Application of Bioengineering Techniques as Geo-Hydrological Risk Mitigation Measures in a Highly Valuable Cultural Landscape: Experiences from the Cinque Terre National Park (Italy)
Abstract
:1. Introduction
2. General Setting of the Study Area
3. Materials and Methods
3.1. The 25 October 2011 Event and Rainfall—Induced Ground Effects
3.2. Bioengineering Interventions Inventorying, Mapping and Surveying
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UNESCO. About World Heritage. Available online: https://whc.unesco.org/en/statesparties/it (accessed on 27 July 2020).
- Trigila, A.; Iadanza, C.; Bussettini, M.; Lastoria, B. Dissesto Idrogeologico in Italia: Pericolosità e Indicatori di Rischio—Edizione 2018. Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Rapporti, 287. 2018. Available online: https://www.isprambiente.gov.it/it/pubblicazioni/rapporti/dissesto-idrogeologico-in-italia-pericolosita-e-indicatori-di-rischio-edizione-2018 (accessed on 29 July 2020).
- Locati, M.; Camassi, R.; Rovida, A.; Ercolani, E.; Bernardini, F.; Castelli, V.; Caracciolo, C.H.; Tertulliani, A.; Rossi, A.; Azzaro, R.; et al. DBMI15, the 2015 Version of the Italian Macroseismic Database. Ist. Naz. Geofis. Vulcanol. 2016. [Google Scholar] [CrossRef]
- Valensise, G.; Tarabusi, G.; Guidoboni, E.; Ferrari, G. The forgotten vulnerability: A geology-and history-based approach for ranking the seismic risk of earthquake-prone communities of the Italian Apennines. Int. J. Disast. Risk Reduct. 2017, 25, 289–300. [Google Scholar] [CrossRef]
- D’Amato Avanzi, G.; Marchetti, D.; Puccinelli, A. Cultural heritage and geological hazards: The case of the Calomini hermitage in Tuscany (Italy). Landslides 2006, 3, 331–340. [Google Scholar] [CrossRef]
- Chelli, A.; Mandrone, G.; Truffelli, G. Field investigations and monitoring as tools for modelling the Rossena castle landslide (Northern Appennines, Italy). Landslides 2006, 3, 252–259. [Google Scholar] [CrossRef]
- Borgatti, L.; Tosatti, G. Slope instability processes affecting the Pietra di Bismantova geosite (Northern Apennines, Italy). Geoheritage 2010, 2, 155–168. [Google Scholar] [CrossRef]
- Trigila, A.; Iadanza, C.; Spizzichino, D. Quality assessment of the Italian Landslide Inventory using GIS processing. Landslides 2010, 7, 455–470. [Google Scholar] [CrossRef]
- Benedetti, G.; Bernardi, M.; Borgatti, L.; Continelli, F.; Ghirotti, M.; Guerra, C.; Landuzzi, A.; Lucente, C.C.; Marchi, G. San Leo: Centuries of coexistence with landslides. In Landslide Science and Practice; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 529–537. [Google Scholar] [CrossRef]
- Lanza, S.G. Flood hazard threat on cultural heritage in the town of Genoa (Italy). J. Cult. Herit. 2003, 4, 159–167. [Google Scholar] [CrossRef]
- Arrighi, C.; Brugioni, M.; Castelli, F.; Franceschini, S.; Mazzanti, B. Flood risk assessment in art cities: The exemplary case of Florence (Italy). J. Flood Risk Manag. 2018, 11, S616–S631. [Google Scholar] [CrossRef]
