Transforming a Valuable Bioresource to Biochar, Its Environmental Importance, and Potential Applications in Boosting Circular Bioeconomy While Promoting Sustainable Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Biochar, Neem Extract, and Experimental Pots
2.2. Experimental Design and Treatments
- T1 = N1B0 (control): 5 mL neam + 0 g biochar
- T2 = N1NPK: 5 mL neam + N, P, and K added @ 250, 125 and 100 kg ha−1, respectively
- T3 = N1B1: 5 mL neam + 35 g biochar
- T4 = N1B2: 5 mL neam + 70 g biochar
- T5 = N1B3: 5 mL neam + 105 g biochar
- T6 = N1 B4: 5 mL neam + 140 g biochar
- T7 = N2B0 (control): 10 mL neam + 0 g biochar
- T8 = N2NPK: 5 mL neam + N, P, and K added @ 250, 125 and 100 kg ha−1, respectively
- T9 = N2 B1: 10 mL neam + 35 g biochar
- T10 = N2 B2: 10 mL neam + 70 g biochar
- T11 = N2 B3: 10 mL neam + 105 g biochar
- T12 = N2 B4: 10 mL neam + 140 g biochar
2.3. Sample Analysis
2.4. Statistical and Economic Analysis
3. Results
3.1. Soil Properties
Treatments | Soil Organic Matter (%) | Soil pH | Soil EC (dSm−1) | N in the Soil (mg g−1) | P in the Soil (mg kg−1) | K in the Soil (mg kg−1) |
---|---|---|---|---|---|---|
N1 | 1.02 a | 7.61 a | 1.58 a | 0.046 b | 6.96 a | 15.60 b |
N2 | 1.03 a | 7.59 a | 1.56 a | 0.049 a | 6.97 a | 15.83 a |
Significance | ˂0.07 | ˂0.03 | ˂0.08 | ˂0.001 | ˂0.01 | ˂0.01 |
LSD 5% | 0.05 | 0.15 | 0.053 | 0.0011 | 0.56 | 0.15 |
Control | 0.74 c | 7.51 a | 1.41 b | 0.045 b | 6.48 c | 13.97 b |
NPK (Recommended) | 0.83 c | 7.65 a | 1.54 ab | 0.045 b | 4.46 a | 16.73 a |
B1 | 0.92 bc | 7.51 a | 1.50 ab | 0.046 ab | 6.68 bc | 14.96 ab |
B2 | 0.98 b | 7.61 a | 1.59 ab | 0.046 ab | 6.82 abc | 15.18 ab |
B3 | 1.26 a | 7.63 a | 1.66 a | 0.047 ab | 7.05 abc | 16.27 a |
B4 | 1.30 a | 7.69 a | 1.69 a | 0.049 a | 7.26 ab | 16.88 a |
Mean | 1.02 | 7.60 | 1.57 | 0.046 | 6.96 | 15.67 |
Significance | ˂0.02 | ˂0.3 | ˂0.03 | ˂0.021 | ˂0.03 | ˂0.01 |
LSD 5% | 0.13 | 0.64 | 0.20 | 0.003 | 0.67 | 1.97 |
CV | 7.45 | 4.65 | 7.02 | 3.57 | 5.28 | 6.96 |
3.2. Plant Growth Characteristics
Treatments | Root Length (cm) | Root Weight (g) | Days to Tasseling (Day) | Days to Silking (Day) |
---|---|---|---|---|
N1 | 52.34 b | 38.51 b | 45 a | 51 a |
N2 | 55.35 a | 42.13 a | 47 a | 52 a |
Significance (P) | ˂0.022 | ˂0.02 | ˂0.10 | ˂0.09 |
LSD 5% | 1.99 | 3.58 | 2.53 | 1.95 |
Control | 40.70 d | 30.60 d | 42 c | 47 c |
NPK (Recommended) | 61.36 ab | 41.83 b | 47 ab | 53 ab |
B1 | 47.15 c | 35.25 cd | 44 bc | 49 bc |
B2 | 51.40 c | 39.90 bc | 46 ab | 52 abc |
B3 | 57.01 b | 44.13 b | 48 a | 54 a |
B4 | 65.43 a | 50.25 a | 50 a | 56 a |
Mean | 53.84 | 40.33 | 46 | 52 |
Significance (P) | ˂0.01 | ˂0.01 | ˂0.01 | ˂0.02 |
LSD 5% | 5.22 | 5.57 | 3.99 | 4.88 |
CV | 5.35 | 7.62 | 4.78 | 5.23 |
3.3. Yield and Quality Parameters
Treatments | Grain Yield (g Plant−1) | Total Biomass (g Plant−1) | Protein Content (%) |
---|---|---|---|
N1B0 (control) | 43.33 f | 183.33 de | 5.67 g |
N1NPK | 73.33 b | 252.67 a | 12.97 ab |
N1B1 | 44.67 f | 181.00 de | 6.27 fg |
N1B2 | 51.33 e | 198.00 cd | 7.77 ef |
N1B3 | 59.67 cd | 221.33 b | 9.80 cd |
N1 B4 | 76.67 b | 256.00 a | 10.30 c |
N2B0 (control) | 43.00 f | 172.33 e | 4.90 g |
N2NPK | 84.00 a | 266.67 a | 14.30 a |
N2B1 | 53.00 de | 193.67 cde | 7.53 ef |
N2B2 | 61.33 c | 214.67 bc | 8.43 de |
N2B3 | 72.67 b | 245.00 a | 10.37 c |
N2 B4 | 72.33 b | 248.33 a | 12.37 b |
