1. Introduction
People gradually rely on electronically mediated messages instead of paper-based ones as a daily information source. They receive notifications, advertisements, and event messages from emails and mobile phones everyday. However, these messages are easily forged and can be fraudulent. Unlike traditional messages, which are edited by an authoritative organization or a reliable media, the authenticity of online content is debatable. When people mistakenly believe in untrue content and take further actions, the consequences can be serious. In addition, COVID-19 escalates the threat from all three sides of the famed fraud triangle: pressure, opportunity, and rationalization [
1]. It creates ideal conditions for fraud risk. Given the global pandemic of COVID-19, this disease continues to affect people’s environments in countless ways, including travel bans, employees working remotely, and economic uncertainty [
2]. In 2020, the Association of Certified Fraud Examiners (ACFE) polled more than 1800 anti-fraud professionals about ten types of fraud and found cyber fraud leading the way with 81% of respondents seeing an increase. When phishers combine two well-known cyber-fraud techniques, phishing emails and ransomware, to make people to mistakenly hit hyperlinks or open attachments in the phishing emails, ransomware can kidnap the computers that people rely on for important work, and both individuals and organizations may pay a painful price. Unfortunately, fraudulent emails can be found everyday in everyone’s mailboxes. What makes the situation worse is that people have no idea whether those messages are genuine. As such widespread electronic fraud continues to create real crises, cyber governance acquires serious academic attentions.
Recently, fraudulent email phishing has been estimated to bring losses close to a half billion dollars in the USA [
3]. A study indicates that 19% of individuals clicked phishing links in email messages, while 3% admitted to giving up financial or personal information [
4]. In the meantime, Gartner Group reports that 3.3% of phishing-email receivers might lose money as a result [
4]. Along with these pervasive phishing consequences, phishing attacks are frequently viewed as crimes ranging from identity and intellectual property theft to financial fraud, cyber espionage, and hacktivism [
5]. Since 2007, phishing attacks have accounted for a third of cyber crimes [
5]. A few evidences also augment people’s fear about the phenomenon of cyber attacks. For example, the Pentagon receives 10 million cyber attacks each day, and most major banks, financial institutions, and media organizations report 50,000 cyber intrusions each day [
6]. In addition, PhishTank, a phishing-tracing organization, also verified 31,850 unique phishing attacks during July 2012 [
7]. Even in the highly regulated financial environment, Internal Revenue Service (IRS) likewise reported a 66% increase in attacks on U.S. taxpayers in one year, resulting in thousands of cases of identity theft [
8]. In addition, Google reported that 9,500 websites are blacklisted daily because of phishing concerns [
9]. These pessimistic figures would not even be the worst cases because phishing attacks constantly increase their sophistication with new techniques and strategies. This circumstance discourages information-security specialists as it makes anti-phishing work more difficult to be effective. When a phishing email can be sent to thousands of people at the same time, a 2–3% success rate of phishing can be financially costly [
4]. A study by Gartner group reported that losses caused by phishing email have reached
$1.2 billion in 2003 [
4]. Apparently, evolutionary phishing attacks frequently defeat established cyber defenses and erode anti-phishing efforts. In sum, phishing attacks generate inevitable challenges to all three pillars of sustainability: social, economic, and environmental—also known as “people, profit, and planet” or the “triple bottom line” [
10]. If the intent of sustainability is to pursue social harmony, economic development, and environmental protection, then the efforts to address phishing attacks can definitely increase people’s mutual trust in society and encourage positive economic behaviors. At the same time, reliable information and communication technologies such as email systems can promote substantial social progress [
11].
