Spatiotemporal Analysis of the Nonlinear Negative Relationship between Urbanization and Habitat Quality in Metropolitan Areas
Abstract
:1. Introduction
- Identify the spatiotemporal variations in UI and HQ in YRDUA.
- Analyze the relationship between UI and HQ.
- Quantify the direct and indirect impacts of urbanization on HQ.
2. Material and Methods
2.1. Study Area and Data Source
2.2. Mapping Habitat Quality and Urbanization Intensity
2.2.1. Habitat Quality
2.2.2. Urbanization Intensity
2.3. Analyzing the Relationship between UI and HQ
2.4. Quantifying the Urbanization Impacts on HQ
3. Results
3.1. The HQ and UI Spatiotemporal Variations in YRDUA
3.1.1. The Spatial and Temporal Changes in Habitat Quality
3.1.2. The Spatial and Temporal Changes in Urbanization Intensity
3.2. The Relationship between HQ and UI
3.2.1. Regional Scale
3.2.2. City Scale
3.3. The Direct and Indirect Impacts of Urbanization on HQ
3.3.1. Regional Urbanization Impacts on HQ
3.3.2. Urbanization Impacts on HQ in Cities
4. Discussion
4.1. Nonlinear Relationship between Habitat Quality and Urbanization Intensity
4.2. The Necessity of Distinguishing Urbanization Impacts on Habitat Quality
4.3. Limitations and Future Directions
5. Conclusions
- The YRDUA underwent rapid urbanization from 1995 to 2010, intensifying urban expansion and human activities. The vast majority of urban expansion was concentrated in the Hangzhou Bay Belt, the Yangtze River Estuary and the Yangtze River Belt, accompanied by a large proportion of habitat degradation.
- The overall dynamic of HQ was generally nonlinear and negative along the urbanization gradient, whereas the nonlinear negative relationship between HQ and UI changed from a steady decrease to stable and then back to a steady decrease, with inflection points where urbanization reached 20% and 80%. The transformation in the relationship indicated that more natural areas were affected by urbanization and that the habitat quality in urban areas was improved in the process of urbanization.
- With an improved conceptual framework, the difference between linear and nonlinear relationships depends on the indirect urbanization impact. Negative indirect impacts will accelerate habitat degradation, while positive impacts can partially offset habitat degradation caused by land conversion. The average offset extent was approximately 28.23%, 17.41%, 22.94%, and 16.18% in 1995, 2000, 2005, and 2010, respectively. Nearly 76.9% of the cities showed positive indirect impacts, and 55% of them showed improved habitat quality.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, C.; Li, J.X.; Wu, J.G. Quantifying the speed, growth modes, and landscape pattern changes of urbanization: A hierarchical patch dynamics approach. Landsc. Ecol. 2013, 28, 1875–1888. [Google Scholar] [CrossRef]
- Liu, Z.F.; He, C.Y.; Zhou, Y.Y.; Wu, J.G. How much of the world’s land has been urbanized, really? A hierarchical framework for avoiding confusion. Landsc. Ecol. 2014, 29, 763–771. [Google Scholar] [CrossRef]
- Huang, G.L.; Zhou, W.Q.; Cadenasso, M.L. Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neighborhood socioeconomic characteristics in Baltimore, MD. J. Environ. Manag. 2011, 92, 1753–1759. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.G.; Bai, X.M.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Islam, K.R.; Weil, R.R. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agric. Ecosyst. Environ. 2000, 79, 9–16. [Google Scholar] [CrossRef]
- Zhou, W.Q.; Qian, Y.G.; Li, X.M.; Li, W.F.; Han, L.J. Relationships between land cover and the surface urban heat island: Seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land surface temperatures. Landsc. Ecol. 2014, 29, 153–167. [Google Scholar] [CrossRef]