Mean | 61.27 | 219.42 | 9.22 |
Significance (P) | ˂0.003 | ˂0.003 | ˂0.003 |
LSD 5% | 6.26 | 22.45 | 1.54 |
CV | 6.00 | 3.42 | 5.56 |
3.4. Economic Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Abbas, F.; Aini, Q.; Farooque, A.A. Sustainable, Safe, and Economical Bioresource Management: Basis for Circular Bioeconomy. Sustainability 2021, 13. under review. [Google Scholar]
- Haider, G.; Steffens, D.; Moser, G.; Müller, C.; Kammann, C.I. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agric. Ecosyst Environ. 2017, 237, 80–94. [Google Scholar] [CrossRef]
- Singh, R.P.; Kaskaoutis, D.G. Crop residue burning: A threat to South Asian air quality. Eos Trans. Am. Geophys Union 2014, 95, 333–334. [Google Scholar] [CrossRef]
- Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Durenkamp, M.; De Nobili, M.; Lin, Q.; Brookes, P. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol. Biochem. 2011, 43, 2304–2314. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant. Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Zhu, J.; Ingram, P.A.; Benfey, P.N.; Elich, T. From lab to field, new approaches to phenotyping root system architecture. Curr. Opin. Plant. Biol. 2011, 14, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Güereña, D.; Lehmann, J.; Hanley, K.; Enders, A.; Hyland, C.; Riha, S. Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant. Soil 2013, 365, 239–254. [Google Scholar] [CrossRef]
- Karer, J.; Wimmer, B.; Zehetner, F.; Kloss, S.; Soja, G. Biochar application to temperate soils: Effects on nutrient uptake and crop yield under field conditions. Agric. Food Sci. 2013, 22, 390–403. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Soil Res. 2008, 45, 629–634. [Google Scholar] [CrossRef]
- Oguntunde, P.G.; Abiodun, B.J.; Ajayi, A.E.; van de Giesen, N. Effects of charcoal production on soil physical properties in Ghana. J. Plant Nutr. Soil Sci. 2008, 171, 591–596. [Google Scholar]
- Asai, H.; Samson, B.K.; Stephan, H.M.; Songyikhangsuthor, K.; Homma, K.; Kiyono, Y.; Inoue, Y.; Shiraiwa, T.; Horie, T. Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Res. 2009, 111, 81–84. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2010; Volume 105, pp. 47–82. [Google Scholar]
- Chien, C.C.; Huang, Y.P.; Wang, W.C.; Chao, J.H.; Wei, Y.Y. Efficiency of moso bamboo charcoal and activated carbon for adsorbing radioactive iodine. Clean Soil Air Water 2011, 39, 103–108. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 2013, 3, 313–339. [Google Scholar] [CrossRef] [Green Version]
- Figueredo, N.; Costa, L.; Melo, L.; Siebeneichler, E.; Tronto, J. Characterization of biochars from different sources and evaluation of release of nutrients and contaminants. Rev. Cienc. Agron. 2017, 48, 3–403. [Google Scholar] [CrossRef]
- Xu, G.; Lv, Y.; Sun, J.; Shao, H.; Wei, L. Recent advances in biochar applications in agricultural soils: Benefits and environmental implications. Clean Soil Air Water 2012, 40, 1093–1098. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota–a review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. Gcb Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Quilliam, R.S.; Glanville, H.C.; Wade, S.C.; Jones, D.L. Life in the ‘charosphere’–Does biochar in agricultural soil provide a significant habitat for microorganisms? Soil Biol. Biochem. 2013, 65, 287–293. [Google Scholar] [CrossRef]