- Cuca, B.; Barazzetti, L. Damages from extreme flooding events to cultural heritage and landscapes: Water component estimation for Centa River (Albenga, Italy). Adv. Geosci. 2018, 45, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Mandarino, A.; Pepe, G.; Maerker, M.; Cevasco, A.; Brandolini, P. Short-term GIS analysis for the assessment of the recent active-channel planform adjustments in a widening, highly altered river: The Scrivia River, Italy. Water 2020, 12, 514. [Google Scholar] [CrossRef] [Green Version]
- Mandarino, A.; Luino, F.; Turconi, L.; Faccini, F. Urban geomorphology of a historical city straddling the Tanaro River (Alessandria, NW Italy). J. Maps 2020, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bruno, E.; Calcaterra, D.; Parise, M. Development and morphometry of sinkholes in coastal plains of Apulia, southern Italy. Preliminary sinkhole susceptibility assessment. Eng. Geol. 2008, 99, 198–209. [Google Scholar] [CrossRef]
- Solari, L.; Del Soldato, M.; Bianchini, S.; Ciampalini, A.; Ezquerro, P.; Montalti, R.; Raspini, F.; Moretti, S. From ERS 1/2 to Sentinel-1: Subsidence monitoring in Italy in the last two decades. Front. Earth Sci. 2018, 6, 149. [Google Scholar] [CrossRef]
- Lastoria, B.; Simonetti, M.R.; Casaioli, M.; Mariani, S.; Monacelli, G. Socio-economic impacts of major floods in Italy fromm1951 to 2003. Adv. Geosci. 2006, 7, 223–229. Available online: http://www.adv-geosci.net/7/223/2006/ (accessed on 1 September 2020). [CrossRef] [Green Version]
- Trezzini, F.; Giannella, G.; Guida, T. Landslide and flood: Economic and social impact in Italy. In Landslide Science and Practice, Social and Economic Impact and POLICIEs; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin, Germany, 2013; Volume 7, pp. 171–176. [Google Scholar] [CrossRef]
- Dolce, M.; Di Bucci, D. Comparing recent Italian earthquakes. B. Earthq. Eng. 2017, 15, 497–533. [Google Scholar] [CrossRef]
- Trigila, A.; Iadanza, C.; Munafò, M.; Marinosci, I. Population exposed to landslide and flood risk in Italy. In Engineering Geology for Society and Territory, Urban Geology, Sustainable Planning and Landscape Exploitation; Lollino, G., Manconi, A., Guzzetti, F., Culshaw, M., Bobrowsky, P., Luino, F., Eds.; Springer: Cham, Switzerland, 2015; Volume 5, pp. 843–848. [Google Scholar] [CrossRef]
- Lollino, G.; Audisio, C. UNESCO World Heritage sites in Italy affected by geological problems, specifically landslide and flood hazard. Landslides 2006, 3, 311–321. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Gallus, W.A.; Parodi, A.; Maugeri, M. Possible impacts of a changing climate on intense Ligurian sea rainfall events. Int. J. Climatol. 2018, 38, e323–e329. [Google Scholar] [CrossRef]
- UNESCO. Art of Dry-Stone Walling, Knowledge and Techniques. Available online: https://ich.unesco.org/en/RL/art-of-dry-stone-walling-knowledge-and-techniques-01393 (accessed on 29 July 2020).
