Prototyping of a Novel Rammed Earth Technology
Abstract
:1. Introduction
2. State of the Art on Raw Earth Reinforced Technologies
- the name, the geographic location and the indication of when the system was adopted;
- the constructive process used (in situ, prefabricated or partially prefabricated);
- the composition of the loadbearing structure (type of walling structure, type of adopted reinforcing elements, number and position of reinforcing elements with reference to the cross-section of the walls, materials used);
- type of floors;
- anti-seismic devices adopted, if any;
- thermal improvements adopted, if any;
- connection details, if detailed.
- connections between orthogonal walls (by means of ring beams or ties);
- the lowering of the centre of gravity of the building (by using heavier material at the ground floor, and lightweight ones at superior floors);
- the increase in the deformability of the walls (by the addition of high tensile strength materials or reinforcements);
- the reduction in the structure’s weight (by the addition of lightweight materials as aggregates or reinforcements).
- entire canes (hollow or solid), approximately 25 mm in diameter as vertical reinforcement and split ones, as internal horizontal reinforcement;
- timber post with diameters greater than 25 mm as vertical reinforcement and natural ropes with a minimum diameter of 6 mm as horizontal reinforcement;
- woven vegetable fibre branches, in packages with diameters of 25 mm as external vertical reinforcement and loose braided branches or ropes as external horizontal reinforcement, with diameters greater than 6 mm;
- ropes made of natural fibres braided into external orthogonal meshes.
3. Design Proposal and Methods
3.1. Multiphase Prototyping
3.2. Performances Validation
- design of a rammed earth building based on the innovative constructive system;
- use of bioclimatic design strategies, including use of summer night cross ventilation and overhangs, to optimise comfort conditions and reduce energy needs;
- dynamic thermal simulations on Design Builder software under free-running conditions with the aim of comparing the behaviour of the uninsulated rammed earth building’s envelope structure to the insulated one.
4. Construction and Production Process of the Building System
4.1. Base Material
4.2. Constructive System
4.2.1. Solid Ground Floor
- Excavation for the footing;
- Installation of the cast concrete;
- Waterproofing layer, e.g., made of polyethylene sheets (in the case of particularly humid soils or soils close to aquifers);
- Reinforced concrete L-shaped footing; it must protrude from the ground level by at least 30 cm to protect the rammed earth wall from flooding phenomena and the rebound of rainwater. At the top, on the inner side, there will be a fold at least 20 cm deep to support the beams of the horizontal base closure;
- Creation of a drainage crawl space on the external side of the footing;
- Installation of the beams of the horizontal base closure (after waterproofing the heads of the beams);
- Installation of the floor excluding the finishing layer;
- Fixing of the bottom timber ring beam to the footing.
4.2.2. Rammed Earth Wall
- Connection of the timber posts to the bottom ring beam using steel L-squares. These posts have slots along their entire height, spaced vertically by approx. 30–40 cm, for the passage of nylon/polyester type 1 ties;
- Installation of the nylon/polyester type 1 ties for each pair of posts, starting from the lower part of the wall, by making them protrude at least 20 cm from the slots of the posts to subsequently install and lock the formworks;
- Installation of the formworks. The longitudinal panels are perforated at the points where the nylon/polyester ties pass through, and the ties are secured in the immediate vicinity of these points by means of clamps and/or buckles;
- Insertion of the type 1 ties into the holes of the formwork, stretching and locking on the longitudinal panels of the formwork by anchoring the ties in the cleats/buckles;
- Installation of type 2 ties next to the last couple of posts near the corner post, vertically offset by 15–20 cm in relation to ties type 1;
- Solidarization of the pairs of timber posts, at their upper ends, by means of a flat ring to prevent them from tipping over during the compaction phase;
- Pouring of the ready-mixed rammed earth material into the formwork in layers of 15–20 cm and ramming until they reach half of their height, by means of an electric or pneumatic compactor. The entire rammed earth section must reach a height of 90–100 cm. Particular attention must be paid to the areas close to the ties during compaction;
- Once the first section of rammed earth masonry is completed, phases from 2 to 7 are repeated for the rest of the wall, taking care of wetting the contact surfaces before starting the compaction procedure;
- Installation of horizontal nylon/polyester reinforcement system (bindings) and anchorage to type 2 ties;
- Tensioning of the horizontal bindings by means of turnbuckles (later removed) or by means of sliding knots and fastening to the type 1 ties;
- Repeat steps 9–10 for all the walls. The corner will then be confined by a double system of horizontal ropes from the two orthogonal walls.