Given that phishing attacks are commonplace, many organizations rely on technical means of intervention, such as filtering out phishing messages, automating detection of fake websites, and deploying anti-phishing warning systems to combat phishing activities [
8]. However, technical interventions cannot entirely remove the threat of phishing attacks [
12]. A major reason is that phishers usually operate in legitimate communication channels, and it is difficult to distinguish their messages from genuine ones [
13]. A prior study has shown that even with the effects of modern anti-phishing efforts, more than 11% of the users will read a spoofed message, click the link it contains, and enter their login information [
14]. Therefore, some research streams instead focus more on central questions to address phishing issues, such as “what causes people to be deceived by phishing messages?” and “what motivates them to click on phishing links?” Extant research on phishing attack has suggested the cognitive effort made by message recipients as a key reason for individual victimization [
4]. This is because phishing attacks tend to exploit human cognitive biases instead of technology loopholes [
7]. In other words, people are the weakest link in the information-security system, and it is no longer sufficient to ensure the information security in organizations by merely using technical measures [
15]. Given this circumstance, recent phishing studies pay greater attention to individuals’ mindless and mindful cognitive behaviors. For the mindless cognitive behavior, some studies argue that communication media has the potential to convey deceptive messages and influence the outcomes. In this view, each influence technique has its ability to make an automatic, mindless compliance from people’s long-established cognitions [
8,
16]. For the mindful cognitive behavior, a prior study also suggests that the most vigorous phishing messages would be those that can exploit individuals’ mindful behaviors, especially referring to heuristic and systematic cognitive processing [
7]. When heuristic cognitive processing relies on simple cues for judging fraudulent messages, systematic cognitive processing instead put an emphasis on individual deliberation to prevent phishing victimization.
Apart from the behaviors of cognition, other research streams have various foci to understand why people get phished. An early stream emphasizes message characteristics such as the source of the email, grammar, spelling, and email title. A later research stream considers the importance of individual characteristics like involvement, knowledge, and self-efficacy [
4]. The rest of the research streams have diverse foci on antecedents of phishing victimization, such as experiential and dispositional factors [
16], demographic differences [
4], the severity of the phishing attack [
17], and the pragmatic preparedness of practitioners [
18]. In particular, interpersonal familiarity [
8,
19], event urgency [
4,
7,
19,
20,
21], and personal relevance [
4,
19,
22] are also frequently emphasized. Among various research streams, the cognitive concept of mindlessness and mindfulness has a more solid theoretical basis for illustrating the process by which people respond to or interpret received messages. People’s cognitive behavior therefore plays a salient role in dealing with phishing issues. However, mindful cognitive behavior is merely one component about “interpretation” in the stimulus-interpretation-response (S-I-R) logic in comparison to the mindless cognitive behavior which serves as the underlying concept in the stimulus-response (S-R) logic. The very relevant antecedent of stimulus, i.e., message influence, still lacks adequate investigations in literature.
In the line of exploring antecedents of email phishing activity, Wright and Marett [
16] ever-convincingly emphasize messages’ potentials to deceive email receivers, but their study somehow lowers its priority and focuses on the exploration of experiential and dispositional factors. However, Wright et al. [
8] have experimentally investigated whether six taxonomic message influences can increase the likelihood of receivers’ vulnerability. Even so, the extant body of knowledge still does not know whether both attractive and coercive messages result in phishing susceptibility or invoke people’s cognitive processing and associated consequences. This knowledge gap can undermine the belief for the logic of stimulus-response (S-R) and stimulus-interpretation-response (S-I-R). In addition, taxonomy is a less rigid classification because mutual exclusion and collective exhaustion are not guaranteed. A few taxonomic influence techniques may partially overlap each other. Instead, a typological classification of message influences, such as attractive and coercive influences, can effectively increase the credibility of research examination. In addition, some studies have long been curious about whether different types of influence interactions will produce useful effects [
23,
24]. Moreover, there are studies claiming that different types of cognitive-processing interactions can magnify the consequences of victimization [
7,
21]. Therefore, the lack of finer classification of message influences and the desire to bridge these knowledge gaps motivated this study to examine the comprehensive relationships among message influences, cognitive processing, and phishing susceptibility.
