A Comparison of Two-Stage and Traditional Co-Composting of Green Waste and Food Waste Amended with Phosphate Rock and Sawdust
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
- FW was introduced as amendment material (energy amendment) to provide readily degradable organic matter (i.e., simple carbohydrates) and nitrogen. UPFW: TOC = 38.7%; NTotal: 1.56%; PFW: TOC = 15.87%; NTotal: 3.0%.
- The sawdust (SW) was added as both a source of carbon and as a moisture absorbent. SW: TOC = 23.64%; NTotal: 0.42%.
- In the first stage, wooden containers (0.55 × 1.3 × 1.25 m) were used to confine the mixture. The containers had holes of 5 cm diameter and four perforated pipes (1.4 m high), both to maintain the necessary aerobic conditions for the process. This stage ended when the first thermophilic phase was completed.
- In the second stage, the material was removed from the containers and piles in conical heaps. In the second stage, a second thermophilic phase was expected, and the completion of the process occurred when the material reached ambient temperature [11]. During the process, the material was removed from the containers on the tenth day to start the second stage of the process.
2.2. Process Monitoring
2.3. Product Quality
3. Results and Discussion
3.1. Process Conditions
3.2. Product Quality
Parameters | Units | TA (n = 3) | TB (n = 3) | NTC 5167 | Hernández et al. [17] | Oviedo-Ocaña et al. [1] | Boldrin et al. [47] | Zhang and Sun [5] |
---|---|---|---|---|---|---|---|---|
Moisture | % | 45.70 ± 3.59 | 44.20 ± 1.13 | <35 | 33.87 | 54.6 | 29–44 | -- |
pH | 8.43 ± 0.31 | 8.36 ± 0.20 | >4–<9 | 7.51 | 7.60 | -- | 7.9 | |
Total organic carbon | % dw | 28.16 ± 0.85 | 29.04 ± 1.58 | >15 | 20.87 | 23.1 | 10–19 | 25 |
Total Nitrogen | % dw | 1.76 ± 0.32 | 1.55 ± 0.31 | >1 | 1.37 | 2.35 | 0.7–0.9 | 3.0 |
C/N | - | 15.97 ± 4.09 | 18.68 ± 7.19 | - | 14.9 | -- | 11–27 | -- |
Cation exchange capacity | cmol kg−1 | 38.13 ± 6.71 | 32.70 ± 7.05 | >30 | 32.77 | -- | -- | -- |
Electric conductivity | dS m−1 | 0.93 ± 0.23 | 0.62 ± 0.14 | - | 0.21 | 1.66 | -- | 2.61 |
Water retention capacity | % | 157.00 ± 19.26 | 141.53 ± 11.99 | >100 | 237.4 | -- | -- | -- |
Density | g cm−3 | 0.50 ± 0.11 | 0.46 ± 0.04 | <0.6 | -- | -- | -- | -- |
Total Phosphorous | % dw | 4.75 ± 2.81 | 4.19 ± 0.44 | >1 | 0.56 | 0.8 | 0.15–0.23 | 0.3 |
Ash | % dw | 52.10 ± 4.09 | 55.40 ± 7.92 | <60 | 51.60 | -- | 72–79 | -- |
Lignin | % dw | 30.30 ± 2.28 | 28.60 ± 1.67 | -- | -- |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oviedo-Ocaña, E.R.; Dominguez, I.; Komilis, D.; Sánchez, A. Co-composting of Green Waste Mixed with Unprocessed and Processed Food Waste: Influence on the Composting Process and Product Quality. Waste Biomass Valorization 2019, 10, 63–74. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Pandey, A.K.; Khan, J.; Bundela, P.S.; Wong, J.W.C.; Selvam, A. Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresour. Technol. 2014, 168, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Li, S.; Sun, X.; Cai, L.; Zhang, P.; Kang, Y.; Yu, Z.; Tong, J.; Wang, L. Application of seasonal freeze-thaw to pretreat raw material for accelerating green waste composting. J. Environ. Manag. 2019, 239, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sun, X. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste. Waste Manag. 2016, 48, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sun, X. Improving green waste composting by addition of sugarcane bagasse and exhausted grape marc. Bioresour. Technol. 2016, 218, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sun, X. Addition of fish pond sediment and rock phosphate enhances the composting of green waste. Bioresour. Technol. 2017, 233, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Torres, M.; Oviedo-Ocaña, E.R.; Dominguez, I.; Komilis, D.; Sánchez, A. A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Manag. 2018, 77, 486–499. [Google Scholar] [CrossRef] [PubMed]