- Jaafar, N.M.; Clode, P.L.; Abbott, L.K. Microscopy observations of habitable space in biochar for colonization by fungal hyphae from soil. J. Integr. Agric. 2014, 13, 483–490. [Google Scholar] [CrossRef]
- Crombie, K.; Mašek, O. Pyrolysis biochar systems, balance between bioenergy and carbon sequestration. GCB Bioenergy 2015, 7, 349–361. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Peng, X.; Huang, T. Contrasted effects of biochar on maize growth and N use efficiency depending on soil conditions. Int. Agrophys. 2015, 29, 257–266. [Google Scholar] [CrossRef]
- Peng, X.; Ye, L.; Wang, C.; Zhou, H.; Sun, B. Temperature-and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil Tillage Res. 2011, 112, 159–166. [Google Scholar] [CrossRef]
- Ennis, C.J.; Evans, A.G.; Islam, M.; Ralebitso-Senior, T.K.; Senior, E. Biochar: Carbon sequestration, land remediation, and impacts on soil microbiology. Crit. Rev. Env. Sci. Technol. 2012, 42, 2311–2364. [Google Scholar] [CrossRef] [Green Version]
- Malghani, S.; Gleixner, G.; Trumbore, S.E. Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. Soil Biol. Biochem. 2013, 62, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Stewart, C.E.; Zheng, J.; Botte, J.; Cotrufo, M.F. Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils. GCB Bioenergy 2013, 5, 153–164. [Google Scholar] [CrossRef]
- Pandit, N.R.; Mulder, J.; Hale, S.E.; Martinsen, V.; Schmidt, H.P.; Cornelissen, G. Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil. Sci. Total Environ. 2018, 625, 1380–1389. [Google Scholar] [CrossRef]
- Widowati, W.U.; Guritno, B.; Soehono, L. The effect of biochar on the growth and N fertilizer requirement of maize (Zea mays L.) in green house experiment. J. Agric. Sci. 2012, 4, 255. [Google Scholar]
- Qiao-Hong, Z.; Xin-Hua, P.; HUANG, T.-Q.; Zu-Bin, X.; Holden, N. Effect of biochar addition on maize growth and nitrogen use efficiency in acidic red soils. Pedosphere 2014, 24, 699–708. [Google Scholar]
- Ndor, E.; Amana, S.; Asadu, C. Effect of biochar on soil properties and organic carbon sink in degraded soil of Southern Guinea Savanna Zone, Nigeria. Int. J. Plant. Soil Sci. 2015, 4, 252–258. [Google Scholar] [CrossRef]
- Clough, T.J.; Condron, L.M. Biochar and the nitrogen cycle: Introduction. J. Environ. Qual. 2010, 39, 1218–1223. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Clough, T.; Condron, L.; Kammann, C.; Müller, C. A review of biochar and soil nitrogen dynamics. Agronomy 2013, 3, 275–293. [Google Scholar] [CrossRef] [Green Version]
- Cameron, K.; Di, H.J.; Moir, J. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, H.; Zheng, X.; Cai, Z.; Misselbrook, T.; Carswell, A.; Müller, C.; Zhang, J. Soil N transformation mechanisms can effectively conserve N in soil under saturated conditions compared to unsaturated conditions in subtropical China. Biol. Fertil. Soils 2018, 54, 495–507. [Google Scholar] [CrossRef] [Green Version]
- Van Drecht, G.; Bouwman, A.; Knoop, J.; Beusen, A.; Meinardi, C. Global modeling of the fate of nitrogen from point and nonpoint sources in soils, groundwater, and surface water. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef]
- Huygens, D.; Rütting, T.; Boeckx, P.; Van Cleemput, O.; Godoy, R.; Müller, C. Soil nitrogen conservation mechanisms in a pristine south Chilean Nothofagus forest ecosystem. Soil Biol. Biochem. 2007, 39, 2448–2458. [Google Scholar] [CrossRef]