Specifically, this research attempts to answer the following questions: (1) whether distinct message influences can lead to phishing susceptibility, (2) whether both message influences and their interaction can invoke individuals’ heuristic and systematic cognitive processing, and (3) whether distinct cognitive processing and their interaction can result in phishing susceptibility. Accordingly, our research will contribute the following to the literature: (1) a more theoretical conceptualization of message influence to provide a better basis for investigating phishing susceptibility, (2) a better illustration of how the stimulus-response (S-R) and stimulus-interpretation-response (S-I-R) logic deal with phishing issues, in terms of mindless/mindful cognitive behavior, and (3) unveiling the long-guessed interactive effects of typological concepts such as message influence and cognitive processing.
The remainder of this paper is arranged as follows: first, we illustrate the research framework, discuss the theoretical foundations, and develop associated hypotheses. Next, we introduce the methods for collecting and analyzing the data. After discussing the results and their implications, we conclude with the limitations of the research and suggest directions for future research.
2. Theoretical Foundations
The stimulus-response theory assumes that the intuitive response comes from repeated learning of experiencing stimulus. However, cognitive psychology believes that there is cognitive processing between stimulation and response. In other words, the individual’s interpretation of the stimulated message could affect the behavioral response. People’s behavioral response to a phishing email was originally seen as a stimulus-response process, but researchers have started to explore other possible processes, including whether different types of cognitive processing can raise or resist intuitive response of message stimulus, in order to better combat phishing attacks.
In general, special messages may bring new opportunities or threats to people. Such a situation means that the message has an ability to influence people. Thus, this ability has been conceptualized as message influence as playing the role of stimulus. In addition to both favorable and unfavorable messages having abilities to cause people’s behavioral outcomes, they may invoke people’s disparate cognitive processing in different ways, and in turn result in compliant behavior or a refused response. In order to adequately investigate whether different types of message influences produce idiosyncratic behavioral responses through disparate cognitive processing, this study proposes that both attractive and coercive influences can invoke cognitive interpretations, represented by heuristic cognitive processing and systematic cognitive processing, and therefore result in behavioral response. In other words, in addition to the stimulus-response (S-R) logic, the message stimulus, logically, can indirectly lead to behavioral responses through cognitive interpretations. To be in juxtaposition with this rival proposition in reality, we examine the S-I-R logic at the same time.
Though the S-R and S-I-R logic are remarkable, they can be understood by the salient concept of mindlessness and mindfulness because the above-mentioned logic is all about people’s cognitive efforts. Langer [
25] (p. 37) thought that people cling to constructed rules and categories in a mindless manner that psychologists call premature cognitive commitment. Such a cognitive commitment is a mindset formed before people have much of a reaction. A classic example of this is the story of the ugly duckling. When the ugly duckling came out of its egg, it made the first premature cognitive commitment: the largest and nearest duck was its mother. When it saw that it was different from its brothers and sisters, it made the second premature cognitive commitment: it was ugly. Likewise, people tend to rely on long-established cognitions and habitually make mindless behaviors. In other words, when people accept a single-minded explanation, they typically do not pay attention to information that runs counter to it [
25] (p. 53). Truly, we can see this sort of “mindless response” everywhere in our daily life. Specifically, highly specific instructions or requests usually encourage mindlessness. By contrast, scholars recognize mindfulness as a process orientation. In the mindful process, we might pay more attention to our surroundings and openness to new information [
25,
26] in order to span our cognitive boundary or exert considerable cognitive efforts to search for meaning behind surface messages. In other words, that is the “mindful interpretation” process. Such a process may help us resist mental inertia and be alert to familiar language structure. For a better understanding about how people are phished, we used the mindlessness/mindfulness labels to clarify our study. We summarized our research idea and above-explanation into
Figure 1 as our research framework.
2.1. Message Influence
Phishing email is all about messages. In fact, messages play the role of bait in the “phishing” metaphor. In general, phishing victimization cannot happen if they lack deceptive messages. Such messages usually mix true and false information to exert influence on targeted people. While message influence can be a better conceptualization in question, it is still required to analyze its types in order for anti-phishing efforts to be effective. Prior literature has clearly recognized coercive influence and non-coercive influence [
27]. Coercive influence is the way to exert direct pressure through communicating adverse consequences of non-compliance. By contrast, non-coercive influence somehow makes people do something willingly. Aside from the above classifications, Frazier and Summers [
28] also dichotomize it into perception influence and behavior influence. However, some researchers argue that perception influence perhaps is effective only if two parties have shared goals.