- Arnáez, J.; Lana-Renault, N.; Lasanta, T.; Ruiz-Flaño, P.; Castroviejo, J. Effects of farming terraces on hydrological and geomorphological processes. A review. Catena 2015, 128, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Tarolli, P.; Preti, F.; Romano, N. Terraced landscapes: From an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene 2014, 6, 10–25. [Google Scholar] [CrossRef]
- Ispikoudis, I.; Lyrintzis, G.; Kyriakakis, S. Impact of human activities on Mediterranean landscapes in Western Crete. Landsc. Urban Plan. 1993, 24, 259–271. [Google Scholar] [CrossRef]
- Grove, A.T.; Rackham, O. The Nature of Mediterranean Europe: An Ecological History; Yale University Press: New Haven, CT, USA, 2003. [Google Scholar]
- Van Eetvelde, V.; Antrop, M. Analyzing structural and functional changes of traditional landscapes-two examples from Southern France. Landsc. Urban Plan. 2003, 67, 79–95. [Google Scholar] [CrossRef]
- MacDonald, D.; Crabtree, J.R.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Gutierrez Lazpita, J.; Gibon, A. Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef]
- Poyatos, R.; Latron, J.; Llorens, P. Land use and land cover change after farmland abandonment. The case of a Mediterranean Mountain area (Catalan Pre-Pyrenees). Mt. Res. Dev. 2003, 23, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Lasanta, T.; Vicente-Serrano, S.M.; Cuadrat-Prats, J.M. Mountain Mediterranean landscape evolution caused by the abandonment of traditional primary activities: A study of the Spanish Central Pyrenees. Appl. Geogr. 2005, 25, 47–65. [Google Scholar] [CrossRef]
- Lasanta, T.; Arnáez, J.; Oserin, M.; Ortigosa, L.M. Marginal lands and erosion in terraced fields in the Mediterranean mountains. A case study in the Camero Viejo (Northwestern Iberian System, Spain). Mt. Res. Dev. 2001, 21, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Lesschen, J.P.; Cammeraat, L.H.; Nieman, T. Erosion and terrace failure due to agricultural land abandonment in a semi-arid environment. Earth Surf. Proc. Land. 2008, 33, 1574–1584. [Google Scholar] [CrossRef]
- Stanchi, S.; Freppaz, M.; Agnelli, A.; Reinsch, T.; Zanini, E. Properties, best management practices and conservation of terraced soils in Southern Europe (from Mediterranean areas to the Alps): A review. Quat. Int. 2012, 265, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Moreno-de-las-Heras, M.; Lindenberger, F.; Latron, J.; Lana-Renault, N.; Llorens, P.; Arnáez, J.; Romero-Díaz, A.; Gallart, F. Hydro-geomorphological consequences of the abandonment of agricultural terraces in the Mediterranean region: Key controlling factors and landscape stability patterns. Geomorphology 2019, 333, 73–91. [Google Scholar] [CrossRef]
- Crosta, G.B.; Dal Negro, P.; Frattini, P. Soil slips and debris flows on terraced slopes. Nat. Hazard Earth Syst. 2003, 3, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Cevasco, A.; Brandolini, P.; Scopesi, C.; Rellini, I. Relationships between geo-hydrological processes induced by heavy rainfall and land-use: The case of 25 October 2011 in the Vernazza catchment (Cinque Terre, NW Italy). J. Maps 2013, 9, 289–298. [Google Scholar] [CrossRef]
- Bartelletti, C.; Giannecchini, R.; D’Amato Avanzi, G.; Galanti, Y.; Mazzali, A. The influence of geological–morphological and land use settings on shallow landslides in the Pogliaschina, T. basin (northern Apennines, Italy). J. Maps 2017, 13, 142–152. [Google Scholar] [CrossRef] [Green Version]