- Rütting, T.; Müller, C. Process-specific analysis of nitrite dynamics in a permanent grassland soil by using a Monte Carlo sampling technique. Eur. J. Soil Sci. 2008, 59, 208–215. [Google Scholar] [CrossRef]
- Rütting, T.; Huygens, D.; Müller, C.; Van Cleemput, O.; Godoy, R.; Boeckx, P. Functional role of DNRA and nitrite reduction in a pristine south Chilean Nothofagus forest. Biogeochemistry 2008, 90, 243–258. [Google Scholar] [CrossRef]
- Choi, W.-J.; Ro, H.-M.; Lee, S.-M. Natural 15N abundances of inorganic nitrogen in soil treated with fertilizer and compost under changing soil moisture regimes. Soil Biol. Biochem. 2003, 35, 1289–1298. [Google Scholar] [CrossRef]
- Di, H.; Cameron, K. Reducing environmental impacts of agriculture by using a fine particle suspension nitrification inhibitor to decrease nitrate leaching from grazed pastures. Agric.; Ecosyst. Environ. 2005, 109, 202–212. [Google Scholar] [CrossRef]
- Cai, Z.; Gao, S.; Xu, M.; Hanson, B.D. Evaluation of potassium thiosulfate as a nitrification inhibitor to reduce nitrous oxide emissions. Sci. Total Environ. 2018, 618, 243–249. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, C.; Li, Q.; Li, B.; Zhu, Y.; Xiong, Z. A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping system. Agric. Ecosyst. Environ. 2015, 201, 43–50. [Google Scholar] [CrossRef]
- Maeda, M.; Zhao, B.; Ozaki, Y.; Yoneyama, T. Nitrate leaching in an Andisol treated with different types of fertilizers. Environ. Pollut. 2003, 121, 477–487. [Google Scholar] [CrossRef]
- Yang, M.; Fang, Y.; Sun, D.; Shi, Y. Efficiency of two nitrification inhibitors (dicyandiamide and 3, 4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: A meta-analysis. Sci. Rep. 2016, 6, 22075. [Google Scholar] [CrossRef] [Green Version]
- Friedl, J.; Scheer, C.; Rowlings, D.W.; Mumford, M.T.; Grace, P.R. The nitrification inhibitor DMPP (3, 4-dimethylpyrazole phosphate) reduces N2 emissions from intensively managed pastures in subtropical Australia. Soil Biol. Biochem. 2017, 108, 55–64. [Google Scholar] [CrossRef]
- Monaghan, R.; Smith, L.; Ledgard, S. The effectiveness of a granular formulation of dicyandiamide (DCD) in limiting nitrate leaching from a grazed dairy pasture. N. Z. J. Agric. Res. 2009, 52, 145–159. [Google Scholar] [CrossRef]
- Marsden, K.A.; Marín-Martínez, A.J.; Vallejo, A.; Hill, P.W.; Jones, D.L.; Chadwick, D.R. The mobility of nitrification inhibitors under simulated ruminant urine deposition and rainfall: A comparison between DCD and DMPP. Biol. Fertil. Soils 2016, 52, 491–503. [Google Scholar] [CrossRef] [Green Version]
- Zerulla, W.; Barth, T.; Dressel, J.; Erhardt, K.; von Locquenghien, K.H.; Pasda, G.; Rädle, M.; Wissemeier, A. 3, 4-Dimethylpyrazole phosphate (DMPP)–a new nitrification inhibitor for agriculture and horticulture. Biol. Fertil. Soils 2001, 34, 79–84. [Google Scholar] [CrossRef]
- Benckiser, G.; Christ, E.; Herbert, T.; Weiske, A.; Blome, J.; Hardt, M. The nitrification inhibitor 3, 4-dimethylpyrazole-phosphat (DMPP)-quantification and effects on soil metabolism. Plant. Soil 2013, 371, 257–266. [Google Scholar] [CrossRef]
- Wissemeier, A.; Linzmeier, W.; Gutser, R.; Weigelt, W.; Schmidhalter, U. The new nitrification inhibitor DMPP (ENTEC®)—comparisons with DCD in model studies and field applications. In Plant Nutrition; Springer: Berlin/Heidelberg, Germany, 2001; pp. 702–703. [Google Scholar]
