaws.com/urbanismo/TOMO_IV.pdf (accessed on 18 May 2020).
- Corcelli, F.; Fiorentino, G.; Petit-Boix, A.; Rieradevall, J.; Gabarrell, X. Transforming rooftops into productive urban spaces in the Mediterranean. An LCA comparison of agri-urban production and photovoltaic energy generation. Resour. Conserv. Recy. 2019, 144, 321–336. [Google Scholar] [CrossRef] [Green Version]
- Aguacil, S.; Lufkin, S.; Rey, E.; Cuchí, A. Application of the cost-optimal methodology to urban renewal projects at the territorial scale based on statistical data—A case study in Spain. Energy Build. 2017, 144, 42–60. [Google Scholar] [CrossRef] [Green Version]
- Gangolells, M.; Casals, M.; Ferré-Bigorra, J.; Forcada, N.; Macarulla, M.; Kàtia, G.; Tejedor, B. Office representatives for cost-optimal energy retrofitting analysis: A novel approach using cluster analysis of energy performance certificate databases. Energy Build. 2019, 206, 109557. [Google Scholar] [CrossRef]
- Semple, S.; Jenkins, D. Variation of energy performance certificate assessments in the European Union. Energy Policy 2020, 137, 111127. [Google Scholar] [CrossRef]
- Ruá, M.J.; Huedo, P.; Civera, V.; Agost-Felip, R. A simplified model to assess vulnerable areas for urban regeneration. Sustain. Cities Soc. 2019, 46, 101440. [Google Scholar] [CrossRef]
- Saadatian, O.; Sopian, K.; Salleh, E.; Lim, C.H.; Riffat, S.; Saadatian, E.; Arash, T.; Sulaiman, M.Y. A review of energy aspects of green roofs. Renew. Sust. Energy Rev. 2013, 23, 155–168. [Google Scholar] [CrossRef]
- Maiolo, M.; Pirouz, B.; Bruno, R.; Palermo, S.A.; Arcuri, N.; Piro, P. The role of the extensive green roofs on decreasing building energy consumption in the Mediterranean climate. Sustainability 2020, 12, 359. [Google Scholar] [CrossRef] [Green Version]
- Bevilacqua, P.; Bruno, R.; Arcuri, N. Green roofs in a Mediterranean climate: Energy performances based on in-situ experimental data. Renew. Energy 2020, 152, 1414–1430. [Google Scholar] [CrossRef]
- Weber, M. Healthy urban living: Integration of noise in other local policy domains. In Proceedings of the 10th European Congress and Exposition on Noise Control Engineering, Euronoise 2015, Maastricht, The Netherlands, 1–3 June 2015; pp. 387–392. [Google Scholar]
- Hirano, Y.; Ihara, T.; Gomi, K.; Fujita, T. Simulation-based evaluation of the effect of green roofs in office building districts on mitigating the urban heat island effect and reducing CO2 emissions. Sustainability 2019, 11, 2055. [Google Scholar] [CrossRef] [Green Version]
- Shafique, M.; Xue, X.; Luo, X. An overview of carbon sequestration of green roofs in urban areas. Urban For. Urban Gree. 2020, 47, 126515. [Google Scholar] [CrossRef]
- Akther, M.; He, J.; Angus, C.; Huang, J.; Van Duin, B. A Review of green roof applications for managing urban stormwater in different climatic zones. Sustainability 2019, 10, 2864. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, S.J.; Ghosh, S. Roles of a roof top garden in enhancing social participation and urban regeneration in Sydney CBD. In Proceedings of the RICS COBRA Conference, Sydney, NSW, Australia, 8–10 July 2015. Royal Institution of Chartered Surveyors. [Google Scholar]
- Catalano, C.; Laudicina, V.A.; Badalucco, L.; Guarino, R. Some European green roof norms and guidelines through the lens of biodiversity: Do ecoregions and plant traits also matter? Ecol. Eng. 2018, 15–26. [Google Scholar] [CrossRef]