In addition to concise categories of influence, many studies instead focus on the taxonomy of six influences: information exchange, recommendation, request, promise, threat, and legalistic plea [
29,
30,
31]. According to the studies of Lai [
29] and Gelderman et al. [
30], information-exchange influence means that someone may discuss general business issues and broad operating philosophies with the other, without making specific statements about what they want the other to do. Recommendation influence means that someone can predict greater profitability if the other follows the suggestions. Request influence is understood to be when someone simply states the actions they want the other to take, without any explanation. Promise influence is understood to be when someone promises to provide rewards if the other complies with these requests. Threat influence is considered to be when someone threatens a future penalty if there is no compliance with the request. Legalistic plea influence refers to when someone informs the other that the consequence of certain action is not permitted according to contracts or agreements. Based on the above understandings, coercive influence may include threats and promises [
31] or contain threats and legalistic pleas [
29]. Meanwhile, threats, promises, and legalistic pleas are also viewed as the kinds of behavior influence. Instead, non-coercive influence may include information exchange, recommendation, and request, while all or some of these influences can also be a kind of perception influence [
29,
31]. However, classifying these six strategies into more concise coercive and non-coercive influences, as well as behavior and perception influences, raises strong debate in the literature. For example, although a recommendation influence is generally viewed as a non-coercive influence, it is likely to experience a level of tension [
29]. In addition, a request influence may plausibly influence both perceptions and behaviors. Moreover, a promise can play either a coercive or a non-coercive role, depending on its contingent nature.
Another set of taxonomic influences is proposed as liking, reciprocity, social proof, consistency, authority, and scarcity. According to Wright et al. [
8], liking influence means that people always say yes to individuals they know and like [
32]. In order to generate liking influence, a message sender must win the recipient’s goodwill, trust, and friendship. A sender may do so through compliments [
33] or similarities [
34]. In addition, reciprocity influence takes advantage of people’s tendency to repay an earlier favor. Social proof influence uses people’s tendency to determine what is correct by finding out what other people think is correct [
35]. Consistency influence takes advantage of individuals’ desires to appear consistent in their words, beliefs, and actions [
32]. For example, a phisher may send “reminders” to encourage individuals to perform a fake scheduled update of login information. Authority influence uses power such as job titles [
36], appearance [
37], and demeanor [
38] to influence others. Scarcity influence takes advantage of individuals’ tendency to feel that an object, event, or experience is more valuable when they perceive it as rare, inimitable, or available for a limited time.
Obviously, the above-mentioned two sets of taxonomic influences indeed increase academic understanding of influence. However, they are neither mutually exclusive nor exhaustive, and they may raise some problems on measurement. Instead, Nye [
23] starts up from definition and terms the ability to influence others as power. Nye [
24] distinguishes two types of power. He recognizes that soft-side power is the kind that exerts attractive influence to shape others’ desires and hard-side power is the kind that exerts coercive influence to change others’ behaviors. Therefore, this study adapts Nye’s [
24] concepts to design two constructs of message influence for illustrating the email phishing phenomena. First, attractive influence is the extent by which the email conveys information about the favorable consequences of taking the required actions. Instead, coercive influence is the extent by which the email conveys information about the unfavorable consequences of not taking the required actions. This study thinks these two constructs are adequate to represent message influences in phishing emails.
2.2. Cognitive Processing
Extant literature has attributed phishing susceptibility to human cognitive limitations and psychological manipulation of victims [
21]. Regarding human cognitive issues, Kahneman [
39] distinguishes a quick mode of cognitive processing from a slower mode of cognitive processing. The quick mode is rather automatic to detect simple relationships and to integrate information to maintain perceptions of our world. The slower mode is quite deliberate and associated with the subjective experiences. The first is like a machine using limited clues to jump to conclusions. The second instead allocates attention to mental activities and compares objects according to several attributes, follows complicated rules, and makes multiple choices.