- Abbasi, M.K.; Hina, M.; Tahir, M.M. Effect of Azadirachta indica (neem), sodium thiosulphate and calcium chloride on changes in nitrogen transformations and inhibition of nitrification in soil incubated under laboratory conditions. Chemosphere 2011, 82, 1629–1635. [Google Scholar] [CrossRef]
- Cai, Z.; Gao, S.; Hendratna, A.; Duan, Y.; Xu, M.; Hanson, B.D. Key factors, soil nitrogen processes, and nitrite accumulation affecting nitrous oxide emissions. Soil Sci. Soc. Am. J. 2016, 80, 1560–1571. [Google Scholar] [CrossRef]
- McGeough, K.; Laughlin, R.J.; Watson, C.; Müller, C.; Ernfors, M.; Cahalan, E.; Richards, K.G. The effect of cattle slurry in combination with nitrate and the nitrification inhibitor dicyandiamide on in situ nitrous oxide and dinitrogen emissions. Biogeosciences 2012, 9, 4909–4919. [Google Scholar] [CrossRef] [Green Version]
- Misselbrook, T.; Cardenas, L.; Camp, V.; Thorman, R.; Williams, J.; Rollett, A.; Chambers, B. An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environ. Res. Lett. 2014, 9, 115006. [Google Scholar] [CrossRef] [Green Version]
- Artola, E.; Cruchaga, S.; Ariz, I.; Moran, J.F.; Garnica, M.; Houdusse, F.; Houdusse, F.; Mina, J.M.G.; Irigoyen, I.; Lasa, B.; et al. Effect of N-(n-butyl) thiophosphoric triamide on urea metabolism and the assimilation of ammonium by Triticum aestivum L. Plant. Growth Regul. 2011, 63, 73–79. [Google Scholar] [CrossRef]
- Du, N.; Chen, M.; Liu, Z.; Sheng, L.; Xu, H.; Chen, S. Kinetics and mechanism of jack bean urease inhibition by Hg2+. Chem. Cent. J. 2012, 6, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prakash, O.; Vishwakarma, D.K. Inhibition of urease from seeds of the water melon (Citrullus vulgaris) by heavy metal ions. J. Plant. Biochem. 2001, 10, 147–149. [Google Scholar] [CrossRef]
- Mohanty, S.; Patra, A.K.; Chhonkar, P.K. Neem (Azadirachta indica) seed kernel powder retards urease and nitrification activities in different soils at contrasting moisture and temperature regimes. Bioresour. Technol. 2008, 99, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Suescun, F.; Paulino, L.; Zagal, L.; Ovalle, C.; Munoz, C. Plant extracts from the Mediterranean zone of Chile potentially affect soil microbial activity related to N transformations: A laboratory experiment. Acta Agric. Scand. Sect. B Soil Plant. Sci. 2012, 62, 556–564. [Google Scholar] [CrossRef]
- Kumari, K.; Moldrup, P.; Paradelo, M.; de Jonge, L.W. Phenanthrene sorption on biochar-amended soils: Application rate, aging, and physicochemical properties of soil. Water Air Soil Pollut. 2014, 225, 2105. [Google Scholar] [CrossRef]
- Rechberger, M.V.; Kloss, S.; Rennhofer, H.; Tintner, J.; Watzinger, A.; Soja, G.; Lichtenegger, H.; Zehetner, F. Changes in biochar physical and chemical properties: Accelerated biochar aging in an acidic soil. Carbon 2017, 115, 209–219. [Google Scholar] [CrossRef]
- Mandal, S.; Thangarajan, R.; Bolan, N.S.; Sarkar, B.; Khan, N.; Ok, Y.S.; Naidu, R. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat. Chemosphere 2016, 142, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil. Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Hesse, P.R. A Textbook of Soil Chemical Analysis (No. 631.41 H4); Chemical Publishing Company: Gloucester, MA, USA, 1972. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (No. 939); US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Junsomboon, J.; Jakmunee, J. Determination of potassium, sodium, and total alkalies in portland cement, fly ash, admixtures, and water of concrete by a simple flow injection flame photometric system. J. Anal. Meth. Chem. 2011, 2011, 742656. [Google Scholar] [CrossRef]