4.2.3. Roof Horizontal Closure
- Installation of the top ring beam to the head of the vertical posts by nailing or laterally by a straight plate;
- Connection of the load-bearing beams of the roof by means of metal brackets to the ring beam; in particular, beams will be set back a few centimetres (2–3 cm) with respect to the external edge of the wall;
- Installation of an external frame (made up of timber boards) in the space left empty by the roof beams;
- Installation of an internal frame (made of timber boards placed between the ceiling beams) in the space left empty by the roof beams;
- For the construction of the horizontal/inclined closure of the roof, it is recommended to use insulation with low water vapour resistance. For the horizontal closure of the roof, solutions that project slightly from the vertical plane of the wall, ventilated roofs or green roofs are preferred.
4.2.4. Finishings
4.3. Extimation of Construction Time and Costs
4.4. Thermal Performance Results
5. Conclusions and Final Remarks
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- P8_TA(2019)0220, Relazione Strategica Annuale Sull’attuazione e la Realizzazione Degli Obiettivi di Sviluppo Sostenibile, Risoluzione del Parlamento Europeo del 14 Marzo 2019 sul Cambiamento Climatico: Visione Strategica Europea a Lungo Termine per Un’economia Prospera, Moderna, Competitiva e Climaticamente Neutra in Conformità Dell’accordo di Parigi (2019/2582(RSP)). Available online: https://www.europarl.europa.eu/doceo/document/TA-8-2019-0220_IT.html (accessed on 23 June 2021).
- Direttiva UE 2018/2002 del Parlamento Europeo e del Consiglio dell’11 dicembre 2018, che Modifica La Direttiva 2012/27/UE Sull’efficienza Energetica. Available online: https://eur-lex.europa.eu/legal-content/IT/TXT/PDF/?uri=CELEX:32018L2002&from=EN (accessed on 23 June 2021).
- Bollini, G. Terra Battuta: Tecnica Costruttiva e Recupero; Linee Guida per la Procedura di Intervento, Edicom Edizioni: Milano, Italy, 2013. [Google Scholar]
- Giuffrida, G.; Caponetto, R.; Nocera, F. Hygrothermal Properties of Raw Earth Materials: A Literature Review. Sustainability 2019, 11, 5342. [Google Scholar] [CrossRef] [Green Version]
- Norma, E.080 Diseño y Construcción con Tierra Reforzada, Ministerio de Vivienda, Construcción y Saneamiento; El Peruano: Lima, Peru, 2017; Available online: https://procurement-notices.undp.org/view_file.cfm?doc_id=109376 (accessed on 25 October 2021).
- Jorquera Silva, N.; Cisternas Olguín, R. El tabique-adobillo, una técnica sismorresistente de Valparaíso, in Terra Lyon 2016. In Proceedings of the XIIe Congrès Mondial sur les Architectures de Terre, Lyon, France, 11–14 July 2016; Joffroy, T., Guillaud, H., Sadozaï, C., Eds.; CRAterre: Villefontaine, France, 2018. [Google Scholar]
- Bravo Valenzuela, R.J. Muro Estructural con una Estructura Exogena a su eje Longitudinal Para Posibilitar su Relleno Interior en Obra. WO 2016/205968, 29 December 2016. [Google Scholar]
- Estévez Rodriguez, A.; Martín-Lara Moreno, S. Edificio Modular Mixto de Entramado de Madera y Tapial. Patent No. ES 1091631 U, 18 October 2013. [Google Scholar]
- Krayenhoff, M. Formwork and Method for Constructing Rammed Earth Walls. Patent No. US 8,375,669 B2, 19 February 2013. [Google Scholar]
- Ward, T.; Grill, J. Post-Tensioned Rammed Earth Construction. Patent No. US 7,033,116 B1, 25 April 2006. [Google Scholar]
- Dipasquale, L.; Mecca, S. Local seismic culture in the Mediterranean region. In Seismic Retrofitting: Learning from Vernacular Architecture; Correia, M., Lourencço, P.B., Varum, H., Eds.; Taylor & Francis Group: London, UK, 2015; ISBN 978-1-138-02892-0. [Google Scholar]