- He, C.Y.; Liu, Z.F.; Tian, J.; Ma, Q. Urban expansion dynamics and natural habitat loss in China: A multiscale landscape perspective. Glob. Chang. Biol. 2014, 20, 2886–2902. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Cadenasso, M.L.; Grove, J.M.; Boone, C.G.; Groffman, P.M.; Irwin, E.; Kaushal, S.S.; Marshall, V.; McGrath, B.P.; Nilon, C.H.; et al. Urban ecological systems: Scientific foundations and a decade of progress. J. Environ. Manag. 2011, 92, 331–362. [Google Scholar] [CrossRef] [PubMed]
- Carreiro, M.M.; Tripler, C.E. Forest remnants along urban-rural gradients: Examining their potential for global change research. Ecosystems 2005, 8, 568–582. [Google Scholar] [CrossRef]
- Youngsteadt, E.; Dale, A.G.; Terando, A.J.; Dunn, R.R.; Frank, S.D. Do cities simulate climate change? A comparison of herbivore response to urban and global warming. Glob. Chang. Biol. 2015, 21, 97–105. [Google Scholar] [CrossRef]
- McDonnell, M.J.; Pickett, S.T.A. Ecosystem structure and function along urban rural gradients—An unexploited opportunity for ecology. Ecology 1990, 71, 1232–1237. [Google Scholar] [CrossRef]
- Saunders, M.I.; Atkinson, S.; Klein, C.J.; Weber, T.; Possingham, H.P. Increased sediment loads cause non-linear decreases in seagrass suitable habitat extent. PLoS ONE 2017, 12, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isbell, F.; Gonzalez, A.; Loreau, M.; Cowles, J.; Diaz, S.; Hector, A.; Mace, G.M.; Wardle, D.A.; O’Connor, M.I.; Duffy, J.E.; et al. Linking the influence and dependence of people on biodiversity across scales. Nature 2017, 546, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mimura, M.; Yahara, T.; Faith, D.P.; Vazquez-Dominguez, E.; Colautti, R.I.; Araki, H.; Javadi, F.; Nunez-Farfan, J.; Mori, A.S.; Zhou, S.L.; et al. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evolut. Appl. 2017, 10, 121–139. [Google Scholar] [CrossRef] [PubMed]
- Aronson, M.F.J.; La Sorte, F.A.; Nilon, C.H.; Katti, M.; Goddard, M.A.; Lepczyk, C.A.; Warren, P.S.; Williams, N.S.G.; Cilliers, S.; Clarkson, B.; et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B Biol. Sci. 2014, 281, 8. [Google Scholar] [CrossRef]
- Pregitzer, C.C.; Charlop-Powers, S.; Bibbo, S.; Forgione, H.M.; Gunther, B.; Hallett, R.A.; Bradford, M.A. A city-scale assessment reveals that native forest types and overstory species dominate New York City forests. Ecol. Appl. 2019, 29, 12. [Google Scholar] [CrossRef]
- Jennette, M.A.; Snodgrass, J.W.; Forester, D.C. Variation in age, body size, and reproductive traits among urban and rural amphibian populations. Urban Ecosyst. 2019, 22, 137–147. [Google Scholar] [CrossRef]
- Thomas, J.P.; Jung, T.S. Life in a northern town: Rural villages in the boreal forest are islands of habitat for an endangered bat. Ecosphere 2019, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Meng, Z.; Liu, M.; She, Q.; Yang, F.; Long, L.; Peng, X.; Han, J.; Xiang, W. Spatiotemporal Characteristics of Ecological Conditions and Its Response to Natural Conditions and Human Activities during 1990(–)2010 in the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 2018, 15, 2910. [Google Scholar] [CrossRef] [Green Version]
- McKinney, M.L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 2008, 11, 161–176. [Google Scholar] [CrossRef]
- Jia, W.X.; Zhao, S.Q.; Liu, S.G. Vegetation growth enhancement in urban environments of the Conterminous United States. Glob. Chang. Biol. 2018, 24, 4084–4094. [Google Scholar] [CrossRef]