- Helrich, K. Nitrogen in Meat Kjeldahl Method, 15th ed.; Association of Official Analytical Chemists, Inc.: Rockville, MD, USA, 1990; p. 935. [Google Scholar]
- SAS Institute. SAS/STAT 9.1 User’s Guide; SAS Inst.: Cary, NC, USA, 2004. [Google Scholar]
- Byerlee, D. From Agronomic data to Farmer’s Recommendation: An Economics Training Manual; CIMMYT: Mexico City, Mexico, 1988; pp. 31–33. [Google Scholar]
- Hammad, H.M.; Ahmad, A.; Abbas, F.; Farhad, W.; Cordoba, B.C.; Hoogenboom, G. Water and Nitrogen Productivity of Maize under Semiarid Environments. Crop. Sci. 2015, 55, 877–888. [Google Scholar] [CrossRef]
- Dempster, D.; Jones, D.; Murphy, D. Organic nitrogen mineralisation in two contrasting agro-ecosystems is unchanged by biochar addition. Soil Biol. Biochem. 2012, 48, 47–50. [Google Scholar] [CrossRef]
- Taghizadeh-Toosi, A.; Clough, T.J.; Sherlock, R.R.; Condron, L.M. Biochar adsorbed ammonia is bioavailable. Plant. Soil 2012, 350, 57–69. [Google Scholar] [CrossRef]
- Genesio, L.; Miglietta, F.; Lugato, E.; Baronti, S.; Pieri, M.; Vaccari, F. Surface albedo following biochar application in durum wheat. Env. Res. Lett. 2012, 7, 014025. [Google Scholar] [CrossRef]
- Mathialagan, R.; Mansor, N.; Al-Khateeb, B.; Mohamad, M.H.; Shamsuddin, M.R. Evaluation of Allicin as Soil Urease Inhibitor. Procedia Eng. 2017, 184, 449–459. [Google Scholar] [CrossRef]
- Juszkiewicz, A.; Zaborska, A.; Aptas, Z. Olech. A study of the inhibition of jack bean urease by garlic extract. Food Chem 2004, 85, 553–558. [Google Scholar] [CrossRef]
- Akiyama, H.; Yan, X.; Yagi, K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: Meta-analysis. Glob. Chang. Biol. 2010, 16, 1837–1846. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Elad, Y.; Graber, E.R.; Frenkel, O. Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration. Soil Biol. Biochem. 2014, 69, 110–118. [Google Scholar] [CrossRef]
- Olmo, M.; Villar, R.; Salazar, P.; Alburquerque, J.A. Changes in soil nutrient availability explain biochar’s impact on wheat root development. Plant. Soil 2016, 399, 333–343. [Google Scholar] [CrossRef]
- Kookana, R.S.; Sarmah, A.K.; Van Zwieten, L.; Krull, E.; Singh, B. Biochar application to soil: Agronomic and environmental benefits and unintended consequences. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2011; Volume 112, pp. 103–143. [Google Scholar]
- Martinsen, V.; Mulder, J.; Shitumbanuma, V.; Sparrevik, M.; Børresen, T.; Cornelissen, G. Farmer-led maize biochar trials: Effect on crop yield and soil nutrients under conservation farming. J. Plant. Nutr. Soil Sci. 2014, 177, 681–695. [Google Scholar] [CrossRef]
- Hale, S.; Alling, V.; Martinsen, V.; Mulder, J.; Breedveld, G.; Cornelissen, G. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere 2013, 91, 1612–1619. [Google Scholar] [CrossRef] [PubMed]
- Nigussie, A.; Kissi, E.; Misganaw, M.; Ambaw, G. Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. Am. Eurasian J. Agric. Env. Sci. 2012, 12, 369–376. [Google Scholar]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Muirhead, B.; Wright, G.; Bird, M.I. Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agric. Ecosyst. Environ. 2015, 213, 72–85. [Google Scholar] [CrossRef]