Similarly, Petty and Cacciopo [
40] also proposed the elaboration likelihood model (ELM) of persuasion. Elaboration is the process through which individuals make conscious connections between the cues they observe and their prior knowledge [
41]. ELM identifies two cognitive-processing routes in persuasion: a peripheral path and a central path. The peripheral path is characterized by limited conscious attention that relies on cues and mental shortcuts that bypass counter-argumentation. Instead, the central path relies on rational analysis that involves elaborating on information and arguments. When people process information peripherally, they do not think carefully about the content of the message, but they are influenced by superficial factors surrounding the communication. Phishers often attempt to exploit peripheral paths to provoke action without deliberation.
These two types of cognitive processing may occur simultaneously, and some successful phishing attempts capitalize on both of them [
21], termed as heuristic systematic-processing model (HSM) [
42,
43]. Heuristic cognitive processing refers to relying on judgmental rules and cognitive shortcuts. It is associated with rapid decisions that individuals often base on immediate judgment and are subject to cognitive biases. Instead, systematic cognitive processing involves carefully scrutinizing information and refers to analytically and comprehensively dealing with messages [
21]. With heuristic cognitive processing, individuals use simple decision rules or cognitive heuristics triggered by adjunct cues in the context to reach judgments. With systematic cognitive processing, individuals make judgments by carefully examining the quality of arguments within the persuasive context [
5]. A study has found that heuristic cognitive processing results in lower burdens on risk evaluations [
44], and an emerging study has also connected such cognitive processing to the increased likelihood of deception on social media [
45]. By contrast, systematic cognitive processing, due to its high scrutiny toward the content and need for comprehension, results in more reasoned and optimal decisions [
5]. Luo et al. [
7] suggest that the most effective phishing messages would be those that can operate on both the heuristic and systematic cognitive-processing activities. However, overwhelming research evidence points to individuals acting like cognitive misers, preferring economical over effortful information evaluation [
46,
47]. Consequently, heuristic processing tends to dominate cognitive information processing [
5].
2.3. Phishing Susceptibility
When the focus of phishing research shifts from technical means to human factors, the impact of phishing activities is usually at the core of research questions. Most studies select relevant constructs surrounding the concept of “whether people get phished” as dependent variables, such as phishing vulnerability [
4,
8,
21,
48], phishing victimization [
7,
20,
49], and phishing susceptibility [
3,
5]. Vulnerability may refer to the quality of being easily hurt or attacked. While victimization means the process of being victimized or becoming a victim, victimization can also be understood to be causing someone to be treated unfairly or in a bad position. Susceptibility can be considered to be the lack of ability to resist some extraneous agent. Whatever the phishing consequences are named, extant literature frequently locks itself in the myth of measurement with apparatus, resulting in designing dichotomous variables to count the numbers of phishing success or failure as their dependent variables.
If we look back at the earlier progress in information system (IS) discipline, the information system success (ISS) model can be enlightening in determining dependent variables. The salient work of DeLone and McLean [
50] appeals to the quest for the dependent variable of IS success. No matter what kind of quality serves as the antecedents of information systems success, success itself can be the impact of individual or organizational use. The meaningful dependent variables are not limited to actual use or objective measurement through hardware monitors or counters. Instead, empirical, subjective measurements are suitable for research comparability. In a similar vein, the counts of phishing success can be translated into an equally meaningful continuous variable in terms of vulnerability, victimization, or susceptibility. Besides, there is no convincing rationale to support that phishing studies have to stick to experimental methodology to be viewed as legitimate. Thus, the less restricted concept “susceptibility” was chosen, and a continuous scale was designed to represent the behavioral consequence or individual impact of phishing activities in the cross-sectional investigation. Extant phishing studies still need well-designed measurements, as this research proposed, to provide trustworthy research validity in the process of investigating phishing issues.
Based on the above-explanation and conceptual discussion, we summarized the definitions of research constructs in
Table 1 for clarity.