- Galassi, S.; Ruggieri, N.; Tempesta, G.; Zinno, R. Stability and Stiffness Contribution of the Masonry in the Borbone Anti-Seismic System. In Proceedings of the 9th International Masonry Conference, Guimarães, Portugal, 7–9 July 2014. [Google Scholar]
- Stellacci, S.; Ruggieri, N.; Rato, V. Gaiola vs. Borbone System: A Comparison between 18th Century Anti-Seismic Case Studies. IJAH 2016, 10, 817–828. [Google Scholar] [CrossRef] [Green Version]
- Poletti, E.; Vasconcelos, G.; Oliveira, D. Influence of Infill on the Cyclic Behaviour of Traditional Half-Timbered Walls. In Proceedings of the Rehabilitation and Restoration of Structures International Conference, Chennai, India, 13–16 February 2013. [Google Scholar]
- Tonna, S.; Ruggieri, N.; Chesi, C. Comparison between two traditional earthquake proof solutions: Borbone and Lefkada Timber-frame systems. J. Archit. Eng. 2018, 24, 04018030. [Google Scholar] [CrossRef]
- Gülkan, P.; Langenbacht, R. The Earthquake Resistance of Traditional Timber and Masonry Dwellings in Turkey. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004; p. 2297. [Google Scholar]
- Giuffrida, G.; Caponetto, R.; Cuomo, M. An overview on contemporary rammed earth buildings: Technological advances in production, construction and material characterization. IOP Conf. Ser. Earth Environ. Sci. 2019, 296, 012018. [Google Scholar] [CrossRef]
- Windstorm, B.; Schmidt, A. A Report of Contemporary Rammed Earth Construction and Research in North America. Sustainability 2013, 5, 400–416. [Google Scholar] [CrossRef] [Green Version]
- Von Mag, A.; Rauch, M. Rammed earth walls and its industrialization (formworks and ramming systems). Informes de la Construcción 2011, 63, 35–40. [Google Scholar]
- Dahmen, A.J.; Muñoz, B.J.F. Modular rammed earth masonry block. In Rammed Earth Construction: Cutting-Edge Research on Traditional and Modern Rammed Earth, Proceedings of the First International Conference on Rammed Earth Construction, Perth and Margaret River, WA, Australia, 10–13 February 2015; Ciancio, D., Beckett, C., Eds.; Taylor & Francis Group: London, UK, 2015; ISBN 978-1-138-02770-1. [Google Scholar]
- Krayenhoff, M. Rammed Earth Thermodynamics. In AA.VV. Rammed Earth Construction; Ciancio, D., Beckett, C.T.S., Eds.; Taylor & Francis Group: London, UK, 2015. [Google Scholar]
- New Zealand Standard 4299: 1998. Earth Buildings Not Requiring Specific Design; Standard New Zealand: Wellington, New Zealand, 1998.
- Proposal RB299-19. Appendix U. Cob Construction (Monolithic Adobe); 2018 International Residential Code: Brea, CA, USA, 2019; Available online: https://cobcode.s3.amazonaws.com/RB299-19_IRC_ProposedAppendixU_CobConstruction.pdf (accessed on 25 October 2021).
- Miccoli, L.; Müller, U.; Pospíšil, S. Rammed Earth Walls Strengthened with Polyester Fabric Strips: Experimental Analysis under In-Plane Cyclic Loading. Constr. Build. Mater. 2017, 149, 29–36. [Google Scholar] [CrossRef]
- Neves, C.; Borges Faria, O. Técnicas de Construcción con Tierra, Bauru-SP, FEB-UNESP/PROTERRA. 2011. Available online: https://redproterra.org/wp-content/uploads/2020/05/4a_PP-Tecnicas-de-construccion-con-tierra_2011.pdf (accessed on 23 June 2021).
- Houben, H.; Guillaud, H. Traité de Construction en Terre; Éditions Parenthèses: Marseille, France, 2006. [Google Scholar]
- Tejada Schmidt, U.; Mendoza Garcia, A.; Torrealva Davila, D. Uso del Tapial en la Construcción, 2016, Servicio Nacional de Capacitación para la Industria de la Construcción SENCICO. Available online: https://issuu.com/catalogosencico/docs/libro_sencicotapial_mejorado (accessed on 23 June 2021).