- Winter, M.G.; Bromhead, E.N. Landslide risk: Some issues that determine societal acceptance. Nat. Hazards 2012, 62, 169–187. [Google Scholar] [CrossRef]
- Brandolini, P.; Cevasco, A. Geo-hydrological risk mitigation measures and land-management in a highly vulnerable small coastal catchment. In Engineering Geology for Society and Territory; Lollino, G., Ed.; Springer: Cham, Switzerland, 2015; Volume 5, pp. 759–762. [Google Scholar] [CrossRef]
- Galve, J.P.; Cevasco, A.; Brandolini, P.; Piacentini, D.; Azañon, J.M.; Notti, D.; Soldati, M. Cost-based analysis of mitigation measures for shallow-landslide risk reduction strategies. Eng. Geol. 2016, 213, 142–157. [Google Scholar] [CrossRef]
- Turconi, L.; Faccini, F.; Marchese, A.; Paliaga, G.; Casazza, M.; Vojinovic, Z.; Luino, F. Implementation of Nature-Based Solutions for Hydro-Meteorological Risk Reduction in Small Mediterranean Catchments: The Case of Portofino Natural Regional Park, Italy. Sustainability 2020, 12, 1240. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K. Bioengineering techniques of slope stabilization and landslide mitigation. Disaster Prev. Manag. 2010, 19, 384–397. [Google Scholar] [CrossRef]
- Punetha, P.; Samanta, M.; Sarkar, S. Bioengineering as an effective and ecofriendly soil slope stabilization method: A review. In Landslides: Theory, Practice and Modelling; Pradhan, S., Vishal, V., Singh, T., Eds.; Springer: Cham, Switzerland, 2019; Volume 50, pp. 201–224. [Google Scholar] [CrossRef]
- Li, M.H.; Eddleman, K.E. Biotechnical engineering as an alternative to traditional engineering methods—A biotechnical streambank stabilization design approach. Landsc. Urban Plan. 2002, 60, 225–242. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Zhang, Z. Soil bioengineering and the ecological restoration of riverbanks at the Airport Town, Shanghai, China. Ecol. Eng. 2006, 26, 304–314. [Google Scholar] [CrossRef]
- Petrone, A.; Preti, F. Suitability of soil bioengineering techniques in Central America: A case study in Nicaragua. Hydrol. Earth Syst. Sci. 2008, 12, 1241–1248. [Google Scholar] [CrossRef] [Green Version]
- Petrone, A.; Preti, F. Soil bioengineering for risk mitigation and environmental restoration in a humid tropical area. Hydrol. Earth Syst. Sci. 2010, 14, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Stokes, A.; Sotir, R.; Chen, W.; Ghestem, M. Soil bio- and ecoengineering in China: Past experience and future priorities. Ecol. Eng. 2010, 36, 247–257. [Google Scholar] [CrossRef]
- Bella, G.; Barbero, M.; Barpi, F.; Borri-Brunetto, M.; Peila, D. An innovative bio-engineering retaining structure for supporting unstable soil. J. Rock Mech. Geotech. Eng. 2017, 9, 247–259. [Google Scholar] [CrossRef] [Green Version]
- Bovolenta, R.; Mazzuoli, M.; Berardi, R. Soil bio-engineering techniques to protect slopes and prevent shallow landslides. Ital. Geotech. J. 2018, 52, 44–65. [Google Scholar] [CrossRef]
- Lammeranner, W.; Rauch, H.P.; Laaha, G. Implementation and monitoring of soil bioengineering measures at a landslide in the Middle Mountains of Nepal. Plant Soil 2005, 278, 159–170. [Google Scholar] [CrossRef]