- Belyaeva, O.N.; Haynes, R.J. Chemical, microbial and physical properties of manufactured soils produced by co-composting municipal green waste with coal fly ash. Bioresour. Technol. 2009, 100, 5203–5209. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Ceglie, F.G.; Aly, A.; Mihreteab, H.T.; Ciaccia, C.; Tittarelli, F. Phosphorus availability from rock phosphate: Combined effect of green waste composting and sulfur addition. J. Environ. Manag. 2016, 182, 557–563. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X. Addition of seaweed and bentonite accelerates the two-stage composting of green waste. Bioresour. Technol. 2017, 243, 154–162. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X.; Tian, Y.; Gong, X. Effects of brown sugar and calcium superphosphate on the secondary fermentation of green waste. Bioresour. Technol. 2013, 131, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Gabhane, J.; William, S.P.; Bidyadhar, R.; Bhilawe, P.; Anand, D.; Vaidya, A.N.; Wate, S.R. Additives aided composting of green waste: Effects on organic matter degradation, compost maturity, and quality of the finished compost. Bioresour. Technol. 2012, 114, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sun, X. Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar. Bioresour. Technol. 2014, 171, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Arias, O.; Viña, S.; Uzal, M.; Soto, M. Composting of pig manure and forest green waste amended with industrial sludge. Sci. Total Environ. 2017, 586, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sun, X. Using cow dung and spent coffee grounds to enhance the two-stage co-composting of green waste. Bioresour. Technol. 2017, 245, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Himanen, M.; Hänninen, K. Effect of commercial mineral-based additives on composting and compost quality. Waste Manag. 2009, 29, 2265–2273. [Google Scholar] [CrossRef]
- Hernández-Gómez, A.; Calderón, A.; Medina, C.; Sanchez-Torres, V.; Oviedo-Ocaña, E.R. Implementation of strategies to optimize the co-composting of green waste and food waste in developing countries. A case study: Colombia. Environ. Sci. Pollut. Res. 2020, 1–7. [Google Scholar] [CrossRef]
- Vandecasteele, B.; Willekens, K.; Steel, H.; D’Hose, T.; Van Waes, C.; Bert, W. Feedstock mixture composition as key factor for C/P ratio and phosphorus availability in composts: Role of biodegradation potential, biochar amendment and calcium content. Waste Biomass Valorization 2017, 8, 2553–2567. [Google Scholar] [CrossRef]
- Kumar, M.; Ou, Y.L.; Lin, J.G. Co-composting of green waste and food waste at low C/N ratio. Waste Manag. 2010, 30, 602–609. [Google Scholar] [CrossRef]
- Troschinetz, A.M.; Mihelcic, J.R. Sustainable recycling of municipal solid waste in developing countries. Waste Manag. 2009, 29, 915–923. [Google Scholar] [CrossRef]
- Benito, M.; Masaguer, A.; Moliner, A.; De Antonio, R. Chemical and physical properties of pruning waste compost and their seasonal variability. Bioresour. Technol. 2006, 97, 2071–2076. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, D.M.; Miller, R.O. Compost quality attributes, measurements, and variability. In Compost Utilization in Horticultural Cropping Systems; Stoffella, P.J., Kahn, B.A., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2001; pp. 95–120. [Google Scholar]
- Zeng, G.; Yu, M.; Chen, Y.; Huang, D.; Zhang, J.; Huang, H.; Jiang, R.; Yu, Z. Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural waste composting. Bioresour. Technol. 2010, 101, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Dulac, N. The organic waste flow in integrated sustainable waste management. In Tools for Decision-Makers-Experiences from the Urban Waste Expertise Programme (1995–2001); Scheinberg, A., Ed.; Waste Advisers on Urban Environment and Development: Hague, The Netherlands, 2001. [Google Scholar]
- Brinton, W.F.; Evans, E.; Droffner, M.L.; Brinton, R.B. A standardized Dewar test for evaluation of compost self-heating. Biocycle 1995, 36, 1–16. [Google Scholar]