- Zhao, S.Q.; Liu, S.G.; Zhou, D.C. Prevalent vegetation growth enhancement in urban environment. Proc. Natl. Acad. Sci. USA 2016, 113, 6313–6318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobbs, C.; Nitschke, C.; Kendal, D. Assessing the drivers shaping global patterns of urban vegetation landscape structure. Sci. Total Environ. 2017, 592, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Ossola, A.; Hopton, M.E. Climate differentiates forest structure across a residential macrosystem. Sci. Total Environ. 2018, 639, 1164–1174. [Google Scholar] [CrossRef] [PubMed]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The Impact of Land-Use Change on Ecosystem Services, Biodiversity and Returns to Landowners: A Case Study in the State of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Peng, J.; Tian, L.; Liu, Y.X.; Zhao, M.Y.; Hu, Y.N.; Wu, J.S. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Sci. Total Environ. 2017, 607, 706–714. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Sutton, P.C.; Baugh, K.E.; Ziskin, D.C.; Anderson, S. National Trends in Satellite Observed Lighting: 1992–2009. In AGU Fall Meeting Abstracts; AGU: Washington, DC, USA, 2011. [Google Scholar]
- Shi, K.F.; Huang, C.; Yu, B.L.; Yin, B.; Huang, Y.X.; Wu, J.P. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sens. Lett. 2014, 5, 358–366. [Google Scholar] [CrossRef]
- Liu, Z.F.; He, C.Y.; Zhang, Q.F.; Huang, Q.X.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.G.; Thomson, A.; Imhoff, M. A cluster-based method to map urban area from DMSP/OLS nightlights. Remote Sens. Environ. 2014, 147, 173–185. [Google Scholar] [CrossRef]
- Gallo, K.P.; Tarpley, J.D.; McNab, A.L.; Karl, T.R. Assessment of urban heat islands—A satellite perspective. Atmos. Res. 1995, 37, 37–43. [Google Scholar] [CrossRef]
- Propastin, P.; Kappas, M. Assessing Satellite-Observed Nighttime Lights for Monitoring Socioeconomic Parameters in the Republic of Kazakhstan. GISci. Remote Sens. 2012, 49, 538–557. [Google Scholar] [CrossRef]
- Fan, J.F.; Ma, T.; Zhou, C.H.; Zhou, Y.K.; Xu, T. Comparative Estimation of Urban Development in China’s Cities Using Socioeconomic and DMSP/OLS Night Light Data. Remote Sens. 2014, 6, 7840–7856. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.S.; Wang, Z.; Li, W.F.; Peng, J. Exploring factors affecting the relationship between light consumption and GDP based on DMSP/OLS nighttime satellite imagery. Remote Sens. Environ. 2013, 134, 111–119. [Google Scholar] [CrossRef]
- Chand, T.R.K.; Badarinath, K.V.S.; Elvidge, C.D.; Tuttle, B.T. Spatial characterization of electrical power consumption patterns over India using temporal DMSP-OLS night-time satellite data. Int. J. Remote Sens. 2009, 30, 647–661. [Google Scholar] [CrossRef]
- Davies, T.W.; Bennie, J.; Inger, R.; De Ibarra, N.H.; Gaston, K.J. Artificial light pollution: Are shifting spectral signatures changing the balance of species interactions? Glob. Chang. Biol. 2013, 19, 1417–1423. [Google Scholar] [CrossRef] [Green Version]
- Milesi, C.; Elvidge, C.D.; Nemani, R.R.; Running, S.W. Assessing the impact of urban land development on net primary productivity in the southeastern United States. Remote Sens. Environ. 2003, 86, 401–410. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Tucker, C.J.; Lawrence, W.T.; Stutzer, D.C. The use of multisource satellite and geospatial data to study the effect of urbanization on primary productivity in the United States. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2549–2556. [Google Scholar]
- Wang, J.L.; Zhou, W.Q.; Pickett, S.T.A.; Yu, W.J.; Li, W.F. A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion. Sci. Total Environ. 2019, 662, 824–833. [Google Scholar] [CrossRef]
- Maes, J.; Paracchini, M.L.; Zulian, G.; Dunbar, M.B.; Alkemade, R. Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in Europe. Biol. Conserv. 2012, 155, 1–12. [Google Scholar] [CrossRef]