- Giupponi, L.; Bischetti, G.B.; Giorgi, A. A proposal for assessing the success of soil bioengineering work by analysing vegetation: Results of two case studies in the Italian Alps. Landsc. Ecol. Eng. 2017, 13, 305–318. [Google Scholar] [CrossRef]
- Giupponi, L.; Borgonovo, G.; Giorgi, A.; Bischetti, G.B. How to renew soil bioengineering for slope stabilization: Some proposals. Landsc. Ecol. Eng. 2019, 15, 37–50. [Google Scholar] [CrossRef]
- Guzzetti, F.; Cardinali, M.; Reichenbach, P.; Cipolla, F.; Sebastiani, C.; Galli, M.; Salvati, P. Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy. Eng. Geol. 2004, 73, 229–245. [Google Scholar] [CrossRef]
- Cevasco, A.; Pepe, G.; Brandolini, P. Shallow landslides induced by heavy rainfall on terraced slopes: The case study of the October 25th, 2011 event in the Vernazza catchment (Cinque Terre, NW Italy). Rend. Online Soc. Geol. It. 2012, 21, 384–386. [Google Scholar]
- Silvestro, F.; Rebora, N.; Giannoni, F.; Cavallo, A.; Ferraris, L. The flash flood of the Bisagno Creek on 9th October 2014: An “unfortunate” combination of spatial and temporal scales. J. Hydrol. 2015, 541, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Faccini, F.; Paliaga, G.; Piana, P.; Sacchini, A.; Watkins, C. The Bisagno stream catchment (Genoa, Italy) and its major floods: Geomorphic and land use variations in the last three centuries. Geomorphology 2016, 273, 14–27. [Google Scholar] [CrossRef]
- Pepe, G.; Mandarino, A.; Raso, E.; Cevasco, A.; Firpo, M.; Casagli, N. Extreme flood and landslides triggered in the Arroscia Valley (Liguria Region, Northwestern Italy) during the November 2016 rainfall event. In Slope Stability: Case Histories, Landslide Mapping, Emerging Technologies, Proceedings of the IAEG/AEG Annual Meeting Proceedings, San Francisco, CA, USA, 17–21 September 2018; Shakoor, A., Kato, K., Eds.; Springer: Cham, Switzerland, 2019; Volume 1, pp. 171–175. [Google Scholar] [CrossRef]
- Roccati, A.; Mandarino, A.; Perasso, L.; Robbiano, A.; Luino, F.; Faccini, F. Large-scale geomorphology of the Entella River floodplain (Italy) for coastal urban areas management. J. Maps 2020, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Brandolini, P.; Mandarino, A.; Paliaga, G.; Faccini, F. Anthropogenic landforms in an urbanized alluvial-coastal plain (Rapallo city, Italy). J. Maps 2020, 1–12. [Google Scholar] [CrossRef]
- Cevasco, A.; Diodato, N.; Revellino, P.; Fiorillo, F.; Grelle, G.; Guadagno, F.M. Storminess and geo-hydrological events affecting small coastal basins in a terraced Mediterranean environment. Sci. Total Environ. 2015, 532, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Parodi, A.; Ferraris, L.; Gallus, W.; Maugeri, M.; Molini, L.; Siccardi, F.; Boni, G. Ensemble cloud-resolving modelling of a historic backbuilding mesoscale convective system over Liguria: The San Fruttuoso case of 1915. Clim. Past 2017, 13, 455–472. [Google Scholar] [CrossRef] [Green Version]
- Galanti, Y.; Barsanti, M.; Cevasco, A.; D’Amato Avanzi, G.; Giannecchini, R. Comparison of statistical methods and multi-time validation for the determination of the shallow landslide rainfall thresholds. Landslides 2018, 15, 937–952. [Google Scholar] [CrossRef]
- Brunetti, M.; Bertolini, A.; Soldati, M.; Maugeri, M. High-resolution analysis of 1-day extreme precipitation in a wet area centered over eastern Liguria, Italy. Theor. Appl. Climatol. 2018, 135, 341–353. [Google Scholar] [CrossRef] [Green Version]