- DeLuca, T.H.; Gundale, M.J.; MacKenzie, M.D.; Jones, D.L. Biochar effects on soil nutrient transformations. Biochar Environ. Manag. Sci. Technol. Implement. 2015, 2, 421–454. [Google Scholar]
- Trupiano, D.; Cocozza, C.; Baronti, S.; Amendola, C.; Vaccari, F.P.; Lustrato, G.; Di Lonardo, S.; Fantasma, F.; Tognetti, R.; Scippa, G.S. The effects of biochar and its combination with compost on lettuce (Lactuca sativa L.) growth, soil properties, and soil microbial activity and abundance. Int. J. Agron. 2017, 2017, 3158207. [Google Scholar] [CrossRef] [Green Version]
- Hagemann, N.; Joseph, S.; Conte, P.; Albu, M.; Obst, M.; Borch, T.; Orsetti, S.; Subdiaga, E.; Behrens, S.; Kappler, A. Composting-derived organic coating on biochar enhances its affinity to nitrate. Egu Gen. Assem. Conf. Abstr. 2017, 19, 10775. [Google Scholar]
- Schmidt, H.; Pandit, B.; Martinsen, V.; Cornelissen, G.; Conte, P.; Kammann, C. Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil. Agriculture 2015, 5, 723–741. [Google Scholar] [CrossRef] [Green Version]
- Mensah, A.K.; Frimpong, K.A. Biochar and/or Compost Applications Improve Soil Properties, Growth, and Yield of Maize Grown in Acidic Rainforest and Coastal Savannah Soils in Ghana. Int. J. Agron. 2018, 2018, 6837404. [Google Scholar] [CrossRef] [Green Version]
- Farooque, A.A.; Zare, M.; Abbas, F.; Bos, M.; Esau, T.; Zaman, Q. Forecasting potato tuber yield using a soil electromagnetic induction method. Eur. J. Soil Sci. 2019, 71, 880–897. [Google Scholar] [CrossRef]
- Dorff, E.; Beaulieu, M.S. Canadian Agriculture at a Glance—Feeding the Soil Puts Food on Your Plate. Analytical paper, Agriculture Division. Catalogue no. 96-325-X—No. 004 ISSN 0-662-35659-4. 2011. Available online: https://www150.statcan.gc.ca/n1/en/pub/96-325-x/2014001/article/13006-eng.pdf?st=hwBVfcxx (accessed on 28 February 2021).
- Xiong, J.; Yu, R.; Islam, E.; Zhu, F.; Zha, J.; Sohail, M.I. Effect of Biochar on Soil Temperature under High Soil Surface Temperature in Coal Mined Arid and Semiarid Regions. Sustainability 2020, 12, 8238. [Google Scholar] [CrossRef]
Characteristics | Biochar | Soil |
---|---|---|
Organic matter (%) | 45.5 | 0.74 |
Total nitrogen (g kg−1) | 0.35 | 0.04 |
Total phosphorous (g kg−1) | 1.34 | 6.5 |
Total potassium (g kg−1) | 9.40 | 14.0 |
Electrical conductivity (dSm−1) | — | 1.41 |
pH | 8.8 | 7.5 |
Ash content (g kg−1) | 120 | — |
Moisture (%) | 31 | — |
Cation exchange capacity (cmolc kg−1) | 93 | 6.5 |
Source of Variation | DF | SS | MS | F | p |
---|---|---|---|---|---|
Root Length | |||||
Replication | 2 | 12.77 | 6.384 | ||
NI | 1 | 81.60 | 81.601 | 42.2 | 0.0229 |
Error Replication×NI | 2 | 3.87 | 1.934 | ||
Biochar | 5 | 2547.1 | 509.420 | 61.39 | 0.0000 |
NI×Biochar | 5 | 10.42 | 2.084 | 0.25 | 0.9343 |
Error Replication×NI×Biochar | 20 | 165.97 | 8.299 | ||
Total | 35 | 2821.73 | |||
Grain Yield | |||||
Replication | 2 | 4.39 | 2.19 | ||
NI | 1 | 348.44 | 348.44 | 33.1 | 0.0289 |
Error Replication×NI | 2 | 21.06 | 10.53 | ||
Biochar | 5 | 6050.56 | 1210.11 | 89.45 | 0.0000 |
NI× Biochar | 5 | 358.22 | 71.64 | 5.3 | 0.0029 |
Error Replication×NI×Biochar | 20 | 270.56 | 13.53 | ||
Total | 35 | 7053.22 | |||