- Varnero, M.T.; Rojas, C.; Orellana, R. Índices de fitotoxicidad de residuos orgánicos durante el compostaje [Phytotoxicity indices of organic residues during composting in English]. J. Soil Sci. Plant Nutr. 2007, 7, 28–37. [Google Scholar] [CrossRef]
- ICONTEC. Norma Técnica Colombiana NTC 5167. Productos Para la Industria Agrícola. Productos Orgánicos Usados Como Abonos o Fertilizantes y Enmiendas de Suelo; Instituto Colombiano de Normas Técnicas y Certificación: Bogotá, Colombia, 2011. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Chiumenti, A.; Chiumenti, R.; Diaz, L.F.; Savage, G.; Eggerth, L.; Goldstein, N. Modern Composting Technologies; The JG Press. Inc.: Singapore, 2005. [Google Scholar]
- Gong, X.; Li, S.; Sun, X.; Zhang, L.; Zhang, T.; Wei, L. Maturation of green waste compost as affected by inoculation with the white-rot fungi Trametes versicolor and Phanerochaete chrysosporium. Environ. Technol. 2017, 38, 872–879. [Google Scholar] [CrossRef]
- Haug, R.T. The Practical Handbook of Compost Engineering; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Böhm, R. Pathogenic Agents. Waste Manag. Ser. 2007, 8, 177–200. [Google Scholar]
- Prabhu, N.; Borkar, S.; Garg, S. Phosphate solubilization by microorganisms: Overview, mechanisms, applications and advances. In Advances in Biological Science Research: A Practical Approach; Meena, S.N., Naik, M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 161–176. [Google Scholar]
- Wang, J.; Liu, Z.; Xia, J.; Chen, Y. Effect of microbial inoculation on physicochemical properties and bacterial community structure of citrus peel composting. Bioresour. Technol. 2019, 291, 121843. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, L.; Sun, X. Improvement of two-stage composting of green waste by addition of eggshell waste and rice husks. Bioresour. Technol. 2021, 320, 124388. [Google Scholar] [CrossRef]
- Sundberg, C.; Smårs, S.; Jönsson, H. Low pH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting. Bioresour. Technol. 2004, 95, 145–150. [Google Scholar] [CrossRef]
- Moharana, P.C.; Meena, M.D.; Biswas, D.R. Role of Phosphate-Solubilizing Microbes in the Enhancement of Fertilizer Value of Rock Phosphate through Composting Technology. In Role of Rhizospheric Microbes in Soil; Meena, V.S., Ed.; Springer: Singapore, 2018; pp. 167–202. [Google Scholar]
- de Bertoldi, M.; Vallini, G.; Pera, A. The biology of composting: A review. Waste Manag. Res. 1983, 1, 157–176. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X. Effects of earthworm casts and zeolite on the two-stage composting of green waste. Waste Manag. 2015, 39, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, J.C.; Adl, M.S.; Warman, P.R. A review of the use of composted municipal solid waste in agriculture. Agric. Ecosyst. Environ. 2008, 123, 1–14. [Google Scholar] [CrossRef]
- Tiquia, S.M. Reduction of compost phytotoxicity during the process of decomposition. Chemosphere 2010, 79, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Dimambro, M.E.; Lillywhite, R.D.; Rahn, C.R. Biodegradable Municipal Waste Composts: Analysis and Application to Agriculture; Warwick HRI, University of Warwick: Warwick, UK, 2006. [Google Scholar]
- Luo, Y.; Liang, J.; Zeng, G.; Chen, M.; Mo, D.; Li, G.; Zhang, D. Seed germination test for toxicity evaluation of compost: Its roles, problems and prospects. Waste Manag. 2018, 71, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G.M.; Huang, H.L.; Huang, D.L.; Yuan, X.Z.; Jiang, R.Q.; Yu, M.; Yu, H.Y.; Zhang, J.C.; Wang, R.Y.; Liu, X.L. Effect of inoculating white-rot fungus during different phases on the compost maturity of agricultural wastes. Process Biochem. 2009, 44, 396–400. [Google Scholar] [CrossRef]
- Tiquia, S. Microbiological parameters as indicators of compost maturity. Appl. Microbiol. 2005, 99, 816–828. [Google Scholar] [CrossRef] [Green Version]
- Mkhabela, M.S.; Warman, P.R. The influence of municipal solid waste compost on yield, soil phosphorus availability and uptake by two vegetable crops grown in a Pugwash sandy loam soil in Nova Scotia. Agric. Ecosyst. Environ. 2005, 106, 57–67. [Google Scholar] [CrossRef]