- Terranova, R.; Brandolini, P.; Spotorno, M.; Rota, M.; Montanari, C.; Galassi, D.; Nicchia, P.; Leale, S.; Bruzzo, R.; Renzi, L.; et al. Patrimoni de Marjades a la Mediterrania Occidental. Una Proposta de Catalogaciò; Commissiò Europea DGX: Palma Di Mallorca, Spain, 2002; p. 243. [Google Scholar]
- Brandolini, P.; Pepe, G.; Capolongo, D.; Cappadonia, C.; Cevasco, A.; Conoscenti, C.; Marsico, A.; Vergari, F.; Del Monte, M. Hillslope degradation in representative Italian areas: Just soil erosion risk or opportunity for development? Land Degrad. Dev. 2018, 29, 3050–3068. [Google Scholar] [CrossRef]
- Paliaga, G.; Luino, F.; Turconi, L.; De Graff, J.V.; Faccini, F. Terraced Landscapes on Portofino Promontory (Italy): Identification, Geo-Hydrological Hazard and Management. Water 2020, 12, 435. [Google Scholar] [CrossRef] [Green Version]
- Brancucci, G.; Paliaga, G. The hazard assessment in a terraced landscape: The Liguria (Italy) case study in the Interreg III Alpter project. In Geohazards—Technical, Economical and Social Risk Evaluation; Berkeley Electronics Press: Berkeley, CA, USA, 2007; pp. 227–234. [Google Scholar]
- Cevasco, A.; Pepe, G.; Brandolini, P. The influences of geological and land use settings on shallow landslides triggered by an intense rainfall event in a coastal terraced environment. Bull. Eng. Geol. Environ. 2014, 73, 859–875. [Google Scholar] [CrossRef]
- Cevasco, A.; Pepe, G.; D’Amato Avanzi, G.; Giannecchini, R. Preliminary analysis of the November 10, 2014 rainstorm and related landslides in the lower Lavagna valley (eastern Liguria). Ital. J. Eng. Geol. Env. 2017, 5–15. [Google Scholar] [CrossRef]
- Giordan, D.; Cignetti, M.; Baldo, M.; Godone, D. Relationship between man-made environment and slope stability: The case of 2014 rainfall events in the terraced landscape of the Liguria region (northwestern Italy). Geomat. Nat. Hazards Risk 2017, 8, 1833–1852. [Google Scholar] [CrossRef] [Green Version]
- Terranova, R. Il paesaggio costiero agrario terrazzato delle Cinque Terre in Liguria. Studi Ric. Geogr. 1989, 12, 1–58. [Google Scholar]
- Brandolini, P. The outstanding terraced landscape of the Cinque Terre coastal slopes (eastern Liguria). In Landforms and Landscapes of Italy; Soldati, M., Marchetti, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 235–244. [Google Scholar] [CrossRef]
- Raso, E.; Cevasco, A.; Di Martire, D.; Pepe, G.; Scarpellini, P.; Calcaterra, D.; Firpo, M. Landslide-inventory of the Cinque Terre National Park (Italy) and quantitative interaction with the trail network. J. Maps 2019, 15, 818–830. [Google Scholar] [CrossRef] [Green Version]
- Giordan, D.; Cignetti, M.; Godone, D.; Peruccacci, S.; Raso, E.; Pepe, G.; Calcaterra, D.; Cevasco, A.; Firpo, M.; Scarpellini, P.; et al. A New Procedure for an Effective Management of Geo-Hydrological Risks across the “Sentiero Verde-Azzurro” Trail, Cinque Terre National Park, Liguria (North-Western Italy). Sustainability 2020, 12, 561. [Google Scholar] [CrossRef] [Green Version]
- Regione Liguria. Geoportale Regione Liguria. Genova, Italy: Liguria Region. Available online: https://geoportal.regione.liguria.it (accessed on 26 July 2020).
- Giammarino, S.; Giglia, G. Gli elementi strutturali della piega di La Spezia nel contesto geodinamico dell’Appennino Settentrionale. Boll. Soc. Geol. Ital. 1990, 109, 683–692. [Google Scholar]