Total Biomass | |||||
Replication | 2 | 30.2 | 15.08 | ||
NI | 1 | 584 | 584.03 | 1617.31 | 0.0006 |
Error Replication×NI | 2 | 0.7 | 0.36 | ||
Biochar | 5 | 34,868.3 | 6973.65 | 124.04 | 0.0000 |
NI×Biochar | 5 | 1477.1 | 295.43 | 5.25 | 0.0031 |
Error Replication×NI×Biochar | 20 | 1124.4 | 56.22 | ||
Total | 35 | 38,084.8 | |||
Protein Content | |||||
Replication | 2 | 0.574 | 0.2869 | ||
NI | 1 | 6.588 | 6.5878 | 765.03 | 0.0013 |
Error Replication×NI | 2 | 0.017 | 0.0086 | ||
Biochar | 5 | 280.939 | 56.1878 | 213.55 | 0.0000 |
NI×Biochar | 5 | 6.922 | 1.3844 | 5.26 | 0.0030 |
Error Replication×NI×Biochar | 20 | 5.262 | 0.2631 | ||
Total | 35 | 300.302 |
Treatment | Total Yield, Ton ha−1 | Adjusted Yield after Considering 10% Yield Lost during Field Harvest, Ton ha−1 | Gross Income Based on Maize Grain Price in Pakistan ($360 ton−1) | Biochar Cost Based on Biochar Price ($140 ton−1) | Fertilizer per Hectare Cost, $ ton−1 | Variable Cost, $ ha−1 | Fixed Cost, $ ha−1 | Net Benefit, $ ha−1 |
---|---|---|---|---|---|---|---|---|
N0B0 | 2.389 | 2.15 | 773.9 | — | — | 0 | 415 | 358.9 |
N1NPK | 4.889 | 4.4 | 1583.9 | — | 694.0 | 640.0 | 415 | 528.9 |
N1B1 | 2.978 | 2.68 | 964.9 | 163.3 | — | 163.33 | 415 | 386.5 |
N1B2 | 3.422 | 3.08 | 1108.7 | 326.7 | — | 326.66 | 415 | 367.1 |
N1B3 | 3.978 | 3.58 | 1288.9 | 490.0 | — | 490.0 | 415 | 383.7 |
N1B4 | 5.111 | 4.60 | 1656.1 | 653.3 | — | 653.33 | 415 | 587.7 |
N0B0 | 2.367 | 2.13 | 766.8 | — | — | 0 | 415 | 351.8 |
N2NPK | 5.600 | 5.04 | 1814.4 | — | 694.0 | 640.0 | 415 | 759.4 |
N2B1 | 3.533 | 3.18 | 1144.8 | 163.3 | — | 163.33 | 415 | 566.5 |
N2B2 | 4.089 | 3.68 | 1324.7 | 326.7 | — | 326.66 | 415 | 583.1 |
N2B3 | 4.845 | 4.36 | 1569.7 | 490.0 | — | 490 | 415 | 664.7 |
N2 B4 | 4.822 | 4.34 | 1562.3 | 653.3 | — | 653.33 | 415 | 494.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, F.; Hammad, H.M.; Anwar, F.; Farooque, A.A.; Jawad, R.; Bakhat, H.F.; Naeem, M.A.; Ahmad, S.; Qaisrani, S.A. Transforming a Valuable Bioresource to Biochar, Its Environmental Importance, and Potential Applications in Boosting Circular Bioeconomy While Promoting Sustainable Agriculture. Sustainability 2021, 13, 2599. https://doi.org/10.3390/su13052599
Abbas F, Hammad HM, Anwar F, Farooque AA, Jawad R, Bakhat HF, Naeem MA, Ahmad S, Qaisrani SA. Transforming a Valuable Bioresource to Biochar, Its Environmental Importance, and Potential Applications in Boosting Circular Bioeconomy While Promoting Sustainable Agriculture. Sustainability. 2021; 13(5):2599. https://doi.org/10.3390/su13052599
Chicago/Turabian StyleAbbas, Farhat, Hafiz Mohkum Hammad, Farhat Anwar, Aitazaz Ahsan Farooque, Rashid Jawad, Hafiz Faiq Bakhat, Muhammad Asif Naeem, Sajjad Ahmad, and Saeed Ahmad Qaisrani. 2021. "Transforming a Valuable Bioresource to Biochar, Its Environmental Importance, and Potential Applications in Boosting Circular Bioeconomy While Promoting Sustainable Agriculture" Sustainability 13, no. 5: 2599. https://doi.org/10.3390/su13052599
APA StyleAbbas, F., Hammad, H. M., Anwar, F., Farooque, A. A., Jawad, R., Bakhat, H. F., Naeem, M. A., Ahmad, S., & Qaisrani, S. A. (2021). Transforming a Valuable Bioresource to Biochar, Its Environmental Importance, and Potential Applications in Boosting Circular Bioeconomy While Promoting Sustainable Agriculture. Sustainability, 13(5), 2599. https://doi.org/10.3390/su13052599