5. Discussion and Implication
5.1. Discussion of Results
We would like to center on the research questions to discuss the results of analysis. More specifically, we want to know (1) whether distinct message influences can lead to phishing susceptibility, (2) whether both message influences and their interaction can invoke individuals’ heuristic and systematic cognitive processing, and (3) whether distinct types of cognitive processing and their interaction can result in phishing susceptibility. The results of the analysis show that the answers to these questions can be positive, as detailed below. First, all of the direct relationships between message influence and phishing susceptibility are fully supported by this study. The results of the analysis show that message influences have strong positive effects on phishing susceptibility (i.e., H1 and H2). This means that influential messages may result in people’s acceptance of phishing messages with little cognitive effort by people’s rigid cognitive schemas and long-established habitual behaviors. If researchers further wonder whether the interaction of the two influences would lead to phishing susceptibility, it is not supported with our extra test. In addition, if researchers are curious about whether heuristic cognitive processing impacts systematic cognitive processing as a few prior studies posited, the extra-tested relationship is positively significant but with a side effect of rendering the relationship between attractive influence and systematic cognitive processing insignificant. We did not show these relationships in the results in order to avoid the path diagram being overcomplicated.
Second, most of the direct relationships between distinct message influences and cognitive processing are very idiosyncratic and supported by this study. Specifically speaking, the relationship between attractive influence and heuristic cognitive processing, the relationship between attractive influence and systematic cognitive processing, and the relationship between coercive influence and heuristic cognitive processing are significant (i.e., H3, H4, and H5). The significant relationships between attractive influence and heuristic cognitive processing means that attractive influence can make people immerse themselves in good feelings and reduce cognitive efforts, causing them to use simple rules to judge the credibility of a message. In addition, the significant relationship between attractive influence and systematic cognitive processing means that attractive influence can also trigger people’s alertness of traps and allow people to carefully analyze the content of message according to their knowledge and experience. Though attractive influence shows positive, significant relationships on both heuristic cognitive processing and systematic cognitive processing, coercive influence indicates a negative, significant relationship on heuristic cognitive processing, disobeying our original view. A reasonable explanation is that highly coercive message could bring a strong sense of immediate crisis and make people to give up using simple rules in judgment. Apart from the direct relationships, it is worth noting that the interaction of both influences has a very significant relationship on heuristic cognitive processing (i.e., H7) and a weak significant relationship on systematic cognitive processing (i.e., H8). This interaction means that the combined form of two influences can produce a quite special power, enabling people to not only use simple rules but also carefully analyze the content of message according to their knowledge and experience to judge the credibility of a message. When attractive influence shows all significant relationships on both types of cognitive processing, unlike coercive influence, we reasonably think that attractive influence is more likely to invoke both types of individuals’ cognitive processing. Overall, the relationship between message influence and cognitive processing is not always as significant as expected but depends on the type of influence, the type of cognitive processing, and whether different influences are combined.
Third, the relationships between cognitive processing and phishing susceptibility are partially supported by this study. In these relationships, we can see that only heuristic cognitive processing has a significant effect on phishing susceptibility (i.e., H9). This effect means that people are more likely to be deceived when they use simple rules to judge the credibility of a message. However, systematic cognitive processing has no significant effect on phishing susceptibility, which shows that systematic cognitive processing may not be an effective approach to resist phishing attacks, thus requiring more future research. In addition, the results show no evidence to support the argument that the combination of heuristic and systematic cognitive processing is the most dangerous way to be phished, while past studies advocated it.
Lastly, let us discuss the results at a theoretical level. Given that the results fully support the viewpoint that message influence being able to directly result in phishing susceptibility, mindless response is supposed to always exist in phishing activities (i.e., H1 and H2). In addition, because the results only partially support the viewpoint that the message influence is able to result in phishing susceptibility through the receiver’s cognitive processing (i.e., H3, H5, H7, and H9), mindful interpretation is speculated to not always appear in phishing activities. Since mindless responses seem to more easily result in phishing susceptibility than mindful interpretation, researchers should pay the most vigilant attention to mindless behaviors in order to minimize adverse consequences of phishing attacks.