- San Bartolomè, A.; Quiun, D. Construccion con Tapial; ININVI Instituto Nacional de Investigacion y Normalizacion de la Vivienda: Lima, Peru, December 1989. [Google Scholar]
- Tantaleán Altamirano, C.J.J.C. Desarrollo de un Diseño Estructural por Esfuerzos de Trabajo (det) en Viviendas de Tapial de 1 Piso. Thesis Pucp. Bachelor’s Thesis, Pontificia Universidad Católica del Perú, Lima, Peru, 2018. Available online: https://tesis.pucp.edu.pe/repositorio/handle/20.500.12404/12810 (accessed on 25 October 2021).
- Tripura, D.D.; Singh, K.D. Axial Load-Capacity of Bamboo-Steel Reinforced Cement Stabilised Rammed Earth Columns. Struct. Eng. Int. 2019, 29, 133–143. [Google Scholar] [CrossRef]
- Minke, G. Building with Earth: Design and Technology of a Sustainable Architecture; Birkhäuser: Berlin, Germany, 2006. [Google Scholar]
- Blondet, M.; Vargas, J.; Tarque, N.; Iwaki, C. Construcción sismorresistente en tierra: La gran experiencia contemporánea de la Pontificia Universidad Católica de Peru. Informes de la Construcción 2011, 63, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Blondet, M.; Vargas, J.; Sosa, C.; Soto, J. Seismic simulation tests to validate a dual technique for repairing adobe historical buildings damaged by earthquakes. In Proceedings of the Kerpic’13—New Generation Earthen Architecture: Learning from Heritage International Conference, Istanbul, Turkey, 11–14 September 2013; Available online: http://www.syzmingesa.com/preview/2/seismic-simulation-tests-to-validate-a-dual-technique-for-repairing-adobe-historical-buildings-damaged-by-earthquakes- (accessed on 25 October 2021).
- Blondet, M.; Vargas, J.; Sosa, C.; Soto, J. Using mud injection and an external rope mesh to reinforce historical earthen buildings located in seismic areas. In Proceedings of the SAHC2014—9th International Conference on Structural Analysis of Historical Constructions, Mexico City, Mexico, 14–17 October 2014. [Google Scholar]
- Blondet, M.; Rubiños, A. Communication Tools for the Construction of Safe and Decent Earthen Houses in Seismic Areas. In Proceedings of the Human Development & Capability Association Conference, Athens, Greece, 2–5 September 2014. [Google Scholar]
- Serrano, M.; Blondet, M.; Rubiños, A.; Mattsson, E. Sustainable dissemination of earthquake resistant construction in the Peruvian Andes. Sustain. Sci. Pract. Policy 2016, 12, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Blondet, M.; Vargas, J.; Tarque, N.; Soto, J.; Sosa, C.; Sarmiento, J. Seismic reinforcement of earthen constructions. In Proceedings of the 16th World Conference on Earthquake Engineering, Santiago de, Chile, 9–13 January 2017; p. 2168. [Google Scholar]
- Available online: http://investigacion.pucp.edu.pe/grupos/ctierra/noticia-evento/emergencia-orduna-sismo-6-3-richter/ (accessed on 23 June 2021).
- Giuffrida, G.; Detommaso, M.; Nocera, F.; Caponetto, R. Design optimisation strategies for solid rammed earth walls in Mediterranean climates. Energies 2021, 14, 325. [Google Scholar] [CrossRef]
- Ascione, F.; De Rossi, F.; Vanoli, G.P. Energy retrofit of historical buildings: Theoretical and experimental investigations for the modelling of reliable performance scenarios. Energy Build. 2011, 43, 1925–1936. [Google Scholar] [CrossRef]
- Cornaro, C.; Puggioni, V.A.; Strollo, R.M. Dynamic simulation and on-site measurements for energy retrofit of complex historic buildings: Villa Mondragone case study. J. Build. Eng. 2016, 6, 17–28. [Google Scholar] [CrossRef]
- Gagliano, A.; Nocera, F.; Patania, F.; Moschella, A.; Detommaso, M.; Evola, G. Synergic effects of thermal mass and natural ventilation on the thermal behaviour of traditional massive buildings. Int. J. Sustain. Eng. 2016, 35, 411–428. [Google Scholar] [CrossRef]
- Nocera, F.; Caponetto, R.; Giuffrida, G.; Detommaso, M. Energetic Retrofit Strategies for Traditional Sicilian Wine Cellars: A Case Study. Energies 2020, 13, 3237. [Google Scholar] [CrossRef]
- Università degli Studi di Catania e Guglielmino Società Cooperativa a R.L. Sistema Costruttivo Antisismico: Tecnologia e Processo di Produzione. Domanda di Brevetto No. 102021000006644, 19 March 2021.