- Schilirò, L.; Cevasco, A.; Esposito, C.; Scarascia Mugnozza, G. Shallow landslide initiation on terraced slopes: Inferences from a physically-based approach. Geomat. Nat. Haz. Risk 2018, 9, 295–324. [Google Scholar] [CrossRef] [Green Version]
- Cevasco, A.; Pepe, G.; Brandolini, P. Geotechnical and stratigraphic aspects of shallow landslides at Cinque Terre (Liguria, Italy). Rend. Online Soc. Geol. It. 2013, 24, 52–54. [Google Scholar]
- Scopesi, C.; Olivari, S.; Firpo, M.; Scarpellini, P.; Pini, S.; Rellini, I. Land capability classification of Vernazza catchment, Cinque Terre National Park, Italy. J. Maps 2020, 16, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Schilirò, L.; Cevasco, A.; Esposito, C.; Scarascia Mugnozza, G. Role of Land Use in Landslide Initiation on Terraced Slopes: Inferences from Numerical Modelling. In Advancing Culture of Living with Landslides, Diversity of Landslide Forms, Workshop on World Landslide Forum, Lubiana; Mikoš, M., Casagli, N., Yin, Y., Sassa, K., Eds.; Springer: Cham, Switzerland, 2017; Volume 4, pp. 315–320. [Google Scholar] [CrossRef]
- Brandolini, P.; Cevasco, A.; Capolongo, D.; Pepe, G.; Lovergine, F.; Del Monte, M. Response of terraced slopes to a very intense rainfall event and relationships with land abandonment: A case study from Cinque Terre (Italy). Land Degrad. Dev. 2018, 29, 630–642. [Google Scholar] [CrossRef]
- Zingaro, M.; Refice, A.; Giachetta, E.; D’Addabbo, A.; Lovergine, F.; De Pasquale, V.; Pepe, G.; Brandolini, P.; Cevasco, A.; Capolongo, D. Sediment mobility and connectivity in a catchment: A new mapping approach. Sci. Total Environ. 2019, 672, 763–775. [Google Scholar] [CrossRef]
- Pepe, G.; Mandarino, A.; Raso, E.; Scarpellini, P.; Brandolini, P.; Cevasco, A. Investigation on Farmland Abandonment of Terraced Slopes Using Multitemporal Data Sources Comparison and Its Implication on Hydro-Geomorphological Processes. Water 2019, 11, 1552. [Google Scholar] [CrossRef] [Green Version]
- Agnoletti, M.; Errico, A.; Santoro, A.; Dani, A.; Preti, F. Terraced Landscapes and Hydrogeological Risk. Effects of Land Abandonment in Cinque Terre (Italy) during Severe Rainfall Events. Sustainability 2019, 11, 235. [Google Scholar] [CrossRef] [Green Version]
- Di Napoli, M.; Carotenuto, F.; Cevasco, A.; Confuorto, P.; Di Martire, D.; Firpo, M.; Pepe, G.; Raso, E.; Calcaterra, D. Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability. Landslides 2020, 17, 1897–1914. [Google Scholar] [CrossRef]
- Rebora, N.; Molini, L.; Casella, E.; Comellas, A.; Fiori, E.; Pignone, F.; Siccardi, F.; Silvestro, F.; Tanelli, S.; Parodi, A. Extreme rainfall in the Mediterranean: What can we learn from observations? J. Hydrometeorol. 2013, 14, 906–922. [Google Scholar] [CrossRef]
- Agenzia Regionale per la Protezione dell’Ambiente Ligure—Centro Funzionale Meteoidrologico di Protezione Civile della Regione Liguria (ARPAL-CFMI-PC). Uno Tsunami Venuto dai Monti—Provincia della Spezia 25 Ottobre 2011; Report 1; 2012. Available online: http://servizi-meteoliguria.arpal.gov.it/ (accessed on 8 August 2020).
- Regione Liguria. Consultazione Dati Meteo-Climatici. Available online: http://www.cartografiarl.regione.liguria.it/SiraQualMeteo/script/PubAccessoDatiMeteo.asp (accessed on 9 August 2020).