5.2. Implications for Theory
This research is the first to devise the construct of message influence and to investigate its relationship with phishing susceptibility. In other words, our empirical evidence distinguishes the current research from previous descriptive or prescribing studies that were just inferred from some cases. In addition, because this research adopts the survey method incorporating continuous variables and causal hypotheses, in comparison to the paradigmatic experimental method with nominal variables and comparative hypotheses, it is more advantageous in improving scientific validity. Our research also contributes the following to the literature: (1) a more theoretical conceptualization of message influence to provide a better basis for investigating phishing susceptibility, (2) a better illustration of how the stimulus-response (S-R) and stimulus-interpretation-response (S-I-R) logic deal with phishing issues, in terms of mindless/mindful cognitive behavior, and (3) unveiling the guessed interactive effects of typological message influence. Apart from the above contributions, this research has following implications for theory. First, phishing is a semantic attack rather than a syntactic attack, which means that reading the embedded influence inside the message is at the core of addressing the phishing issues. Nevertheless, the understanding about influence in prior study is limited to taxonomy [
8], known as a classification of data-driven form, with less help for theoretical building and theoretical testing [
66]. Instead, this research uses typology, which belongs to a classification of theory-driven form, and can test theory by its very nature.
Second, this research confirms that message influence can be very powerful because it significantly causes unfavorable consequences, including directly and indirectly resulting in phishing susceptibility, as well as invokes heuristic cognitive processing with a special form of combining two influences. The result is consistent with decades of research that emphasize influential content being able to be effective in persuasion [
8,
53]. In addition, prior literature also debates which kind of influence is more effective, i.e., attractive [
8] or coercive ones [
3]. Our results show that attractive influence can be more effective in an email-phishing context. In addition, while the effect of combining different forms of influence is not clear in prior literature, we provide empirical evidence to confirm the effect of smart combination of different influences [
23,
24].
Third, this research confirms that people’s cognitive processing can result in their responsive action. However, this confirmation includes an interesting part. That is, although prior studies consider that heuristic cognitive processing can promote unfavorable consequences and systematic cognitive processing can instead resist them [
3,
5,
7,
21,
45], our results concur with the effect of heuristic cognitive processing but refute the effect of systematic cognitive processing. Thus, taking systematic cognitive processing to be a weapon in combating phishing attacks still needs more supportive evidence. In addition, this research also extends the understanding about mindlessness and mindfulness [
25]. When this research takes cognitive processing as a mindful behavior and habitual response as a mindless behavior, we can see mindlessness is more powerful than mindfulness, because the desired mindful effects are not always significant, but adverse mindless effects are constant and strong. Thus, researchers should be more vigilant to mindless actions rather than purely looking forward to mindful effects.
Fourth, the meaning of success can be understood flexibly, including the success of phishing attacks. Success itself is not limited to the conception of “all or nothing.” Any kind of success in nature can be understood to be “how successful it is.” Thus, this research views the success of phishing attacks as an individual’s phishing susceptibility and correspondingly defines it as the extent to which the individual believes deceptive emails, rather than the dichotomy of “being deceived or not being deceived.” In this way, the consequence of phishing attacks can be flexibly measured and thereby advance future phishing researches. Researchers can learn similar concepts from information system (IS) success [
50], enterprise resource planning (ERP) implementation success [
67], or project success [
68].
5.3. Implications for Practice
This research provides several implications for practice as follows: first, anti-phishing education and training should refocus on identifying the influence inside messages rather than the syntactic structure. Because current means of message detection cannot fully resist semantic attacks, information security practitioners should develop capability in addressing message influence and transfer knowledge about how to identify and deal with influential messages. Specifically speaking, it is insufficient to merely identify the technical characteristics of messages, such as source of email, grammar, spelling, email title, and so on. The education and training for combating phishing attacks still requires identifying complementary social characteristics. Among the social characteristics, human factors such as carelessness, optimism, and experiential reliance may be noteworthy because poor human factor design can contribute to many of the top computer security risks. In this research, we used the gender of the respondents as a basic social characteristic to identify males as a high-risk group for phishing susceptibility. That is, in a phishing setting with providing job opportunities, males are more inclined to believe in fraudulent messages than females. Such an insight could be useful for organizational information security managers and policy-makers.
