Sustainability-Based Characteristics of Abrasives in Blasting Industry
Abstract
:1. Introduction
2. Overview of Blasting Processes
2.1. Blasting
2.2. Type of Blasting
2.2.1. Wet Blasting
2.2.2. Wheel Blasting
2.2.3. Hydro-Blasting
2.2.4. Micro-Abrasive Blasting
2.2.5. Dry Ice Blasting
2.2.6. Bristle Blasting
2.3. The Abrasives
2.3.1. Mineral Abrasive
2.3.2. Agriculture Abrasives
2.3.3. Synthetic Abrasives
2.3.4. Metallic Abrasives
3. Systematic Review
3.1. Data Collection
3.2. Document Selection
3.3. Content Analysis
- The impact of abrasives on the environment. Here, the distribution of related publications about silica dust and toxic gases released from blasting operations were analyzed followed by the exposure level of the substances.
- Health and safety impact caused by blasting activities. The analysis is based on free silica abrasives usage during the blasting operation. The safety component is analyzed based on the risk controls, personal hygiene practices, respiratory protection and worker training and hazard communication.
- The degree of abrasives recyclability in performing blasting activities.
4. Sustainability-Based Abrasives
4.1. Safety
4.2. Efficient and Effective
4.3. Low Consumption Media
4.4. Low Emission Potentials
4.5. Recycleability
4.6. Environmentally Friendly
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Madl, A.K.; Carosino, C.; Pinkerton, K. 8.22—Particle Toxicities. Compr. Toxicol. 2010, 421–451. [Google Scholar] [CrossRef]
- Bang, K.M.; Mazurek, J.M.; Wood, J.M.; White, G.E.; Hendricks, S.A.; Weston, A.; Centers for Disease Control and Prevention (CDC). Silicosis mortality trends and new exposures to respirable crystalline silica—United States, 2001–2010. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 117. [Google Scholar]
- Madl, A.K.; Donovan, E.P.; Gaffney, S.H.; McKinley, M.A.; Moody, E.C.; Henshaw, J.L.; Paustenbach, D.J. State-of-the-Science Review of the Occupational Health Hazards of Crystalline Silica in Abrasive Blasting Operations and Related Requirements for Respiratory Protection. J. Toxicol. Environ. Health Part B 2008, 11, 548–608. [Google Scholar] [CrossRef] [PubMed]
- Hubbs, A.; Greskevitch, M.; Kuempel, E.; Suarez, F.; Toraason, M. Abrasive Blasting Agents: Designing Studies to Evaluate Relative Risk. J. Toxicol. Environ. Health Part A 2005, 68, 999–1016. [Google Scholar] [CrossRef] [PubMed]
- NIOSH. Health Effects of Occupational Exposure to Respirable Crystalline Silica. NIOSH Hazard Rev. 2002. Available online: https://static.compliancetrainingonline.com/docs/2002_129.pdf (accessed on 17 July 2021).
- McInnes, R.J. Sustainable Development Goals. In The Wetland Book: I: Structure and Function, Management, and Methods; Springer Science and Business Media LLC: Cham, Switzerland, 2018; pp. 631–636. [Google Scholar] [CrossRef]
- Kaelin, A.B.; Liang, S. New OSHA Program Targets Silica, Other Blast Cleaning Hazards. J. Prot. Coat. Linings 2008, 47. Available online: https://www.paintsquare.com/library/articles/New_OSHA_Program_Targets_Silica_Other_Blast_Cleaning_Hazards.pdf (accessed on 17 July 2021).
- Environment Protection Authority. Assessment of Abrasive Blasting. Australia. 2017. Available online: https://www.epa.sa.gov.au/files/47774_ea_abrasive.pdf (accessed on 22 April 2021).
- Willis, K. The Sustainable Development Goals. In The Routledge Handbook of Latin American Development; Routledge: London, UK, 2018; pp. 121–131. [Google Scholar] [CrossRef]
- UN. #Envision2030: 17 Goals to Transform the World for Persons with Disabilities|United Nations Enable. The UN. 2019. Available online: https://www.un.org/development/desa/disabilities/envision2030.html (accessed on 14 May 2021).