- Hong, W.; Guo, R.; Tang, H. Potential assessment and implementation strategy for roof greening in highly urbanized areas: A case study in Shenzhen, China. Cities 2019, 95, 102468. [Google Scholar] [CrossRef]
- Cascone, S. Green roof design: State of the art on technology and materials. Sustainability 2019, 11, 3020. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, E.; Arce, L.; Salom, J. A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis. Renew. Sust. Energy Rev. 2018, 81, 1530–1547. [Google Scholar] [CrossRef]
- Pomianowski, M.Z.; Johra, H.; Marszal-Pomianowska, A.; Zhang, C. Sustainable and energy-efficient domestic hot water systems: A review. Renew. Sust. Energy Rev. 2002, 128, 109900. [Google Scholar] [CrossRef]
- Gautama, A.; Chamolib, S.; Kumara, A.; Singhc, S. A review on technical improvements, economic feasibility and world scenario of solar water heating system. Renew. Sust. Energy Rev. 2017, 68, 541–562. [Google Scholar] [CrossRef]
- Alghamdi, A.S. Potential for rooftop-mounted PV power generation to meet domestic electrical demand in Saudi Arabia: Case study of a villa in Jeddah. Energies 2019, 12, 4411. [Google Scholar] [CrossRef] [Green Version]
- Jorge, C.M.; Ester, H.G. Energy earnings and carbon dioxin reduction achieved by the application of photovoltaic cells, case study of shopping light mall in Sao Paulo. J. Eng. Appl. Sci. 2018, 13, 7051–7056. [Google Scholar]
- Aste, N.; Adhikari, R.S.; Tagliabue, L.C. Solar integrated roof: Electrical and thermal production for a building renovation. Energy Procedia 2012, 30, 1042–1105. [Google Scholar] [CrossRef] [Green Version]
- Berto, R.; Stival, C.A.; Rosato, P. The valuation of public and private benefits of green roof retrofit in different climate conditions. In Values and Functions for Future Cities; Springer: Cham, Switzerland, 2020; pp. 145–166. [Google Scholar]
- Spanish Ministry for Economic Transition; Instituto de Diversificación y Ahorro Energético IDAE. Guía para el Desarrollo de Instrumentos de Fomento de Comunidades Energética Locales; Instituto de Diversificación y Ahorro Energético, IDAE: Madrid, Spain, 2019. [Google Scholar]
- Yuliani, S.; Hardiman, G.; Setyowati, E. Green-roof: The role of community in the substitution of green-space toward sustainable development. Sustainability 2020, 12, 1429. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, S.J.; Dixon, T. Innovation in the built environment. In Green Roof Retrofit: Building Urban Resilience; John Wiley and Sons: Chichester, UK, 2016. [Google Scholar]
- Teotónio, I.; Cabral, M.; Oliveira-Cruz, C.; Matos-Silva, C. Decision support system for green roofs investments in residential buildings. J. Clean. Prod. 2020, 249, 119365. [Google Scholar] [CrossRef]
- Dvorak, B. Comparative analysis of green roof guidelines and standards in Europe and North America. J. Green Build. 2011, 6, 170–191. [Google Scholar] [CrossRef]
- FLL. Guidelines for the Planning, Construction and Maintenance of Green Roofing; Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau e.V.: Bonn, Germany, 2008. [Google Scholar]
- Ministry of Transports, Mobility and Urban Agenda. Documento de Apoyo al Documento Básico DB-HE Ahorro de Energía Código Técnico de la Edificación. Available online: https://www.codigotecnico.org/images/stories/pdf/ahorroEnergia/DA_DB-HE-1_Calculo_de_parametros_caracteristicos_de_la_envolvente.pdf (accessed on 17 June 2020).
- Generador de Precios de la Construcción. Available online: http://www.generadordeprecios.info/ (accessed on 1 May 2020).