- Greenway, D.R. Vegetation and slope stability. In Slope Stability; Anderson, M.G., Richards, K.S., Eds.; Wiley: Chichester, PA, USA, 1987; pp. 187–230. [Google Scholar]
- Burri, K.; Graf, F.; Böll, A. Revegetation measures improve soil aggregate stability: A case study of a landslide area in Central Switzerland. For. Snow Landsc. Res. 2009, 82, 45–60. [Google Scholar]
- Preti, F.; Giadrossich, F. Root reinforcement and slope bioengineering stabilization by Spanish Broom (Spartium junceum L.). Hydrol. Earth Syst. Sci. 2009, 13, 1713–1726. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, M.; Preti, F.; Giadrossich, F.; Lehmann, P.; Or, D. Quantifying the role of vegetation in slope stability: A case study in Tuscany (Italy). Ecol. Eng. 2010, 36, 285–291. [Google Scholar] [CrossRef]
- Veylon, G.; Ghestem, M.; Stokes, A.; Bernard, A. Quantification of mechanical and hydric components of soil reinforcement by plant roots. Can. Geotech. J. 2015, 52, 1839–1849. [Google Scholar] [CrossRef]
- Löbmann, M.T.; Geitner, C.; Wellstein, C.; Zerbe, S. The influence of herbaceous vegetation on slope stability—A review. Earth-Sci. Rev. 2020, 209, 103328. [Google Scholar] [CrossRef]
- Bordoni, M.; Cislaghi, A.; Vercesi, A.; Bischetti, G.B.; Meisina, C. Effects of plant roots on soil shear strength and shallow landslide proneness in an area of northern Italian Apennines. Bull. Eng. Geol. Environ. 2020, 79, 3361–3381. [Google Scholar] [CrossRef]
- Mazzuoli, M.; Bovolenta, R.; Berardi, R. Experimental investigation on the mechanical contribution of roots to the shear strength of a sandy soil. Procedia Eng. 2016, 158, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Winter, M.G.; Corby, A. A83 Rest and Be Thankful: Ecological and Related Landslide Mitigation Options; Published Project Report PPR 636; Transport Research Laboratory: Wokingham, UK, 2012. [Google Scholar]
- Simon, K.; Steinemann, A. Soil bioengineering: Challenges for planning and engineering. J. Urban. Plan. Dev. 2000, 126, 89–102. [Google Scholar] [CrossRef]
- Galve, J.P.; Cevasco, A.; Brandolini, P.; Soldati, M. Assessment of shallow landslide risk mitigation measures based on land use planning through probabilistic modelling. Landslides 2015, 12, 101–114. [Google Scholar] [CrossRef] [Green Version]
Project Documents, Reports and Studies | Envisaged | Not Envisaged |
---|---|---|
Geotechnical reports | X | |
Hydrological studies | X | |
Site investigations | X | |
Slope stability analyses | X | |
Engineering geological reports | X | |
Hydraulic analyses | X | |
Vegetational studies | X | |
Instructions on maintenance and monitoring | X | |
Environmental studies | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pepe, G.; Baudinelli, E.; Zanini, M.; Calcaterra, D.; Cevasco, A.; Scarpellini, P.; Firpo, M. Application of Bioengineering Techniques as Geo-Hydrological Risk Mitigation Measures in a Highly Valuable Cultural Landscape: Experiences from the Cinque Terre National Park (Italy). Sustainability 2020, 12, 8653. https://doi.org/10.3390/su12208653
Pepe G, Baudinelli E, Zanini M, Calcaterra D, Cevasco A, Scarpellini P, Firpo M. Application of Bioengineering Techniques as Geo-Hydrological Risk Mitigation Measures in a Highly Valuable Cultural Landscape: Experiences from the Cinque Terre National Park (Italy). Sustainability. 2020; 12(20):8653. https://doi.org/10.3390/su12208653
Chicago/Turabian StylePepe, Giacomo, Elena Baudinelli, Matteo Zanini, Domenico Calcaterra, Andrea Cevasco, Patrizio Scarpellini, and Marco Firpo. 2020. "Application of Bioengineering Techniques as Geo-Hydrological Risk Mitigation Measures in a Highly Valuable Cultural Landscape: Experiences from the Cinque Terre National Park (Italy)" Sustainability 12, no. 20: 8653. https://doi.org/10.3390/su12208653
APA StylePepe, G., Baudinelli, E., Zanini, M., Calcaterra, D., Cevasco, A., Scarpellini, P., & Firpo, M. (2020). Application of Bioengineering Techniques as Geo-Hydrological Risk Mitigation Measures in a Highly Valuable Cultural Landscape: Experiences from the Cinque Terre National Park (Italy). Sustainability, 12(20), 8653. https://doi.org/10.3390/su12208653