- Theron, G.B. Sustainable development goals. Obstet. Gynaecol. Forum 2016. [Google Scholar] [CrossRef]
- Desa, U.N. Transforming Our World: The 2030 Agenda for Sustainable Development. New Era Glob. Health 2018. [Google Scholar] [CrossRef]
- Corrosionpedia. January 2019. Blasting. Available online: https://www.corrosionpedia.com/definition/163/blasting (accessed on 6 November 2013).
- Safe Work Australia. ABRASIVE BLASTING Code of Practice. Australian Government Statutory Agency, Australia. 2009. Available online: https://safeworkaustralia.gov.au/system/files/documents/1702/abrasive_blasting2.pdf (accessed on 7 May 2021).
- US Department of Labour. Abrasive Blasting Hazards in Shipyard Employment. United States, Labour, US. 2020. Available online: https://www.osha.gov/dts/maritime/standards/guidance/shipyard_guidance.html (accessed on 1 December 2006).
- Flynn, M.R.; Susi, P. A Review of Engineering Control Technology for Exposures Generated During Abrasive Blasting Operations. J. Occup. Environ. Hyg. 2004, 1, 680–687. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Z.H.; Ding, Z.X.; Liu, Z.L. Performance study of abrasive wear and erosive wear of WC-12Co coatings sprayed by HVOF. In Proceedings of the 2008 2nd IEEE International Nanoelectronics Conference, Shanghai, China, 24–27 March 2008; pp. 340–344. [Google Scholar] [CrossRef]
- Huang, Z.; Li, G.; Tian, S.; Shen, Z.; Luo, H. Mechanism and numerical simulation of pressure stagnation during water jetting perforation. Pet. Sci. 2008, 5, 52–55. [Google Scholar] [CrossRef] [Green Version]
- Achtsnick, M.; Geelhoed, P.; Hoogstrate, A.; Karpuschewski, B. Modelling and evaluation of the micro abrasive blasting process. Wear 2005, 259, 84–94. [Google Scholar] [CrossRef]
- Hu, Z.; Marshall, C.; Bicker, R.; Taylor, P. Automatic surface roughing with 3D machine vision and cooperative robot control. Robot. Auton. Syst. 2007, 55, 552–560. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Maruyama, H.; Matsusaka, S. Effect of Particle Impact on Surface Cleaning Using Dry Ice Jet. Aerosol Sci. Technol. 2011, 45, 1519–1527. [Google Scholar] [CrossRef] [Green Version]
- van der Molen, R.; Joosten, I.; Beentjes, T.; Megens, L. Dry ice blasting for the conservation cleaning of metals. Metal 2010. In Proceedings of the Interim Meeting of the ICOM-CC Metal Working Group, Charleston, SC, USA, 11–15 October 2010. [Google Scholar]
- Stango, R.J.; Khullar, P. Fundamentals of bristle blasting process for removing corrosive layer. In Proceedings of the NACE—International Corrosion Conference Series, Atlanta, Georgia, 22–26 March 2009; Available online: http://g-tool.jp/pdf/NACE2009-Stango.pdf (accessed on 17 July 2021).
- Mundt, K.A.; Birk, T.; Parsons, W.; Borsch-Galetke, E.; Siegmund, K.; Heavner, K.; Guldner, K. Respirable Crystalline Silica Exposure–Response Evaluation of Silicosis Morbidity and Lung Cancer Mortality in the German Porcelain Industry Cohort. J. Occup. Environ. Med. 2011, 53, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Anon. Abrasive BlastingI; National Safety News; August 1982. Available online: https://www.cdc.gov/niosh/topics/blasting/default.html (accessed on 17 July 2021).
- Enviro-Management & Research, Inc. Abrasive Blasting Operations; Enviro-Management & Research, Inc.: Springfield, VA, USA, 1976. [Google Scholar]
- Hansel, D. Abrasive blasting systems. Met. Finish. 1999, 97, 29–55. [Google Scholar] [CrossRef]
- Rajansikka. Sandblasting Operation. 2016. Available online: https://shotblasting.org.in/sand-blasting-materials-used-pros-and-cons.php (accessed on 22 May 2021).
- Linch, K.D. Respirable Concrete Dust--Silicosis Hazard in the Construction Industry. Appl. Occup. Environ. Hyg. 2002, 17, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Emco. ACRYLIC. In ACRYLIC. EMCO Industrial Plastics Inc. 2016. Available online: https://www.emcoplastics.com/acrylic-faqs/ (accessed on 9 May 2021).