Second, individuals should not rely too much on cognitive processing to deal with suspicious email messages. This is because cognitive processing still has its own biases. For example, the use of heuristic rules to judge suspicious messages for saving cognitive efforts can lead to adverse consequences, as confirmed by this research and past studies. In addition to using heuristic rules, individuals using deliberate methods to judge the authenticity of messages may also be affected by subjective confirmation biases; that is, they may use only their own subjective logic for cognitive processing and may also merely screen for interesting clues in the process of analyzing messages. Whether heuristic or thoughtful, people still have the chance to ignore well-established knowledge in the external environment or evidence that has been confirmed by objective third-party reports. Individuals should first use the more objective mechanisms available, such as calling the anti-fraud hotline, or using search engines such as Google to investigate whether the various people and things stated in the email messages really exist. If these more objective mechanisms are not available, then individuals can rely cautiously on cognitive processing. In this research, we provide similar recommendations in the anti-phishing educational document. That is, anyone who suspects that he/she has encountered cyber fraud can also report to the police station or credit/ATM card issuer. Information security managers can assist organizational members by providing anti-phishing guidelines and tips in classroom training or on hallway posters to prevent human’s cognitive weakness.
Third, IT managers should not overemphasize absolute information security. Their attention should be shifted to information governance and individual’s incentive alignment. That is, they should consider the individual’s tradeoff for different types of value, such as the tradeoff between privacy and convenience. Many times, an individual will give up some privacy for convenience, which will have a sizable erosion on security. For example, an individual may voluntarily surrender some personal privacy in order to use a convenient mobile application. In addition, IT managers can strengthen environmental control rather than behavioral control. Environmental control refers to the overall technical architecture, such as the implementation of a digitally signed email. The reason for not recommending behavioral control is that the individuals’ intuitive, habitual responses to incoming messages are too powerful to control. Thus, IT managers can collaborate with information security companies in trying to integrate the email server with the digital signature. In this way, the true identity of the email sender can be confirmed through the nature of non-repudiation in asymmetric encryption algorithm, and the email recipient will not mistakenly believe in the fraudulent emails.
5.4. Conclusions
The results of this research show that both mindless response and mindful interpretation can happen simultaneously in phishing context. Namely, the process between influence and consequence is not merely a proposition of alternative route. The influences of phishing messages not only cause the receivers’ mindless responses but also conditionally trigger their mindful interpretations. In the case of mindless response, both attractive and coercive influence can result in phishing susceptibility. In the case of mindful interpretation, the attractive and coercive influence and their interaction can trigger heuristic cognitive processing, which in turn result in phishing susceptibility. While attractive influence is able to trigger systematic cognitive processing, systematic cognitive processing fails to result in phishing susceptibility. Thus, there is a special answer for the “mindless response or mindful interpretation” question. That is, both mindless response and mindful interpretation can illustrate how people get phished.
Although this research shows a large number of significant effects and supports our research idea, there are limitations. First, deceptive emails are not easy to simulate on a large scale because most environments are either discouraged or do not allow simulated deception. Second, measuring the subjective perception of the message receivers is subject to individual cognitive bias. Third, this research is conducted in a campus environment, so the external validity of the general working environment is limited. Fourth, this research did not investigate many other variables, such as risk alertness, self-efficacy, and experience, so it does not mean that various antecedents of cognitive processing and phishing susceptibility have been understood fully.
In addition, based on our research insights and both the academic and practical importance of phishing issues, we suggest the following directions for future research: first, the classification of influence is not limited to attractiveness and coerciveness. Researchers can explore more typologies. Second, influential communication media is not limited to email. Researchers can investigate the content of social media, online news, or messaging software. Third, it is interesting to cleverly combine different types of influence. Scholars have long been curious about whether the combination will be effective. Fourth, the idea of cognitive processing needs more research to support its positive and negative effects.