- Boldrin, A.; Andersen, J.K.; Christensen, T.H. LCA Report: Environmental Assessment of Garden Waste Management in Arhus Kommune; Technical University of Denmark: Copenhagen, Denmark, 2009. [Google Scholar]
- Naher, U.A.; Sarkar, M.I.U.; Jahan, A.; Biswas, J.C. Co-Composting Urban Waste, Plant Residues, and Rock Phosphate: Biochemical Characterization and Evaluation of Compost Maturity. Commun. Soil Sci. Plant Anal. 2018, 49, 751–762. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Lian, J.; Chao, J.; Gao, Y.; Yang, F.; Zhang, L. Impact of fly ash and phosphatic rock on metal stabilization and bioavailability during sewage sludge vermicomposting. Bioresour. Technol. 2013, 136, 281–287. [Google Scholar] [CrossRef]
- Mhindu, R.L.; Wuta, M.; Ngorima, E. Composting of selected organic wastes from peri-urban areas of Harare, Zimbabwe. Int. J. Recycl. Org. Waste Agric. 2013, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Rawoteea, S.A.; Mudhoo, A.; Kumar, S. Co-composting of vegetable wastes and carton: Effect of carton composition and parameter variations. Bioresour. Technol. 2017, 227, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.S.; Joergensen, R.G. Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers. Bioresour. Technol. 2009, 100, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Sharif, M.; Matiullah, K.; Tanvir, B.; Shah, A.H.; Wahid, F. Response of fed dung composted with rock phosphate on yield and phosphorus and nitrogen uptake of maize crop. Afr. J. Biotechnol. 2011, 10, 12595–12601. [Google Scholar] [CrossRef]
- Billah, M.; Bano, A. Role of plant growth promoting rhizobacteria in modulating the efficiency of poultry litter composting with rock phosphate and its effect on growth and yield of wheat. Waste Manag. Res. 2015, 33, 63–72. [Google Scholar] [CrossRef]
Parameters | Units | Method/Technique |
---|---|---|
pH | -- | Potentiometric |
Moisture | % | Gravimetric |
Total Organic Carbon (TOC) | % | Gravimetric |
Total Nitrogen (N) | % dw | Titrimetric Kjeldahl |
Ash | % dw | Gravimetric |
Total Potassium (K2O) | % dw | Atomic absorption |
Total Phosphorous (P2O5) | % dw | Spectrophotometric |
Electrical Conductivity | mS cm−1 | Potentiometric |
Cation exchange capacity | cmol kg−1 | Volumetric |
Water retention capacity | % | Gravimetric |
Volatile Solids | % dw | Gravimetric |
Treatment | Mesophilic Phase Duration (d) | Thermophilic Phase Duration (d) | Tmax (°C) | Time to Reach Tmax (d) | Cooling Phase Duration (d) | VS Reduction (%) | Added Water (L) |
---|---|---|---|---|---|---|---|
TA | 1 | 27 | 62.6 | 6 | 46 | 40.4 ± 2.2 | 148.3 ± 7.64 |
TB | 1 | 33 | 68.6 | 12 | 40 | 38.5 ± 7.6 | 120.0 ± 8.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oviedo-Ocaña, E.R.; Hernández-Gómez, A.M.; Ríos, M.; Portela, A.; Sánchez-Torres, V.; Domínguez, I.; Komilis, D. A Comparison of Two-Stage and Traditional Co-Composting of Green Waste and Food Waste Amended with Phosphate Rock and Sawdust. Sustainability 2021, 13, 1109. https://doi.org/10.3390/su13031109
Oviedo-Ocaña ER, Hernández-Gómez AM, Ríos M, Portela A, Sánchez-Torres V, Domínguez I, Komilis D. A Comparison of Two-Stage and Traditional Co-Composting of Green Waste and Food Waste Amended with Phosphate Rock and Sawdust. Sustainability. 2021; 13(3):1109. https://doi.org/10.3390/su13031109
Chicago/Turabian StyleOviedo-Ocaña, Edgar Ricardo, Angélica María Hernández-Gómez, Marcos Ríos, Anauribeth Portela, Viviana Sánchez-Torres, Isabel Domínguez, and Dimitrios Komilis. 2021. "A Comparison of Two-Stage and Traditional Co-Composting of Green Waste and Food Waste Amended with Phosphate Rock and Sawdust" Sustainability 13, no. 3: 1109. https://doi.org/10.3390/su13031109
APA StyleOviedo-Ocaña, E. R., Hernández-Gómez, A. M., Ríos, M., Portela, A., Sánchez-Torres, V., Domínguez, I., & Komilis, D. (2021). A Comparison of Two-Stage and Traditional Co-Composting of Green Waste and Food Waste Amended with Phosphate Rock and Sawdust. Sustainability, 13(3), 1109. https://doi.org/10.3390/su13031109