- Kosmač, T.; Oblak, C.; Jevnikar, P.; Funduk, N.; Marion, L. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent. Mater. 1999, 15, 426–433. [Google Scholar] [CrossRef]
- Radnoff, D.L.; Kutz, M.K. Exposure to Crystalline Silica in Abrasive Blasting Operations Where Silica and Non-Silica Abrasives Are Used. Ann. Occup. Hyg. 2013, 58, 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CWC. Using Glass as a Blasting Abrasive. Best Practices in Glass Recycling. 2002. Available online: http://www.glassagg.com/pdf/Blasting_Abrasive.pdf (accessed on 1 June 2021).
- Tiwari, R.R.; Sharma, Y.K. Respiratory Health of Female Stone Grinders with Free Silica Dust Exposure in Gujarat, India. Int. J. Occup. Environ. Health 2008, 14, 280–282. [Google Scholar] [CrossRef]
- Mohammadyan, M.; Rokni, M.; Yosefinejad, R. Occupational Exposure to Respirable Crystalline Silica in the Iranian Mazandaran Province Industry Workers. Arch. Ind. Hyg. Toxicol. 2013, 64, 139–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firdaussyah, A.T.; Suryo, T. Evaluation of Control Method Failures for Exposure to Sandblasting Silica Dust in a Steel Construction Company, Indonesia. KnE Life Sci. 2018, 4, 391–400. [Google Scholar] [CrossRef]
- Si, S.; Carey, R.N.; Reid, A.; Driscoll, T.; Glass, D.; Peters, S.; Benke, G.; Darcey, E.; Fritschi, L. The Australian Work Exposures Study: Prevalence of Occupational Exposure to Respirable Crystalline Silica. Ann. Occup. Hyg. 2016, 60, 631–637. [Google Scholar] [CrossRef]
- Lappi, V.G.; Radnoff, D.L.; Karpluk, P.F. Silica Exposure and Silicosis in Alberta, Canada. J. Occup. Environ. Med. 2014, 56, S35–S39. [Google Scholar] [CrossRef]
- Elo, S.; Kyngäs, H. The qualitative content analysis process. J. Adv. Nurs. 2008, 62, 107–115. [Google Scholar] [CrossRef]
- Hubbs, A.F.; Minhas, N.S.; Jones, W.; Greskevitch, M.; Battelli, L.A.; Porter, D.W.; Goldsmith, W.T.; Frazer, D.; Landsittel, D.P.; Ma, J.Y.C.; et al. Comparative Pulmonary Toxicity of 6 Abrasive Blasting Agents. Toxicol. Sci. 2001, 61, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Andrews, R.N. The EPA at 40: An historical perspective. Duke Envtl. L. Pol’y F 2010, 21, 223. [Google Scholar]
- Mulhall, R.C.; Nedas, N.D. Impact blasting with glass beads. Met. Finish. 1999, 97, 101–106. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans and others. Silica dust, crystalline, in the form of quartz or cristobalite. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Rockville, MD, USA, 2011. [Google Scholar]
- Beyer, L.; Beck, B.D. Glass Bead Inhalation and Induction of Silicosis. Toxicol. Sci. 2005. Available online: https://gradientcorp.com/scientific-papers.html?keyword=&keyword2=&year=&author=Beck-B&page=3 (accessed on 17 July 2021).
- MCfinishing. Blasting Technical Information. US. 2006. Available online: https://mcfinishing.com/ (accessed on 19 May 2021).
- Veloz, N.F. Practical Aspects of Using Walnut Shells for Cleaning Outdoor Sculpture. APT Bull. 1993, 25. [Google Scholar] [CrossRef]
- Veloz, N.F.; Ruff, A.W.; Chase, W.T. Successful use of soft abrasives (walnut shells) for cleaning outdoor bronze sculpture by air jets. In Old Cultures in New Worlds: Washington, District of Columbia, United States of America, 10–15 October 1987: Symposium Papers = Cultures Anciennes Dans les Mondes Nouveaux: Washington, District of Columbia, États-Unis d’Amérique, 10–15 Octobre 1987: Commu; US/ICOMOS: Washington, DC, USA, 1987. [Google Scholar]
- Lathrop, E.C. Corncob Enter Industry. 2007. Available online: https://naldc.nal.usda.gov/download/IND43893994/PDF (accessed on 2 June 2021).