- Li, B.; Zhang, W.; Shu, X.X.; Pei, E.L.; Yuan, X.; Wang, T.H.; Wang, Z.H. Influence of breeding habitat characteristics and landscape heterogeneity on anuran species richness and abundance in urban parks of Shanghai, China. Urban For. Urban Green. 2018, 32, 56–63. [Google Scholar] [CrossRef]
- Sun, X.; Crittenden, J.C.; Li, F.; Lu, Z.M.; Dou, X.L. Urban expansion simulation and the spatio-temporal changes of ecosystem services, a case study in Atlanta Metropolitan area, USA. Sci. Total Environ. 2018, 622, 974–987. [Google Scholar] [CrossRef] [PubMed]
- Blair, R.B.; Johnson, E.M. Suburban habitats and their role for birds in the urban-rural habitat network: Points of local invasion and extinction? Landsc. Ecol. 2008, 23, 1157–1169. [Google Scholar] [CrossRef]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuna, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, C.Z.; Zhen, L.; Wang, C.; Yan, B.Y.; Cao, X.C.; Wu, R.Z. Impacts of ecological restoration and human activities on habitat of overwintering migratory birds in the wetland of Poyang Lake, Jiangxi Province, China. J. Mount. Sci. 2015, 12, 1302–1314. [Google Scholar] [CrossRef]
- Yi, L.; Chen, J.; Jin, Z.; Quan, Y.; Han, P.; Guan, S.; Jiang, X. Impacts of human activities on coastal ecological environment during the rapid urbanization process in Shenzhen, China. Ocean Coast. Manag. 2018, 154, 121–132. [Google Scholar] [CrossRef]
- Guan, X.B.; Shen, H.F.; Li, X.H.; Gan, W.X.; Zhang, L.P. A long-term and comprehensive assessment of the urbanization-induced impacts on vegetation net primary productivity. Sci. Total Environ. 2019, 669, 342–352. [Google Scholar] [CrossRef]
- Cidell, J. Concentration and decentralization: The new geography of freight distribution in US metropolitan areas. J. Transp. Geogr. 2010, 18, 363–371. [Google Scholar] [CrossRef]
- Feng, Y.H.; Wu, S.F.; Wu, P.X.; Su, S.L.; Weng, M.; Bian, M. Spatiotemporal characterization of megaregional poly-centrality: Evidence for new urban hypotheses and implications for polycentric policies. Land Use Policy 2018, 77, 712–731. [Google Scholar] [CrossRef]
- Yangtze River Delta Yearbook (YRDY); Hohai University Press: Shanghai, China, 2015.
- Zhang, D.; Qu, L.P.; Zhang, J.H. Ecological security pattern construction method based on the perspective of ecological supply and demand: A case study of Yangtze River Delta. Acta Ecol. Sin. 2019, 39, 13. [Google Scholar]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. VEST 3.3.1 User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2016. [Google Scholar]
- Chen, J.; Zhuo, L.; Shi, P.; Ichinose, T. A study of the urbanization process in China based on DMSP/OLS data: Development of a light index for urbanization level estimation. J. Remote Sens. 2003, 7, 168–175, 241. [Google Scholar]
- Yang, M.; Wang, S.X.; Zhou, Y.; Wang, L.T. A Method of Urbanization Level Estimation Using DMSP/OLS Imagery. Remote Sens. Inf. 2011, 26, 100–106. [Google Scholar]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafo, M.; Vizzarri, M.; Marchetti, M. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Helms, B.S.; Feminella, J.W.; Pan, S. Detection of biotic responses to urbanization using fish assemblages from small streams of western Georgia, USA. Urban Ecosyst. 2005, 8, 39–57. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y. Urban mapping using DMSP/OLS stable night-time light: A review. Int. J. Remote Sens. 2017, 38, 6030–6046. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P.; Uhl, E.; Dahlhausen, J.; Schutze, G.; Perkins, D.; Rotzer, T.; Caldentey, J.; Koike, T.; van Con, T.; et al. Climate change accelerates growth of urban trees in metropolises worldwide. Sci. Rep. 2017, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Stephens, P.A.; Pettorelli, N.; Barlow, J.; Whittingham, M.J.; Cadotte, M.W. Management by proxy? The use of indices in applied ecology. J.Appl. Ecol. 2015, 52, 1–6. [Google Scholar] [CrossRef]