Refurbishment Solution | Pros | Cons | Select | Reason | Selected Solution | |
---|---|---|---|---|---|---|
NF | New floor | Economic profitability | Scarce applicability | No | Urban and technical limitations | |
GR | Green roof | Thermal and acoustic insulation; More green areas Carbon sequestration Reduction of the heat island effect | Maintenance cost Insulation; Noticeable on the top floor of the building | Yes | Entails many environmental benefits | Extensive solution |
SP | Solar panels for DHW | Savings in energy and carbon emissions | Savings only for DHW; Maintenance costs | Yes | Frequent solution | Standard model |
Solar photovoltaic panel. Community energy | Huge potential of savings in energy and carbon emissions | Still not standardized in residential uses in MfH; Depends on community agreement | No | Little experience in residential buildings | ||
RA | Residents association area | Enjoyment of underused space; Multipurpose | Depends on community agreement; Solution depends on final use | Yes | Use of underrated common area in buildings; Social uses. | Light wooden pergola |
Period | Building | Roof | Solution | Representative Building; Cadastral Reference Floors; Number of Dwellings; DHW Requirement (L/day) | Usable Area m2 | Roof Area m2 | Total Roof Area m2 | Energy Demand | Final Energy Consumption | Carbon Emissions | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kWh/year | kWh/Year | kgCO2/Year | |||||||||||
Per sqm % Saving | Total | Per sqm % Saving | Total | Per sqm % Saving | Total | ||||||||
1960–1979 | MfH | NWR | GR | 7395404YK5279N 6; 20; 2016 | 1440 | 36.70 | 5285.90 | 3.51 4.0% | 18,553.51 | 3.87 3.2% | 20,456.43 | 1.30 3.2% | 18,553.09 |
CWR | 1680 | 254.00 | 25,596.53 | 89,843.82 | 99,058.57 | 33,275.49 | |||||||
1980–2006 | MfH | SR | SP | 7496107YK5279N 7; 36; 3427 | 2912 | 234.00 | 18,717.40 | – | – | 17.99 27.2% | 336,726.03 | 4.5 26.4% | 84,228.30 |
NWR | GR | 7392307YK5279S 6; 30; 2856 | 2304 2968 | 67.60 | 3244.80 | 0.72 3.6% | 2336.26 | 1.26 1.7% | 4088.45 | 0.3 1.8% | 973.44 | ||
CWR | 173.90 | 11,652.45 | 8389.76 | 14,682.09 | 3495.74 | ||||||||
SfH | SR | SP | 7697301YK5279N 1; 3; 112 | 168 | 41.80 | 10,292.80 | – | – | 10.12 10.3% | 104,163.14 | 2.60 10% | 26,761.80 | |
2007–2012 | MfH | SR | SP | 7496404YK5279N 7; 30; 2856 | 2184 | 189.33 | 4354.70 | – | – | 19.94 36.2% | 86,832.72 | 5.0 34.9% | 21,773.50 |
Total savings area | 119,123.35 | 666,007.43 | 189,061.36 |
Building | Roofs | ||||
---|---|---|---|---|---|
MfH 6 dwellings 2 commercial premises 10 parking lots Address: Alcalá Galiano, 1 Cadastral reference: 7191303YK5279S Orientation: East–West Year 1994 | Type | Area (m2) | NBE-AE-88 Load/Overload (kg/m2) | NBE-CTE-79 Transmittance (kWh/m2) | |
NWR | 25.00 | 618/140 | 0.93 | ||
CWR | 108.25 | 618/190 | 0.93 | ||
SR | 134.64 | 346/134.64 | 1.12 | ||
Refurbishment | |||||
Roof | Solution | Added load (kg) | Transmittance (kWh/m2) | Budget * (€) | Benefits |
NWR | GR | 2735.50 | 0.51 | 2421.25 | E. demand: 18 kWh/year E. consumption: 31.5 kWh/year C. emissions: 7.5 kg CO2/year 25 m2 increase in green area Others: sound insulation, heat island effect reduction, etc. |
CWR | RA | 2043.14 | – | 3658.80 | Social |
SR | SP | 5900.00 | – | 12,062.40 | E. consumption: 2422,17 kWh/year C. emissions: 605.88 kg CO2/year |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pitarch, Á.; Ruá, M.J.; Reig, L.; Arín, I. Contribution of Roof Refurbishment to Urban Sustainability. Sustainability 2020, 12, 8111. https://doi.org/10.3390/su12198111
Pitarch Á, Ruá MJ, Reig L, Arín I. Contribution of Roof Refurbishment to Urban Sustainability. Sustainability. 2020; 12(19):8111. https://doi.org/10.3390/su12198111
Chicago/Turabian StylePitarch, Ángel, María José Ruá, Lucía Reig, and Inés Arín. 2020. "Contribution of Roof Refurbishment to Urban Sustainability" Sustainability 12, no. 19: 8111. https://doi.org/10.3390/su12198111
APA StylePitarch, Á., Ruá, M. J., Reig, L., & Arín, I. (2020). Contribution of Roof Refurbishment to Urban Sustainability. Sustainability, 12(19), 8111. https://doi.org/10.3390/su12198111