- Alankaya, V.; Celebi, U.B. Investigation of alternative blasting process in terms of impact behaviour of blasting materials for green shipyards. Int. J. Glob. Warm. 2015, 7, 499. [Google Scholar] [CrossRef]
- Carlson, J.R.J.; Townsend, T.G. Management of Solid Waste from Abrasive Blasting. Pr. Period. Hazard. Toxic Radioact. Waste Manag. 1998, 2, 72–77. [Google Scholar] [CrossRef]
- Stachowiak, G. The effects of particle characteristics on three-body abrasive wear. Wear 2001, 249, 201–207. [Google Scholar] [CrossRef]
- Herrmann, H.; Bucksch, H. Silica sand. In Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik; Springer: Cham, Switzerland, 2014. [Google Scholar] [CrossRef]
- Borucka-Lipska, J.; Techman, M.; Skibicki, S. Use of Contaminated Sand Blasting Grit for Production of Cement Mortars. IOP Conf. Ser. Mater. Sci. Eng. 2019. [Google Scholar] [CrossRef]
- Hamblin, M.; Stachowiak, G. A multi-scale measure of particle abrasivity. Wear 1995, 185, 225–233. [Google Scholar] [CrossRef]
- Kambham, K.; Sangameswaran, S.; Datar, S.; Kura, B. Copper slag: Optimization of productivity and consumption for cleaner production in dry abrasive blasting. J. Clean. Prod. 2007, 15, 465–473. [Google Scholar] [CrossRef]
- Swart, P.B. Blasting the Farm: Chemical High Explosives and the Rise of Industrial Agriculture, 1867–1930. History. 2019. Available online: https://scholarworks.umt.edu/etd/11385/ (accessed on 17 May 2021).
- Amato, J.A. Dust: A History of the Small and the Invisible; Univ of California Press: Berkeley, CA, USA, 2001. [Google Scholar]
- Meeker, J.D.; Cooper, M.R.; Lefkowitz, D.; Susi, P. Engineering Control Technologies to Reduce Occupational Silica Exposures in Masonry Cutting and Tuckpointing. Public Health Rep. 2009, 124, 101–111. [Google Scholar] [CrossRef] [Green Version]
- CDC. Preventing Silicosis and Deaths from Sandblasting. Columbia, US: DSDTT. 2014. Available online: https://www.cdc.gov/niosh/docs/92-102/pdfs/92-102sum.pdf?id=10.26616/NIOSHPUB92102 (accessed on 17 May 2021).
- Kahriman, A.; Ozer, U.; Aksoy, M.; Karadogan, A.; Tuncer, G. Environmental impacts of bench blasting at Hisarcik Boron open pit mine in Turkey. Environ. Earth Sci. 2006, 50, 1015–1023. [Google Scholar] [CrossRef]
- Systeco. Ecofriendly Sandblasting. Lübbenau. 2014. Available online: https://www.sys-teco.com/eco-friendly-sandblasting.html (accessed on 10 May 2021).
- Daniela. Recycling Options for Used Sandblasting Grit into Road Construction. Researches in Energy, Environment and Landscape Architecture. November 2011. Available online: https://www.researchgate.net/publication/309395303_Recycling_options_for_used_sandblasting_grit_into_road_construction (accessed on 1 May 2021).
- Drinkwater, D.; Napier-Munn, T.; Ballantyne, G. Energy reduction through ecoefficient comminution strategies. In 26th International Mineral Processing Congress, IMPC 2012: Innovative Processing for Sustainable Growth—Conference Proceedings; Technowrites: Pune, India, 2012. [Google Scholar]
- Bae, H.-J. Improving Blasting Productivity by Optimizing Operation Parameters. Researchgate. 2007. Available online: https://www.researchgate.net/publication/295749220_Improving_blasting_productivity_by_optimizing_operation_parameters (accessed on 20 April 2021).