- Gamez-Virues, S.; Perovic, D.J.; Gossner, M.M.; Borsching, C.; Bluthgen, N.; de Jong, H.; Simons, N.K.; Klein, A.M.; Krauss, J.; Maier, G.; et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 2015, 6, 8. [Google Scholar] [CrossRef]
- Yan, Z.G.; Teng, M.J.; He, W.; Liu, A.Q.; Li, Y.R.; Wang, P.C. Impervious surface area is a key predictor for urban plant diversity in a city undergone rapid urbanization. Sci. Total Environ. 2019, 650, 335–342. [Google Scholar] [CrossRef]
- Xie, W.X.; Huang, Q.X.; He, C.Y.; Zhao, X. Projecting the impacts of urban expansion on simultaneous losses of ecosystem services: A case study in Beijing, China. Ecol. Indic. 2018, 84, 183–193. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, S.Q.; Zhao, K.; Xie, P.; Fang, J.Y. Land-cover changes in an urban lake watershed in a mega-city, Central China. Environ. Monit. Assess. 2006, 115, 349–359. [Google Scholar] [CrossRef]
- Peng, J.; Shen, H.; Wu, W.H.; Liu, Y.X.; Wang, Y.L. Net primary productivity (NPP) dynamics and associated urbanization driving forces in metropolitan areas: A case study in Beijing City, China. Landsc. Ecol. 2016, 31, 1077–1092. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, S.; Wang, J. Examining the influences of urbanization on carbon dioxide emissions in the Yangtze River Delta, China: Kuznets curve relationship. Sci. Total Environ. 2019, 675, 472–482. [Google Scholar] [CrossRef] [PubMed]
Number | Weight Combination | ||
---|---|---|---|
1 | 0 | 1 | NLAI |
2 | 0.1 | 0.9 | 0.1 NLII + 0.9 NLAI |
3 | 0.2 | 0.8 | 0.2 NLII + 0.8 NLAI |
4 | 0.3 | 0.7 | 0.3 NLII + 0.7 NLAI |
5 | 0.4 | 0.6 | 0.4 NLII + 0.6 NLAI |
6 | 0.5 | 0.5 | 0.5 NLII + 0.5 NLAI |
7 | 0.6 | 0.4 | 0.6 NLII + 0.4 NLAI |
8 | 0.7 | 0.3 | 0.7 NLII + 0.3 NLAI |
9 | 0.8 | 0.2 | 0.8 NLII + 0.2 NLAI |
10 | 0.9 | 0.1 | 0.9 NLII + 0.1 NLAI |
11 | 1 | 0 | NLII |
HQ | UI | |||||
---|---|---|---|---|---|---|
Max | Min | Average | Max | Min | Average | |
1995 | 0.803 (Hangzhou) | 0.337 (Shanghai) | 0.586 | 0.413 (Shanghai) | 0.010 (Chizhou) | 0.092 |
2000 | 0.800 (Hangzhou) | 0.335 (Shanghai) | 0.581 | 0.456 (Shanghai) | 0.015 (Chizhou) | 0.109 |
2005 | 0.791 (Hangzhou) | 0.301 (Shanghai) | 0.572 | 0.527 (Shanghai) | 0.023 (Chizhou) | 0.134 |
2010 | 0.785 (Hangzhou) | 0.274 (Shanghai) | 0.557 | 0.723 (Shanghai) | 0.056 (Chizhou) | 0.256 |
Value change | 0.005 (Chuzhou) | −0.098 (Suzhou) | −0.029 | 0.456 (Suzhou) | 0.045 (Anqing) | 0.164 |
Change ratio | 0.98% (Chuzhou) | −18.83% (Shanghai) | −4.95% | 439.59% (Chizhou) | 74.96% (Shanghai) | 177.56% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Ding, N.; Li, D.; Sun, W.; Xie, Y.; Wang, X. Spatiotemporal Analysis of the Nonlinear Negative Relationship between Urbanization and Habitat Quality in Metropolitan Areas. Sustainability 2020, 12, 669. https://doi.org/10.3390/su12020669
Zhu J, Ding N, Li D, Sun W, Xie Y, Wang X. Spatiotemporal Analysis of the Nonlinear Negative Relationship between Urbanization and Habitat Quality in Metropolitan Areas. Sustainability. 2020; 12(2):669. https://doi.org/10.3390/su12020669
Chicago/Turabian StyleZhu, Jingfeng, Ning Ding, Dehuan Li, Wei Sun, Yujing Xie, and Xiangrong Wang. 2020. "Spatiotemporal Analysis of the Nonlinear Negative Relationship between Urbanization and Habitat Quality in Metropolitan Areas" Sustainability 12, no. 2: 669. https://doi.org/10.3390/su12020669
APA StyleZhu, J., Ding, N., Li, D., Sun, W., Xie, Y., & Wang, X. (2020). Spatiotemporal Analysis of the Nonlinear Negative Relationship between Urbanization and Habitat Quality in Metropolitan Areas. Sustainability, 12(2), 669. https://doi.org/10.3390/su12020669