- Rodríguez-Larraín, S.; Alvariño, M.; Onnis, S.; Wieser, M.; Jimenez, C.; Meli, G.; Vargas Neumann, J.; Sosa, C. Manual del Promotor Técnico Para la Construcción de la Vivienda Altoandina Segura y Saludable, Concytec 2016, Proyecto Transferencia Tecnológica para la Vivienda Altoandina 2014–2016. Available online: https://issuu.com/centrotierra/docs/1._manual_del_promotor_t__cnico (accessed on 23 June 2021).
- Rodríguez-Larraín, S.; Montoya, T.; Gíl Zacarías, S.; Onnis, S.; Vargas Neumann, J. Manual de la Técnica Constructiva Validada–Descripción del Proceso por Etapas de la Construcción del área Piloto “Los Domingos” en la Hacienda Santa María en Tarma con la Técnica del Tapial Mejorado, Ed. 2014, Proyecto N° 187- Fincyt-Fidecom-Pimen 2012. Available online: https://investigacion.pucp.edu.pe/grupos/ctierra/publicacion/manual-de-la-tecnica-constructiva-validada-tapial-tarma/ (accessed on 23 June 2021).
- Scudo, G.; Narici, B.; Talamo, C. Costruire con la Terra; Ed. Sistemi Editoriali: Milano, Italy, 2001. [Google Scholar]
- How Much Does Rammed Earth Cost? Available online: https://www.rammedearthenterprises.com.au/rammed-earth-cost/#:~:text=The%20price%20range%20for%20the,size%2C%20design%2C%20finishes%20etc (accessed on 23 June 2021).
- What Is the Cost per Square Foot of Different Earth Building Methods? An Overview of Natural, Eco-Friendly, Earthen Architecture Traditions. Available online: https://mudman.blog/2017/04/18/what-is-the-cost-per-square-foot-of-different-earthen-building-styles/ (accessed on 23 June 2021).
- Custom Homes and Cost. Available online: https://www.earthhomes.co.nz/What+we+do/Custom+Homes+and+cost.html (accessed on 23 June 2021).
Data | Symbol | Value [cm] | Condition | Verification |
---|---|---|---|---|
Raw earth wall thickness | e | 40 | - | - |
Buttress Thickness | e0 | 40 | (I) e0 ≥ e | OK |
Raw earth wall Height | H | 256 | - | - |
Spacing Between loadbearing elements | L | 380 | - | - |
Voids width | a | 70 | (II) a ≤ L/3 | OK |
Distance from the void to the buttress | b | 155 | (III) 3e ≤ b ≤ 5e | OK |
Horizontal slenderness | ʎh = L/e | 9.5 | ʎh ≤ 10 | OK |
Vertical slenderness | ʎv = H/e | 6.4 | ʎv ≤ 6 or 8 if (IV) it is verified | OK |
Relation between horizontal and vertical slenderness | - | - | (IV) L + 1.25H ≤ 17.5e (V) ʎh + 1.25ʎv ≤ 17.5 | 700 ≤ 700 17.5 ≤ 17.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giuffrida, G.; Caponetto, R.; Nocera, F.; Cuomo, M. Prototyping of a Novel Rammed Earth Technology. Sustainability 2021, 13, 11948. https://doi.org/10.3390/su132111948
Giuffrida G, Caponetto R, Nocera F, Cuomo M. Prototyping of a Novel Rammed Earth Technology. Sustainability. 2021; 13(21):11948. https://doi.org/10.3390/su132111948
Chicago/Turabian StyleGiuffrida, Giada, Rosa Caponetto, Francesco Nocera, and Massimo Cuomo. 2021. "Prototyping of a Novel Rammed Earth Technology" Sustainability 13, no. 21: 11948. https://doi.org/10.3390/su132111948
APA StyleGiuffrida, G., Caponetto, R., Nocera, F., & Cuomo, M. (2021). Prototyping of a Novel Rammed Earth Technology. Sustainability, 13(21), 11948. https://doi.org/10.3390/su132111948