- Kura, B.; Kambham, K.; Sangameswaran, S.; Potana, S. Atmospheric Particulate Emissions from Dry Abrasive Blasting Using Coal Slag. J. Air Waste Manag. Assoc. 2006, 56, 1205–1215. [Google Scholar] [CrossRef] [Green Version]
- Karadbhuje, S.W. Abrasive Blasting. VSRD International Journal of Mechanical, Civil, Automobile and Production, 3. 7 July 2013. Available online: www.vsrdjournals.com (accessed on 20 April 2021).
- Rothstein, H.R.; Hopewell, S. Grey Literature. In A-Z Common Reference Questions for Academic Librarians; Facet; Russell Sage Foundation: London, UK, 2019; pp. 162–164. [Google Scholar] [CrossRef]
- Rowley, J.; Slack, F. Conducting a literature review. Manag. Res. News 2004, 27, 31–39. [Google Scholar] [CrossRef]
- Qomariah, Q.; Sugiharti, S.; Riyanto, S. The utilization of sandblasting sand waste for mortar and normal concrete. IOP Conf. Ser. Mater. Sci. Eng. 2020, 732, 012036. [Google Scholar] [CrossRef]
- Muttashar, H.L.; Ariffin, M.A.M.; Hussin, M.W.; Bin Ishaq, S. Realisation of enhanced self-compacting geopolymer concrete using spent garnet as sand replacement. Mag. Concr. Res. 2018, 70, 558–569. [Google Scholar] [CrossRef]
- Guven, O.; Ozdemir, O.; Karaaʇaçlioʇlu, I.; Çelik, M. Contribution of roughness and shape factors on flotation of glass beads. In Proceedings of the IMPC 2014—27th International Mineral Processing Congress, Santiago, Chile, 20–24 October 2014. [Google Scholar]
- Bloomfield, J.J.; Greenburg, L. Sand and metallic abrasive blasting as an industrial health hazard. J. Ind. Hyg. 1933, 15, 184–204. [Google Scholar]
- Li, J.; Li, Y.; Huang, M.; Xiang, Y.; Liao, Y. Improvement of aluminum lithium alloy adhesion performance based on sandblasting techniques. Int. J. Adhes. Adhes. 2018, 84, 307–316. [Google Scholar] [CrossRef]
- Balakrishnan, B. Silicosis. Available online: https://www.researchgate.net/profile/Bathmapriya-Balakrishnan/publication/337797099_Silicosis_Medscape_Drugs_Diseases/links/5ded5bde92851c83646e0622/Silicosis-Medscape-Drugs-Diseases.pdf (accessed on 28 May 2021).
- Krolczyk, G.; Krolczyk, J.; Maruda, R.; Legutko, S.; Tomaszewski, M. Metrological changes in surface morphology of high-strength steels in manufacturing processes. Measurement 2016, 88, 176–185. [Google Scholar] [CrossRef]
- Hansel, D. Abrasive blasting systems. Met. Finish. 2000, 98, 23–37. [Google Scholar] [CrossRef]
- Myrsell, J. Effect of Shot Blasting on Processoxidised Stainless Steel–Morphology, Chemistry and Pickling Performance. 2014. Available online: http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A795762&dswid=-7440 (accessed on 2 March 2021).
- Chillara, N. Abrasive Blasting Process Optimization: Enhancing Productivity, and Reducing Consumption and Solid/Hazardous Wastes. Master’s Thesis, University of New Orleans, New Orleans, LA, USA, 2005. [Google Scholar]
- Sun, Y.; Xie, Z.; Li, J.; Xu, J.; Chen, Z.; Naidu, R. Assessment of toxicity of heavy metal contaminated soils by the toxicity characteristic leaching procedure. Environ. Geochem. Health 2006, 28, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Adrian, M.I.; Butler, P.A. SHOT& GRIT. Available online: https://www.proquest.com/openview/8b8df197468dd3fb6488df313f2d0033/1?pq-origsite=gscholar&cbl=36623 (accessed on 25 May 2021).
Institution | Substances | PEL |
---|---|---|
OSHA US | Respirable crystalline silica | 0.1 mg/m3 |
Respirable dusts containing quartz | 10 (mg/m3)/(%SiO2 + 2) | |
Total dusts containing quartz | 30 (mg/m3)/(%SiO2 + 2) | |
Dusts containing cristobalite and tridymite | 1/2 × (PEL formulas for quartz) | |
Particles not otherwise regulated (PNOR) | 5 mg/m3 respirable dust | |
15 mg/m3 total dust |
No | Abrasive Name | % of Free Silica | Remarks |
---|---|---|---|
1 | Silicon Carbide | 70–100% | No.1 Carcinogenic materials |
2 | Garnet | <0.1% | Low dust and low heavy metals |
3 | Copper slag, Nickel slag & Coal slag | <0.1% | Low silica but could contain heavy metals and high dust level |
4 | Crushed glass | <0.1% | Medium dust—glass shards can cause blood noses |
5 | Glass bead | <0.1% | Low dust & low heavy metals |
6 | Steel grit & Steel shot | 0% | Low dust & have low heavy metals |
7 | Sponge, Corn cob, Walnut shell & Plastic grit | 0% | Low dust & have low heavy metals |
Categories of Blasting Media | Media Type | Description Best/Use | Grit Size Range | Hardness | Surface Profile | Speed | Recyclability |
---|---|---|---|---|---|---|---|
(Mohs) | |||||||
Synthetic | Silicon Carbide | Hard, aggressive cutting media, best used on hard surfaces | Very coarse to extra fine | 9–9.5 | Very high etch | Very fast | High |
Synthetic | Aluminum oxide | Extremely sharp and long-lasting, best used for etching and profiling | Very coarse to extra fine | 8–9 | High etch | Fast | High |
Mineral | Garnet | Industrial gemstone mineral best used for coating adhesion or where grit transfer is needed | Very Coarse to Fine | 7–8 | High etch | Fast | Medium |
Synthetic | Crushed glass grit | Aggressive grit, best used for surface profiling and removal of coatings and surface contamination | Coarse to extra fine | 5–6 | Medium- high etch | Fast | None, consumable |
Synthetic | Glass beads | Lead-free, soda lime-type glass, containing no free silica best used to produce a smooth and bright finish | Coarse to super fine | 5–6 | No etch, satin finish | Medium-fast | High |
Agriculture | Corn Cob | Organic, soft media best used on soft surfaces such as wood for non-damaging cleaning and stripping | Extra Coarse to Extra Fine | 4.5–5 | None | Slow | Low |
Agriculture | Walnut Shell | Organic, durable grit best used for mildly aggressive stripping without damage | Extra Coarse to Extra Fine | 4.5–5 | Low etch | Medium-slow | Low |
Synthetic | Plastic Bead | Soft media, best used for coatings and paint, ideal for automotive and aerospace applications | Very coarse | 3–4 | No etch, stripping | Medium | High |
Metalic | Steel Shot | Carbon steel best for polishing and smoothing surfaces | Medium to ultra-fine | 40–51 HRC | No etch | Medium | Very high |
Metalic | Steel Grit | Carbon steel best for aggressive cleaning and fast stripping | Super coarse to medium | 40–65 HRC | High etch | Medium-fast | Very high |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zulkarnain, I.; Mohamad Kassim, N.A.; Syakir, M.I.; Abdul Rahman, A.; Md Yusuff, M.S.; Mohd Yusop, R.; Keat, N.O. Sustainability-Based Characteristics of Abrasives in Blasting Industry. Sustainability 2021, 13, 8130. https://doi.org/10.3390/su13158130
Zulkarnain I, Mohamad Kassim NA, Syakir MI, Abdul Rahman A, Md Yusuff MS, Mohd Yusop R, Keat NO. Sustainability-Based Characteristics of Abrasives in Blasting Industry. Sustainability. 2021; 13(15):8130. https://doi.org/10.3390/su13158130
Chicago/Turabian StyleZulkarnain, Iskandar, Nor Adila Mohamad Kassim, M. I. Syakir, Azhar Abdul Rahman, Mohamad Shaiful Md Yusuff, Rosdin Mohd Yusop, and Ng Oon Keat. 2021. "Sustainability-Based Characteristics of Abrasives in Blasting Industry" Sustainability 13, no. 15: 8130. https://doi.org/10.3390/su13158130
APA StyleZulkarnain, I., Mohamad Kassim, N. A., Syakir, M. I., Abdul Rahman, A., Md Yusuff, M. S., Mohd Yusop, R., & Keat, N. O. (2021). Sustainability-Based Characteristics of Abrasives in Blasting Industry. Sustainability, 13(15), 8130. https://doi.org/10.3390/su13158130